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This letter suggests that in biological organisms, the perceived structure
of reality, in particular the notions of body, environment, space, object,
and attribute, could be a consequence of an effort on the part of brains
to account for the dependency between their inputs and their outputs in
terms of a small number of parameters. To validate this idea, a procedure is
demonstrated whereby the brain of a (simulated) organism with arbitrary
input and output connectivity can deduce the dimensionality of the rigid
group of the space underlying its input-output relationship, that is, the
dimension of what the organism will call physical space.

1 Introduction

The brain sits inside the cranial cavity monitoring the neural signals that
come into it and go out of it. From this processing emerge the notions of
self, outside space, objects within that space, and object attributes like color,
luminosity, and temperature. Even simple organisms that have little or no
cognitive ability clearly possess these concepts at least implicitly, since they
show spatially adapted behavior like locomotion, navigation, grasping, and
discrimination of different objects.

How is this possible? What kind of algorithms must be at work inside
biological brains for these notions to be extracted from the neural activity
in a mass of unlabeled nerve fibers? Do brains have this capacity because
phylogeny has yielded a brain structure that is specially adapted to under-
standing the notion of space?
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Here we investigate a more radical hypothesis: the possibility that what
brains do is to continuously calculate statistics on their neural activity in an
attempt to characterize it using a small number of parameters. We take the
extreme case where the brain has absolutely no a priori information about
outside physical space (whether it exists at all, whether it has a metric,
whether it is Euclidean, how many dimensions it possesses). We assume
that the linkage between motor commands and the resultant motions of the
organism is unknown to the brain and totally arbitrary. We further assume
that the brain has no information about what nerve pathways correspond
to sensors sensing internal or external states.

We show that there is a simple procedure that a brain can use to arrive
at a distinction between the body, which it can control, and the outside
world, which it cannot completely control. There is a simple algorithm that
leads to a characterization of the number of variables necessary to describe
the organism’s body (insofar as the body states affect incoming sensory
information).

Further, and most interesting, we show that the brain can deduce the di-
mensionality of outside physical space and the number of additional non-
spatial parameters needed to describe the attributes of objects or entities
within it.

Our hypothesis is therefore that what biological organisms perceive as
being the limits of their bodies, as well as the geometry and dimensionality
of space outside them, are deducible, without any a priori knowledge, from
the laws linking the brain’s inputs and outputs. The approach we are taking
derives from the basic idea that the basis of sensory experience consists in
extracting and exercising laws of sensorimotor dependencies (O’Regan &
Noë, 2001).

2 A Simple Organism

Let us imagine a simple organism consisting of an articulated arm fixed to
the ground (see Figure 1). At the end of each of its fingers is an eye composed
of a number of light-sensitive sensors. Imagine in addition that the organism
has proprioceptive devices that signal the position of the different parts of
the arm. The environment, we shall suppose, consists of a set of lights.
The signals provided by the sensors are transmitted to a brain that controls
effectors that move the arm.

Let us suppose that the brain has no a priori knowledge about the body
that it is connected to and that this body is the sole connection it has to the
outside world. What comprehension of this “exterior” can the brain attain,
and how can it be obtained?

Certainly the simplest thing the brain can do is to start by trying various
motor commands at random. Gradually, the brain will notice that it can
make a distinction among the mass of sensory inputs that it receives. It will
notice that certain inputs, or certain combinations of inputs, always react
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brain

Figure 1: A simple organism consisting of an articulated arm with two “fingers”
and a composite “eye” mounted on each.

the same way to motor commands, while the other inputs show only partial,
unsystematic relations to motor commands. What is the natural conclusion
that the organism can deduce from this fact? It is the fact that its universe
can be separated into a part that the organism can completely control and a
part that the organism can only partially control.

We shall call the first part, over which it has complete control, the organ-
ism’s body and the second part the organism’s environment. We shall call the
first type of inputs proprioceptive and the others exteroceptive.1 We shall say
the body is stationary when proprioception is constant, and we shall say the
environment is stationary when exteroception is constant.2 Note that since
the organism is totally naive about its environment (and even about the fact
that there is such a thing at all as an environment), it has no choice but to
define these notions.

The brain can now attempt to understand its environment. Changes that
occur in exteroceptive sensors when the body is stationary can be taken to
derive from the environment. We shall assume that the brain attempts to
account for these changes, which are defined in the very high-dimensional
space of the number of exteroceptors, in terms of a much smaller number
of parameters. For example, in the case of the articulated arm, there may
be 40 photoreceptors, but their outputs are completely determined by a
much smaller number of parameters: the positions of the three lights in

1 We follow the terminology used in Kandel, Schwartz, and Jessell (2000) and stress
that exteroceptive sensors are sensitive not only to changes of the environment but to
motion of the body as well, while proprioceptive are sensitive to changes of the body only
(which is more restrictive that the usual use of this term). Also, it should be noted that this
distinction arises gradually: certain inputs that might at first seem completely determined
by motor commands will later turn out in fact only to be partially determined by them.

2 This definition is compatible with sensors sensitive to derivatives of position, since,
for example, if both velocity and position are constant, then velocity must be zero.
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the environment. We shall call the vector of this reduced parameter set a
representation of the state of the environment.

The brain can also issue motor commands. When it does this sufficiently
quickly, it can assume that most of the resulting changes in its exteroceptive
input will be due to its own motion and not to motion of the environment.
Again, a low-dimensional parameter set can be extracted from the extero-
ceptive changes that occur in this case, and we shall call the resulting vector
a representation of the exteroceptive body.

The representation of the exteroceptive body is richer than the represen-
tation of the proprioceptive body in the sense that it provides a way for
the organism to discover the relationship between its body and the state
of the environment. Importantly, the organism can note that certain exte-
roceptive changes caused by motion in those body parts that bear sensors
can be compensated by particular environmental changes. For example,
in the example of the articulated arm, when the set of photoreceptors is
displaced rigidly by an arm motion, there is a corresponding inverse rigid
displacement of the environmental lights that can be made, which will cause
exteroception to return to its original value. Note, however, that such com-
pensations are possibilities that need never actually occur for our algorithm
to work. It is unlikely that the environment would ever actually move in
this particular rigid fashion. Note also that the notion of compensability
derives in an intrinsic fashion from the fact that the response of a single
set of sensors, namely the exteroceptive ones, varies as a function of two
distinct sources of variation: body changes and environmental changes.
Proprioceptive sensors, since they are sensitive only to a single source of
variation body changes, do not provide information about this kind of
compensability.

The notion of compensability, arising from the confrontation of two dis-
tinct sources of change within a single set of inputs, has fundamental im-
plications for the genesis of the notion of space in an organism:

• Compensability defines a class of body movements with a particular
structure. If the body makes such a movement, then the movement
bringing the body back to its original position is also compensable.
If the body makes two successive compensable movements, then the
resulting global movement is also compensable. In other words, this
class of movements has the mathematical structure of a group, whose
identity element is stationarity. We shall call an element of this group a
compensable transformation of the exteroceptive body. In the same way,
we can define the group of compensable transformation of the envi-
ronment and the group of compensated transformations of the body-
environment system. By their definitions, these three groups are very
closely related to each other.

• Compensability implies that there is something in common between
certain body movements and certain environmental movements. It
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now (but not before) becomes possible to say that body and environ-
ment are immersed in a single entity that we call space. Note that it
is through the use of a sensorimotor approach that we have attained
the notion of space: there can be no notion of compensability when
we make only passive observations. It is through actions that arises
the idea of an environment distinct from the body and through actions
that is born the idea of a common medium through which to describe
the body and the environment. In a similar vein, Poincaré (1895, 1902)
pointed out the radical incommensurability between sensations origi-
nating in different sensory modalities, unified only by common motor
acts needed to reach their sources.

Certain compensated transformations have an additional, special struc-
ture. They form a non-trivial subgroup, in the sense that the sensory con-
sequences of two successive transformations of that particular kind may
depend on the order in which they have been performed. Other compen-
sated transformations can be applied before or after any other compensated
transformations (including the previously mentioned ones) without chang-
ing anything from the sensory point of view. We will call the first transfor-
mations rigid transformations and the others attribute transformations. Indeed,
the first group of transformations defines space, and the other transforma-
tions define changes over nonspatial attributes.

The terminology of rigid transformations comes from the fact that these
transformations are exactly related to those spatial transformations of the
body-environment system leaving the sensory inputs fixed. Thus, any met-
ric defined over representations of space based on the sensory inputs only
will have to be constant over these latter changes.

Since our organism is assumed to be totally ignorant about itself and its
surroundings, it has no choice but to define rigidity; the same problem was
encountered for the notion of stationarity. This means that if, for example,
the physical laws obeyed by light changed according to the positions of the
sensors, there would be a difference with the Euclidean notion of rigidity.
But physicists themselves encounter the same problem in their conception of
space, since they must also assume as given the notion of a rigid measuring
rod.

We have attained the nontrivial conclusion that without observing its
exteroceptive body “from the outside,” the brain can deduce that there exist
transformations of the body-environment system that its exteroception is
not sensitive to. These compensated transformations provide the brain with
what it needs to ground its understanding of geometry.

It is worthwhile to point out the relation of our approach with that of
Droulez and Berthoz (1991), Blakemore, Frith, and Wolpert (2001), and
Blakemore, Wolpert, and Frith (2002), where it is proposed that the cere-
bellum attempts to subtract a prediction of the sensory consequence of its
movements from the actually observed consequences in order to deduce
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the changes that must have occurred in the environment. The similarity lies
in the very general idea of analyzing the sensorial consequences of a move-
ment of the body alone to understand the changes of the environment. This
is a classical idea today. But it usually relies on a kind of platonic a priori
about the existence of space and assumes that the role of the brain is to
map its sensory inputs to some kind of objective archetype of the world and
try to understand its sensations in relation to this abstract world. Here we
used terms such as “representations of the state of the exteroceptive body”
to describe what we (or the brain) conceive this world to be, without any
relationship with an a priori model.

3 Mathematical Sketch

In order to make the preceding discussion more precise and in order to
derive a simple, neuronally plausible algorithm, we present a sketch of a
mathematical formalization. We illustrate only the essential aspects of our
approach to show in a few steps how it is possible to deduce the dimen-
sion of the manifold of rigid transformations of outside “physical” space.
The appendix provides suggestions for a more realistic implementation,
and a second article will show, beyond the discovery of dimensions, how
the group structure of these rigid transformations can be accessed and
used.

We think that the problem we want to answer is precisely the problem
addressed in differential geometry. Indeed, a usual way of introducing the
aim of differential geometry is transparently summarized by saying that
“to consider S as a manifold means that one is interested in investigating
those properties of S that are invariant under coordinate transformations”
(Amari & Nagaoka, 1993). If we think of the sensorimotor system as a highly
redundant parameterization system to move in this manifold and make
observations on it, then the goals are strikingly identical. The structure of the
world consists in those properties that will be imposed on any sensorimotor
system; the rest is an artifact of the specificities of bodies. It is in this spirit
that we use the language of differential geometry, with the conviction it can
provide insights.

Consider an environment whose set of all states E is a manifold E of
dimension e. Suppose the set of all observed sensory inputs S is a mani-
fold S of dimension s, and the set of all possible outputs M is a manifold
M of dimension m. Finally, suppose the environment imposes a “smooth
enough” (meaning that we will consider the problem only in a region ex-
cluding the singularities of ψ) relation between sensory signals S and motor
commands M:

S = ψ(M, E). (3.1)

Note that with our definitions, we have S = ψ(M × E).
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Although the mathematics does not require it, to facilitate the discus-
sion below, we shall consider the case where the manifolds involved are
embedded in finite vector spaces and that (S, M) is a vector whose coordi-
nates reflect the neural activities of the sensory and motor neurons at some
time t. Making this choice has the consequence that the sensory inputs will
have to be determined instantaneously by the motor output and the en-
vironment states. This is thus inappropriate for cases where the sensory
inputs are determined by the integration over time of motor commands,
as is the case when we control the rotation speed of the wheels of a robot,
for instance. Our example would apply instead to a case where the neural
motor activity would be enough to infer muscle elongation and thus the
position of the body. However, we wish to emphasize that this choice of
instantaneous relation between sensory and motor activities is not neces-
sary from the mathematics and is mainly used to make the presentation
here more intuitive. Furthermore, it will allow us to identify proprioception
very easily.

Indeed, because we argue that geometry arises through compensability
and that proprioceptive inputs cannot be compensated by any change of the
environment, the first thing we want to do is to distinguish proprioceptive
from exteroceptive inputs. This can easily be done in the previous model
by locating inputs that do not change when a given definite motor order
is issued and maintained. From now on, we shall be concerned only with
exteroceptive inputs.

Following the method frequently adopted in motor control (Atkeson
& Schaal, 1995; Vijayakumar & Schaal, 2000; Baraduc, Guigon, & Burnod,
2001, although we are not using a motor control approach M = ϕ(S), but an
approach on the contrary based on the observation of sensory consequences
of motor commands) and the standard mathematical approach for dealing
with manifolds, we shall focus on the tangent space {dS} of S at some point
S0 = ψ(M0, E0).

This is allowed by the smoothness of ψ , and it is important to note that
this provides an exact theoretical ground for the considerations below, while
the robustness of the local linear approximation we will make in practice
is a different issue. Our aim was to show that the dimension of the rigid
group of space is accessible through sensory inputs and to demonstrate
the conceptual framework needed to access it. The actual implementation
we used had no other purpose than illustration, and the question of its
robustness for practical robotic applications has no incidence on our more
theoretical point. The simple, neuronally plausible (Sejnowski, 1977; Oja,
1982; Sanger, 1989) tool we used to estimate these dimensions is principal
component analysis (PCA), but any other method of dimension estimation
would have been suitable.

This being said, two natural subspaces can be identified in {dS}: the vector
subspace {dS}dE=0 of sensory input variations due to a motor change only
and the vector subspace {dS}dM=0 of sensory input variations due to an
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M0 - section

E0 - section

sensory manifold

non-empty

intersection

Figure 2: The sensory manifold in the neighborhood of S0, the E0 and M0-
sections (see text). These two manifolds are transverse, and their intersection
is the manifold of the sensory inputs accessible through either motion of the
exteroceptive body or motion of the environment.

environment change only. Since we have

dS = ∂ψ

∂M
|(M0,E0) · dM + ∂ψ

∂E
|(M0,E0) · dE, (3.2)

we can remark that

{dS} = {dS}dM=0 + {dS}dE=0. (3.3)

What are the manifolds to which these subspaces are tangent? Starting from
(M0, E0), we can consider the sensory inputs obtained through variations
of M only (E0-section ≡ ψ(E0,M)) and sensory inputs obtained through
variations of E only (M0-section ≡ ψ(E, M0)) (see Figure 2). {dS}dE=0 and
{dS}dM=0 are the tangent spaces at the point S0 of these manifolds, and the
fact that their vectorial sum is the overall tangent space of S means, by the
definition of transversality, that the two sections are transverse (see, e.g.,
Laudenbach, 1999, for a basic description of transversality in submanifolds
of Rn.). We will call C(M0, E0) their intersection, which is thus a manifold
as well.

When the body is stationary, the dimension {dS}dM=0 gives the number e
of variables necessary for a local description of the environment. When the
environment is stationary, the dimension {dS}dE=0 gives the number p ≤ m
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of variables necessary to explain the variations in exteroceptive signals due
to body motions, that is, the number of variables describing the exterocep-
tive body. When both M and E vary, {dS} is not of dimension p + e because
the vector spaces generated by ∂ψ

∂M and ∂ψ
∂E do not necessarily have null

intersection. Certain exteroceptive changes can be obtained equally from
either dE or dM, as is the case when we move along C(M0, E0). This reduces
the dimensionality of dS compared to the case where it is possible to iden-
tify the origin of the change unambiguously. When sensory changes from
dE and dM mutually compensate for one another, we shall say that there
has been a compensated infinitesimal movement of the body-environment
system, and we shall say that the corresponding infinitesimal movement of
the body (or the environment) is compensable (thus, implicitly, the term of
compensated movement means a change of body-environment, while com-
pensable movement means a change of either one alone). For simplicity we
will drop the word infinitesimal, but it should always be kept in mind since
we will mostly be dealing with the tangent spaces. This is justified because
it is a basic result that the dimension of a tangent space is the dimension of
the underlying manifold.

Since the exteroceptive body representation and the environment rep-
resentation imply parameterizations of {dS}dM=0 and {dS}dE=0, there is a
natural one-to-one correspondence between the set of compensated move-
ments and the set of compensable movements of the body. The basic idea is
that given a compensable movement of the body, only the environment
movement yielding the opposite sensory consequence will, when taken
together, yield a compensated movement of the body-environment
system.3

We will now search for the relationships between the dimensions of all
the entities we have defined. We have shown that the dimension of the
space of compensated movements is the same as the dimension of the space
of compensable body movements, and this dimension is accessible because
there is a trivial one-to-one mapping of this space to T = {dS}dM=0∩{dS}dE=0.
Indeed, that dSdM=0 is compensable means:

∃ dSdE=0 such that dSdM=0 + dSdE=0 = 0 ⇔ dSdM=0

= −dSdE=0 ⇔ dSdM=0 ∈ T.

3 This is enough for our purpose, but (for the extension of this work) it is important
to understand that this can be extended to noninfinitesimal movements by integration:
given a compensable movement of the body (i.e., a curve tangentially compensable at
any time), we can construct the movement of the environment whose tangent sensory
change will cancel at any time the tangent sensory change yielded by the compens-
able movement. This is symmetrically true for compensable movements of the environ-
ment.



2038 D. Philipona, J. O’Regan, and J. Nadal

Thus, the space of the compensated movements has the dimension of T. But
since

dim{dS}dM=0 + {dS}dE=0 = dim{dS}dM=0

+ dim{dS}dE=0 − dim{dS}dM=0 ∩ {dS}dE=0,

we finally have, with the use of equation 3.3,

d = p + e − b, (3.4)

where b = dim{dS} and d = dim T = dim C(M0, E0).
We have consequently deduced the dimension of the manifold of the

compensated transformations of the world. Note that this is actually more
fundamental than simply the number of variables needed to describe this
world: the manifold of compensable transformations is the operational as-
pect of the relation to the world that an organism will be most interested in.

In a subsequent, more technical article (in preparation), we demonstrate
how the group structure of the underlying transformations can be accessed
and defined through C(M0, E0). This will provide a way for the naive or-
ganism to understand its body and produce at will particular rigid trans-
formations of its exteroceptive body, such as translations or rotations for
instance. The dimension of the rigid group and the dimension of space will
be found through the study of these transformations. For now, if we make
the additional assumption that the organism can choose to perform only
spatial movements, then we can say that we have accessed the dimension
of the rigid group defining the space that the organism is embedded in.

A last point must be made concerning the distinction between propri-
oceptive and exteroceptive sensory inputs. In the preceding mathematical
discussion, we have assumed we are dealing only with exteroception and
that proprioception has been set aside. It might be thought that this is an
unnecessary step, since in equation 3.4, proprioceptive dimensions surely
would cancel out, since they would contribute equally to p and b. However,
this is in general false. If we consider a case where the representation of
the exteroceptive body intersects with the representation of the propriocep-
tive body, then describing this intersection will, in a moving environment,
require two times the set of variables required in a fixed environment. In-
deed, in a moving environment, exteroception and proprioception will be
unlinked.

4 Experiments

4.1 Method. We present the results of a simulation of the example of
the articulated arm described above. We additionally describe simulations
for two further cases with interesting modifications of the organism. The
details of the three experiments can be found in the appendix. A summary



Inferring Space from Sensorimotor Dependencies 2039

Table 1: Summary of the Three Experiments.

Characteristics Organism 1 Organism 2 Organism 3

Dimensions of motor commands 40 100 100
Dimensions of exteroceptive inputs 40 80 80
Number of eyes 2 4 4
Diaphragms None Reflex Controlled
Number of lights 3 5 5
Light luminance Fixed Variable Variable

Dimensions found for body (p) 12 24 28
Dimensions found for environment (e) 9 20 20
Dimensions found for both (b) 15 38 41

Deduced dimension of rigid group (d) 6 6 7

Notes: Proprioception does not play a role in the calculation and so is not shown in the
table. The estimations given here are obtained from Figures 3c and 4. In Organism 3,
the group of compensated transformations is different from the orthogonal Euclidean
group because the organism has control over a nonspatial aspect of its body, namely the
diaphragm aperture.

of the results is presented in Table 1. It should be stressed that the same
kind of simulation could be done for any other arbitrary kind of device
with sensory inputs and motor outputs.

In the first experiment, the arm had four joints and two eyes, and the
environment consisted of three lights. Each eye consisted of a composite
“retina” with 20 omnidirectionally (i.e., not directional) sensitive photo sen-
sors mounted rigidly on a small, flat surface, attached to the end of a “finger,”
one for each eye.

Each joint had four proprioceptive sensors whose output depended on
the position of the joint, according to a fixed, randomly assigned law. The
orientation of the eyes provided no proprioception.

The motor command moving the device was a 40-dimensional vector,
which was converted by a fixed random function to the 12 values that de-
termined the 3D spatial coordinates of the surfaces holding the two eyes
and their orientations.

These particular choices were arbitrary: the purpose was merely to sim-
ulate a complicated sensorimotor relation that was unknown to the brain
and had the property that the number of dimensions of the motor com-
mands and of the sensory inputs should be high compared to the number
of degrees of freedom of the physical system.

In the second experiment, we considered a more complex device with
an arm having 10 joints, bearing 4 eyes. Each eye had a diaphragm or at-
tenuator with an automatic “pupil reflex” that reduced light input to it in
such a way that total illumination for the eye was constant. There were
five light sources in the environment, and we now allowed their inten-
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sity to vary. The dimensionality of the motor command and sensory in-
put was also increased, respectively, to 100 (determining the 24 degrees
of freedom of the four eyes, each having three positional and three orien-
tational degrees of freedom) and 120 (determined by the 20 photosensors
on each of the four eyes plus 40 proprioceptors). Again the purpose was
to show that the complexity of the sensorimotor coupling was not a the-
oretical obstacle to our approach; neither were nonspatial body changes
like the pupil reflex or nonspatial changes in the environment, like light
intensity.

The third experiment was identical to the second except that now we
made what we shall see is a theoretically very important modification: the
diaphragms were now controlled by the organism instead of being deter-
mined automatically by the total illumination.

To do the simulation, we went through the four-stage procedure de-
scribed in the previous section:

1. Proprioceptive input was separated from exteroceptive input by not-
ing that proprioceptive input remains silent when no motor com-
mands are given, whereas exteroceptive input changes because of
environmental change.

2. We estimated the number of parameters needed to describe the varia-
tion in the exteroceptive inputs when only the environment changes.
The algorithm issues no motor commands and simply calculates the
covariance matrix of the observed environment-induced variations in
sensory inputs. The dimension estimation is done by considering the
eigenvalues of this covariance matrix. The eigenvalues λi should fall
into two classes: a class with values all equal to zero and a class with
nonzero values. We separated the two classes by a clustering method
(see the appendix). The number of nonzero eigenvalues was taken as
the number of dimensions.

3. We estimated the number of parameters needed to describe the vari-
ation in the exteroceptive inputs when only the body moved. The
environment is kept fixed, and the algorithm gives random motor
commands (see the appendix). We observe the covariance matrix of
the resulting changes and estimate the dimension from the number of
nonzero eigenvalues in the same way as before.

4. We estimate the number of parameters needed to describe the changes
in exteroceptive inputs when both the body and the environment
change. The environment is changed at random, and the organism
gives random motor commands. The number of nonzero eigenvalues
of the covariance matrix is obtained as before.

4.2 Results for Organism 1. We see that despite the high dimensionality
of the outputs, the exteroceptive, and the proprioceptive inputs (40, 40, 20,
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respectively), the brain is able to:

• Distinguish the 20 proprioceptive and 40 exteroceptive sensor inputs
(see Figure 3a).

• Determine that only 12 parameters are necessary to represent its ex-
teroceptive body—this corresponds to the three position and three
orientation dimensions for each of the two eyes (see Figures 3b and
3c).

• Determine that 9 parameters are necessary to describe the environ-
ment, corresponding to three spatial dimensions for each of the three
lights (see Figures 3b and 3c).

These results would seem to lead to the conclusion that the brain should
observe 12 + 9 = 21 degrees of freedom in the exteroceptive inputs when
it lets body and environment move simultaneously, but instead only 15 are
found (see Figures 3b and 3c). The brain thus concludes that there is a group
of compensated movements of dimension 21−15 = 6, which we know to be
the Lie group of orthogonal transformations (3 translation and 3 rotations).4

4.3 Results for Organisms 2 and 3. In the second experiment, the algo-
rithm deduced that 24 variables were needed to characterize the exterocep-
tive body, 20 were needed for the environment, and 38 were needed to char-
acterize the exteroceptive inputs when both environment and body moved
simultaneously (see the appendix). The group of compensated movements
constituted by the brain therefore remained coherent with the usual Eu-
clidean group, since the brain again arrived at a group of dimension 20 +
24 − 38 = 6 (which is the same Lie group as before). We see that the no-
tion of space constituted by the brain is insensitive to major variations in
the complexity of the physical structure of the device and the details of its
sensorimotor coupling.

The third experiment involved the same organism as the preceding ex-
ample, but the aperture of the diaphragms was now controlled by the brain
instead of being determined by an automatic reflex. This time the brain de-
termined that 28 variables were needed to characterize the exteroceptive
body. Twenty were needed for the environment and 41 for the exterocep-
tive inputs when both environment and body moved. Luminance in this
example is a compensable variable, and we indeed found that we now have
28 + 20 − 41 = 7 compensated variables instead of 6.

4 An elementary presentation of Lie groups can be found in Burke (1985). The orthog-
onal transformations are clearly a subset of the set of compensated movements, and the
equality of dimensions guarantees equality of the groups. The idea that sensory informa-
tion should be invariant under the Lie group of orthogonal transformations is a useful
concept in artificial vision (Van Gool, Moons, Pauwels, & Oosterlinck, 1995) and image
analysis (Rao & Ruderman, 1999).
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Figure 3: (a) Changes in the different inputs when no motor commands are given
and the environment changes. The first 40 sensors depend on the environment
(exteroceptive) and the 20 last ones do not (proprioceptive). (b) Eigenvalues
of the covariance matrices in the three cases described in the text (normalized
log scale : logarithm of the eigenvalues renormalized to lie in the range [0,1]).
(c) Ratio of eigenvalue i to eigenvalue i + 1, where i is the eigenvalue index.
The dimensions of the tangent spaces are taken to be equal to the number of
significantly nonzero eigenvalues, and the maximum of this ratio indicates the
biggest change in the order of magnitude of the eigenvalues (see the appendix).

The group structure, and more precisely commutativity of the transfor-
mation involving only luminance variations with any other transformation,
still theoretically allows for the distinction between spatial transformations
and attribute changes. But it is worthwhile to recall that Poincaré thought of
geometry in terms of voluntary body motions. It would seem that he consid-
ered that only spatial changes were subject to voluntary control. If space is
thus defined by the voluntary accessible set of sensory inputs, then the con-
trol of our diaphragms would surely have led us to a different conception
of space than the one we have. If we define space through the properties of
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commutativity of transformations operating on it, which is the hypothesis
we favor, then the diaphragms are of no importance.

A second aspect of this third experiment should not be dismissed; it
concerns the notion of environmental attributes. By allowing luminance to
vary independently in the five lights, one might have expected that the brain
would find five additional variables as compared to the case where lumi-
nance is fixed. However, the algorithm deduces that only a single additional
compensable dimension need be introduced. This is because compensabil-
ity of luminance with motions of the body-environment configuration is
possible only in the case where all five lights vary simultaneously in lumi-
nance by a common factor. Thus, we see that the algorithm has extracted
the presence of an additional feature dimension, luminance, independent
of the number of lights that are present.

We wish to stress for the last time that the simulations presented here are
considered simply as illustrations of our approach. We claim nothing about
the optimality or robustness of the methods we have used. There is an active
literature on the practical problems involved in estimating dimensionality
and, more interesting, the parameterization of manifolds (Tenenbaum, 1998;
Roweis & Saul, 2000; Tenenbaum, Silva, & Langford, 2000; Verbeek, Vlassis,
& Kröse, 2002). Our purpose here was to show how, when taken in conjunc-
tion with a sensorimotor rather than merely sensory approach, such tools
could be used by an organism to generate the notion of space.

5 Conclusion

We have shown that thanks to a sensorimotor approach, the notion of rigid
group of space, where space is an abstract frame in which the brain has
good reasons to embed its body and its environment, is accessible to an
organism without any a priori knowledge. This shows why, in robotics and
neurobiology, it may be fundamental to take sensory and motor informa-
tion into account simultaneously. Indeed, we have shown that doing so
provides a meaningful way of reducing the dimensionality of the problem
of interacting with the environment. This is directly of interest for roboti-
cists concerned with unsupervised learning. It is indirectly of interest for
neurobiologists and cognitive scientists, since it favors the idea suggested
in O’Regan & Noë (2001) that the brain should be studied from a sensori-
motor approach rather than a stimulus-based or motor control approach:
until now, it has never been shown how such an approach could access
the notion of space, yet it is a notion we all know to be present in our
brains.

Our approach represents a basically different approach than the dimen-
sion-reduction techniques that are usually employed, for instance, in pattern
classification tasks for passive observers. Consider, for example, Roweis and
Saul (2000), which does dimension reduction on a set of faces with different
expressions. In this situation, the variables that can be used to parameter-
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ize facial expressions will have no simple relation to the dimension of the
space in which the faces are embedded. If such a technique is applied to
samples of faces that can be both rigidly rotated and can change expres-
sion, the parameters determining these two types of change would not be
differentiated. On the other hand, by the use we are suggesting here of an
active observer and the notion of compensated variables, it is possible for
our algorithm to make a principled distinction between rigid deformations
like rotations and nonrigid variations like facial expression changes. Our
approach induces a difference between simple feature spaces that do not
distinguish attributes and geometry, and structured geometrical spaces.

Finally, perhaps the main interest of our approach is philosophical. Spa-
tial reasoning is the basis of our comprehension of the world and our abstrac-
tion abilities, so much so that the nature of space itself has been considered to
preclude scientific investigation. Ever since the revolution of non-Euclidean
geometry more than a century ago, our Euclidean intuition of space has been
considered to derive from our experience with the world and not from a
mental a priori. But then if our notions of geometry derive from our relation
with the world, to what extent do these notions depend on the world and
to what extent do they depend on the way our sensorimotor systems are
constructed? Could it be that the intuition of three-dimensional Euclidean
space is a consequence of the structure of humans’ sensorimotor systems
rather than corresponding to “real” properties of the outside world?

To answer this question, we would have to know what we mean by
“real” properties of the world, even though we obtain information about
it only through our bodies and our sensors. This is problematic, since to
understand the world, we must know about how our bodies and sensors
are constructed. But how can we formulate such knowledge without pre-
supposing a world within which the body and its sensors are embedded
and whose concepts we use to describe those very bodies and sensors? It is
because of this fundamental problem that we think it is fruitful to develop
an abstract approach such as ours, in which the details of the workings of
sensors and effectors play no role.

Our approach has shown that one reasonable deduction that brains can
derive from the sensorimotor constraints they are exposed to is the notion
of compensated movements. A brain can naturally infer that the structure
of the derived compensated transformations of the world will be coherent
with transformations derived by any other brain with the same sensorimo-
tor capabilities but different details of implementation. Indeed, since the
compensated group is precisely those changes of the body-environment
system leaving perception unchanged, if there is a one-to-one smooth map-
ping from the perception of one organism to the perception of the other,
then they will end up with the same rigid group. The subsequent consen-
sual universality of this group makes it a good candidate for the status of
physical reality. We believe that it may be this which lies at the basis of our
notion of the orthogonal group of geometrical space.
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Appendix

A.1 Experimental Details. The motor commands were simulated in the
following way:

(Q, P, a) = σ(W1 · σ(W2 · M − µ2) − µ1)

L = σ(V1 · σ(V2 · E − ν2) − ν1)

Se
i,k = di

∑

j

θj

‖Pi + Rot(aθ
i , aϕ

i , aψ
i ) · Ci,k − Lj‖2

Sp
i = σ(U1 · σ(U2 · M − τ2) − τ1),

where W1, W2, V1, V2, U1, U2 are matrices with coefficients drawn randomly
from a uniform distribution between −1 and 1, as are also the vectors
µ1, µ2, ν1, ν2, τ1, τ2. This is equivalent to the choice of the measurement
unit for the signals of our model. σ is an arbitrary nonlinearity, here the
hyperbolic tangent function. The Ci,k are drawn from a centered normal
distribution whose variance, which can be understood as the size of the
retina, was so that the sensory changes resulting from a rotation of the eye
were of the same order of magnitude as the ones resulting from a translation
of the eye.

Here are the notations used in the definition of the simulated sensorimo-
tor law:

Q = (Q1, . . . , Qq) positions of the joints

P = (P1, . . . , Pp) positions of the eyes

aθ
i , aϕ

i , aψ
i Euler angles for the orientation of eye i

Rot(aθ
i , aϕ

i , aψ
i ) rotation matrix for eye i

Ci,k relative position of photosensor k within eye i

d = (d1, . . . , dq) apertures of diaphragms

L = (L1, . . . , Lp) positions of the lights

θ = (θ1, . . . , θp) luminances of the lights

Se
i,k sensory input from exteroceptive sensor k of eye i

Sp
i sensory input from proprioceptive sensor i

M, E motor command and environmental control vector

In Organism 1, motor command M is a vector of size 40 and S a vector
of size 40. The organism has four joints and two eyes with 20 photosen-
sors each. The eyes are free to rotate in any way, including through torsion
movements. θ and d are constants drawn at random in the interval [0.5, 1].
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Figures 3b and 3c present the results obtained for a linear approxima-
tion in a neighborhood of size 10−8 (this is to be understood with respect to
the unit measure given by the previous matrix coefficients). Sensory inputs
were generated from 50 motor commands and 50 environmental positions
following a normal distribution with mean zero and standard deviation
10−8. Coordinates differing from zero by more than the standard deviation
were put equal to zero. This neighborhood size is the one that yielded the
most significant separation between very small eigenvalues and non-null
ones, but results could be found from about 10−5. Generally, the size of va-
lidity for the linear approximation is related to the curvature of the sensory
manifold, and there is no general answer to the question of what size the
neighborhood should have.

Out of these 50 motor commands {dMi} and 50 environmental positions
{dEj}, we produced 50 sensory inputs changes {dSi}dE=0 resulting from the
world configurations {(M0 + dMi, E0)}, 50 sensory input changes {dSj}dM=0
resulting from the world configurations {(M0, E0 + dEj)}, and 50 × 50 =
2500 sensory input changes {dSi,j} resulting from the world configurations
{(M0 + dMi, E0 + dEj)}.

The results of the other two experiments (see Figure 4) were obtained
with environmental lights having variable luminance. The organism had
10 joints and a diaphragm for each of its four eyes. Motor commands were
of dimension 100. For Organism 2, the diaphragm aperture di of eye i was
defined by the equation

∑

k

Sk,i = 1,

that is, the aperture adjusted automatically so as to ensure constant total
illumination for eye i. For Organism 3, d was under its own control:

(Q, P, a, d) = σ(W1 · σ(W2 · M − µ2) − µ1).

Theoretically the eigenvalues of the covariance matrices of the three sample
sets {dSi}dE=0, {dSj}dM=0, and {dSi,j}, should fall into two classes—one with
zero values and one with nonzero values. To distinguish these two classes
we used a clustering method and supposed that the two classes V1 and V2
were such that each λ of V1 was more comparable in size to other λ’s of
V1 than to all those of V2, and conversely. Finding the boundary between
the two classes can thus be done by ordering the λi in decreasing order,
and locating the value of i such that the ratio between λi and λi+1 is largest
(see Figures 3c and 4). We could also have used an approach similar to
Minka (2001). It should be noticed that the nullity or non-nullity of the
eigenvalues reflects a characteristic of space, but their absolute value reflects
a characteristic of the sensorimotor system. This is where lies the practical
aspect of our problem as compared with the theoretical one.
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Figure 4: Dimension estimation when the diaphragm aperture is determined
by reflex (a) and controlled by the organism (b).

A.2 Extensions of the Model. The concrete examples we have presented
here might give the impression that the approach is limited to cases where
motor commands and sensory input are defined as instantaneous vectors.
This would be unrealistic, since motor commands and neural afference are
usually extended in time. But this poses no problem for our approach, since
M,E , andS need only to have a manifold structure, not a vectorial structure.
For simplicity, we chose vectors representing the motor commands and
sensory inputs at a particular time t, but in general, M and S could be
vector functions, and the sensorimotor relation would then be an equation
of functionals. In the finite case, our approach could be applied directly,
and performing the PCA would then require making a local approximation
of this functional relation in a manner analogous to that proposed by Fod,
Matarié, and Jenkins (2000) for motor control. In the nonfinite case, we think
there should also be a way to use our method, since C(M0, E0) is finite even
if S , M, and E are not.

When the functional equation is given as a differential equation, the
sensorimotor relation remains instantaneous. We will in general be able to
write it in implicit form,

ψ(S(t), Ṡ(t), . . . , M(t), Ṁ(t), . . . , E(t)) = 0, (A.1)
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and then determine the variables that are functions of S(t), Ṡ(t), . . . , which
can be accounted for in terms of M(t), Ṁ(t), . . .5 From there on, we can apply
the same reasoning we used for the exteroceptive variables described in this
article. This extension is one of the objects of our current research.
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Fod, A., Matarié, J., & Jenkins, O. C. (2000). Automated derivation of primitives
for movement classification. Paper presented at the International Conference
on Humanoid Robotics.

Kandel, E. R., Schwartz, J., & Jessell, T. M. (2000). Principles of neural science. New
York: McGraw-Hill.
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