
The Autotelic Principle

Luc Steels
VUB AI laboratory - Brussels

Sony Computer Science Laboratory - Paris
steels@arti.vub.ac.be

July 5, 2004

Abstract

The dominant motivational paradigm in embodied AI so far is based on
the classical behaviorist approach of reward and punishment. The paper
introduces a new principle based on ’flow theory’. This new, ‘autotelic’,
principle proposes that agents can become self-motivated if their target is to
balance challenges and skills. The paper presents an operational version of
this principle and argues that it enables a developing robot to self-regulate
his development.

1



1 Introduction

The design and implementation of self-developing robots has become a focal point
of recent efforts in robotics and AI research [20]. It builds further on the work of
developmental psychologists, who have a long history of studying ’epigenetic’ or
’ontogenetic’ development [7], [9]. A lot of research in developmental robotics
focuses on finding powerful learning mechanisms that can run continuously in
open-ended environments [?]. This paper turns to a more global issue: How can
the developmental process as a whole be orchestrated.

The problem of regulating development is very challenging for three reasons.
(1) Certain things often cannot be learned before other things are mastered, so the
developmental process must be scaffolded somehow, to enable bootstrapping from
simple to complex. Thus, it is not possible to learn fine-grained control of grasp-
ing if there is no ability to identify and track the objects that need to be grasped.
(2) In a complex agent, each component depends on others, either to provide in-
put or to produce appropriate feedback. But if there are many subcomponents,
each developing at their own pace, regulating global development becomes a non-
trivial issue. (3) An agent may reach a level of performance which is adequate
with respect to a given environment but which is nevertheless a local maximum in
the sense that a richer interaction can be achieved by further exploration and de-
velopment. So a big challenge is to avoid that the agent gets stuck in development,
even if this means a decreased performance in the short run.

Some researchers have proposed that nothing special needs to be done to or-
chestrate the developmental process, because the development of one skill natu-
rally creates new opportunities for the development of other skills in a changing
ontogenetic landscape [18]. For example, once the arm can be controlled, it is pos-
sible to start exploring the uses of the hand. Although it is obviously the case that
one opportunity may lead to the next, it is now generally recognised that more
needs to be done, particularly to avoid that the agent remains in local maxima
which do not exploit the full capacity of what is possible. Three approaches have
already been discussed in the literature.

• Scaling of input complexity

A first group of researchers has proposed that development can be organ-
ised by regulating the complexity of the external environment. This way the
agent can build up capacity in a simple environment before tackling addi-
tional challenges. Usually a small subtask is isolated and the agent is trained

2



for that specific subtask with prepared scaffolded data [2], [6]. In more so-
phisticated applications, several stages and subcompetences are identified
and input data is carefully prepared to pull the agent through each stage.
[19].

• Scaffolding of reward function

Other researchers have proposed to scaffold the reward function, i.e. to give
external feedback to the agent which makes sure that simpler and founda-
tional skills are learned before more complex skills are tackled and that the
stakes are increased as soon as steady performance has been reached [20].
In the case of language development for example, we could envision first a
high reward for producing single word sentences, then a higher reward for
multiple-word sentences, then a higher reward for constructing grammatical
phrases with increased complexity.

• Staging of resources

Yet another approach is to stage the resources available to the agent in a
kind of ’maturational schedule’. For example, Elman [6] has shown that a
recurrent neural network can be trained first with a small ’look back’ win-
dow, then this window is progressively increased to take more of past input
into account. Such an approach has been shown to give better performance
compared to one where the full complexity of internal resources is available
from the beginning.

All these approaches are valuable and have shown to yield interesting results.
Moreover they are not completely devoid of naturalness because in the case of in-
fants, caregivers often scaffold the environment or ’up the ante’ to push the infant
to higher competence. However these approaches assume a very strong interven-
tion by ’trainers’ and/or a careful a priori design of developmental scenarios. The
real world always presents itself with the same complexity to the learner and it is
therefore artificial to constrain it. It would be much more desirable if the agent
could develop independently and autonomously in an open-ended environment by
actively self-regulating his own development.

This is precisely the goal of the research reported in this paper: a general
principle is proposed by which a complex agent could self-regulate its-build up of
skills and knowledge without the need for the intervention of a designer to scaffold

3



the environment, stage the reward functions, or bring resources progressively on-
line in a maturational schedule. The main idea is to introduce a new motivational
principle gleaned from recent work in humanistic psychology. This principle is
introduced in the next section of the paper. Further sections present an opera-
tionalisation of this principle. We have already conducted various experiments to
exercise the principle in the context of grounded language development, [?]. The
results are encouraging and will be reported in more detail in forthcoming papers.

2 Motivation and Flow

Reinforcement Learning

Most models in psychology and neuroscience are still rooted in the behavior-
ist framework of reward and punishment, originallly coming from the work of
Skinner and his associates [16]. Also a lot of autonomous robotics work, particu-
larly under the banner of reinforcement learning, is implicitly based on the same
approach. This theory makes four major assumptions.

First, it assumes that the overall goal of the organism is to keep its critical
parameters for survival within viable bounds [?]. The challenge of a develop-
ing organism is to acquire the necessary behaviors so that such a viable state is
maintained, or to adapt the behaviors if the environment changes.

Second, it argues that certain behaviors get rewarded, for example with food
or other means that give direct pleasure, and others are punished, for example
through the inducement of corporal pain. Rewards reinforce specific behaviors
because they inform the organism that they are beneficial, in other words that a
viable state can be reached and maintained. Punishment signals that the behaviors
that were enacted need to be abandoned or new knowledge and skills need to be
acquired. In natural circumstances, reward and punishment is generated by the
environment.

Third, it proposes that organisms start with a repertoire of reflex behaviors and
an innate value system. New behaviors are shaped by reward and punishment.
When a trainer or educator hands out the reward or punishment, she can push
development in specific directions and the trainer’s value system may become
progressively internalised by the trainee.

Fourth, classical behaviorism proposes that this reinforcement framework is an
adequate theory of motivation, in the sense that the main purpose of the organism

4



is to seek reward and avoid punishment, and so all the rest (acquisition of new
behaviors and internalisation of a value system) follows.

Flow theory

More recently, a complementary motivational theory has been proposed in psy-
chology, which points to a richer notion of motivation. This theory was originally
developed by the humanistic psychologist Csikszenmihalyi, based on studying
the activities of painters, rock climbers, surgeons, and other people who showed
to be deeply involved in some very complex activity, often for the sake of doing it,
i.e. without direct reward in the form of financial or status compensation [3]. He
called these activities autotelic. ”Autotelic” signifies that the motivational driv-
ing force (”telos”) comes from the individual herself (”auto”) instead of from an
external source, administered by rewards and punishments.

Autotelic activities induce a strong form of enjoyment which has been char-
acterised as ”flow”. The word ”flow” is a common sense word and so there is a
risk to interpret it too broadly. Csikszenmihalyi intends a restricted usage, being
a state which often occurs as a side effect of autotelic activities:

People concentrate their attention on a limited stimulus field, forget
personal problems, lose their sense of time and of themselves, feel
competent and in control, and have a sense of harmony and union
with their surroundings. (...) a person enjoys what he or she is doing
and ceases to worry about whether the activity will be productive and
whether it will be rewarded. o.c. p. 182.

Because the activity is enjoyable, the person who experiences this enjoyment
seeks it again, and therefore it becomes self-motivated. Moreover due to the high
concentration and the strong self-motivation, learning takes place very fast. The
learner is eager to find the necessary sources and tools herself and spends time
on the acquisition of skills, even if they are not exciting in themselves, as long as
they contribute to the autotelic activity.

Given this description, it is quite obvious that many people will have expe-
rienced some form of flow in their life, and that children in particular enter into
flow experiences quite often, particularly during play. Flow is sometimes associ-
ated with the ultimate high experience of the rock climber that has finally managed
to climb Mount Everest, but that is an exceptional situation. Flow - as defined here

5



- is much more common and can just as well happen in every-day experiences like
playing with children or engaging in a long term love relationship.

It is also important to distinguish flow from directly pleasurable activities like
going down a roller coaster. A key difference is that the activity must in itself
be challenging - otherwise there is no feeling of satisfaction after difficulties have
been surmounted. Moreover there must be a steady progression in the nature and
particularly the level of the challenge. This is the reason why child rearing can
be so enjoyable and fascinating. A child keeps developing all the time - which
is what makes the interaction fun - and that creates continuously new challenges
for the parent to figure out what she is thinking, what she might want to do or
not do, and so on. The rock climber can also scale up the level of difficulty with
which rocks are being climbed or the kinds of rocks that are tackled. Similarly,
the musician can first play easy pieces and then steadily move up. she can first
play with other amateur musicians and then play with better and better musicians.
The performance can be first for a few friends, but then for a larger and larger
unknown audience.

An obvious key question is: What makes activities autotelic? Here comes
Csikszenmihalyi’s most important contribution, I believe. He argues that it lies in
a balance between high challenge, generated through the activity and perceived as
meaningful to the individual, and the skill required to cope with this challenge:

Common to all these forms of autotelic involvement is a matching of
personal skills against a range of physical or symbolic opportunities
for action that represent meaningful challenges to the individual. o.c.
p. 181

When the challenge is too high for the available skill, in other words the op-
portunity for action is so bewildering that no clear course can be seen, and when
there is at the same time no hope to develop appropriate skills by learning, anx-
iety sets in and the person gets paralysed and eventually may develop symptoms
of withdrawal and depression. When the challenge is too low for the available
skill, boredom sets in and the long term reaction may be equally negative. The
optimal regime is somewhere between the two, when there is a match of challenge
and skill. It follows that it is important for the individual to be able to decrease
challenge when it is too high so as to get an opportunity to increase skills, but it
is equally important that the individual can increase challenge when the skill has
become higher than required to cope with the challenge, or that the environment
generates new opportunities for the individual to grow.

6



Let us now see how these intuitive ideas can be operationalised into a design
principle that can be implemented on physical self-developing robots.

3 Operationalising the autotelic principle

A cognitive agent is a physically embodied organism embedded in an environment
in which there is a steady stream of sensori-motor inputs and a steady stream of de-
cisions for action which translate into motor commands or internal state changes,
such as switch goals or move to another location in the world. The key challenge
for the agent is to survive in this environment and hence choose the right action
based on an interpretation of the current situation.

We assume that the agent is organised in terms of a number of sub-agencies
further called components. Each component establishes an input-output mapping
based on knowledge and/or skill. For example, a segmentation component takes
a camera bitmap and produces a list of segments using some segmentation algo-
rithm. Each component requires a set of resources (memory, computer time) and
makes use of knowledge or skill that is typically adapted or learned. For example,
the segmentation algorithm may progressively build up a database of the shapes
or movement trajectories of the objects in the environment so that segmentation
can be done more quickly or more reliably.

A realistic system needs of course many components. For example, in the case
of an embodied agent interacting through language with another agent [17], we
need components for grounding world models through vision, speech and gesture
recognition, speech and gesture production, selection of a topic, conceptualisation
of what to say, lexicon lookup, grammatical parsing and production, interpretation
of semantic structures, dialog management, etc.

The autotelic principle suggests that the balancing of skill and challenge should
be the fundamental motivational driving force of the agent. This implies (1)
that each component must be parameterised so that challenge levels can be self-
adjusted based on self-monitoring of performance, (2) that each component must
have the ability to increase skill to cope with new challenge, and (3) that there
is a global dynamics regulating the adjustement (both increase and decrease) of
challenge levels. The reward function of the total agent is the degree of balance
between challenge and skill for each of its components. The increase in com-
plexity of the agent’s behavior (and hence the kinds of tasks and environmental
complexity it can handle) will be an emergent side effect of the system’s effort to

7



keep this balance between challenge and skill.
The following subsections provide more detail on each of these aspects.

3.1 Parameterisation of components

Each component of the system must be parameterised to reflect different challenge
levels. The nature of the parameterisation obviously depends on the task that the
component must achieve and on the nature of the algorithms that are used. For
example, suppose that a robot has a subsystem that has the task of moving an
object using vision and hand/arm motor control. One parameterisation of such
a component could concern the precision with which the object is to be moved:
Is pushing it aside in a broad gesture enough, or should the object be picked up
and put down carefully in a precise location. Another parameter is the nature of
the object: Is it of a simple uniform shape or does it contain handles or other
structures that need to be recognised and used to manipulate the object. Another
parameter concerns the weight of the object. A heavy weight might require the
agent to adopt a specific posture so as not to get out of balance.

Formally, we associate with each componentci a parameter vector< pi,1, ...pi,n >.
The set of all parameters for all m components in the agent forms a multi-dimensional
parameter spaceP . At any point in time, the agent adopts a particular configura-
tion of these parameters.p(s, t)inP .

The problem of self-regulation in development can now be seen as a search
process in a multi-dimensional parameter space to maintain optimal (or accept-
able) performance. The performance is determined by a cost functionC : P− >
R where R is a real number between 0.0 and 1.0. Formally, the goal is to find a
configurationp(s, t) such that:C(p(s, t)) = Copt whereCopt is the optimum cost.

Given this formulation, many techniques from optimisation theory (such as
the Simplex algorithm, combinatorial optimisation, simulated annealing, evolu-
tionary programming, etc.) become relevant. There can be little doubt that we are
dealing with an NP-hard problem because the parameter space for any realistic
developmental system is typically very large. So we must expect approximations,
sub-optimal performance, and the use of heuristics. Moreover, the goal of the de-
velopmental system is not to reach a stable state, but to keep exploring the param-
eter landscape so as to maintain a balance of challenge and skill. In other words,
as soon as a stable state is reached there should be a force to pull the system out
of equilibrium again (see next section).

8



3.2 Monitoring Performance (the Cost function)

Next, each component must have a subprocess to monitor the performance of that
component. Various types of monitors can normally be formulated easily for a
particular component. Performance data is collected over a certain window of
time, known as the observation window, and values are typically averaged and
then compared to desired performance levels.

Thus there can be various performance measures related to the nature of the
task that a component is trying to achieve. For example, a component in a lan-
guage production system concerned with lexicon lookup can monitor how far the
lexicon can cover all the meanings that are required to be expressed and how far
the words that were chosen have been understood by the hearer. The optimal lev-
els for these performance measures must be defined, and they are often related to
challenge parameters. For example in lexicon lookup, one challenge is to keep
the ratio between the number of words used and the number of predicates covered
low (pushing the system to create words with complex meanings), another chal-
lenge is to increase the certainty with which a certain word has a certain meaning
(pushing the system to seek disambiguated words as much as possible). In these
cases, the monitored value reflects how far actual performance deviates from the
desired performance level.

Without loss of generality, we assume that monitors yield a real value in
the range[0, 1] with 1 being optimal performance for a specific dimension. We
associate with each componentci and with the total agentcT a monitor vector
< mi,1, ...,mi,n >. The set of all monitors for all m components in the system
(and the total) forms a multi-dimensional space and system performance in re-
sponse to a given stream of environmental stimuli traces a trajectory in this space.
The performance of the agent at a time t, denoted asM(s, t), is the averaged
sum of the performance of all monitors for all components actively used by the
agent. We can then define the cost function asC(P (s, t)) = 1.0−M(s, t), so that
Copt = 0.0.

3.3 Learning and Skill Levels

When the developing system is attempting to establish its global input-output
mapping by chaining the mappings of each of its subcomponents, various fail-
ures may occur. Moreover, even if a mapping could be established, there may be
a negative feedback signal later. Each component of the agent should be equiped

9



with mechanisms to try and repair these failures. It is not important in the present
context what kind of mechanisms are used. They could range from methods to
increase needed resources (for example increase the memory available to a com-
ponent), simple learning mechanisms (such as various forms of neural networks),
or sophisticated symbolic machine learning techniques.

It is necessary for the agent to internally measure characteristics of the skill
level of each component so that the system can track whether there is any signif-
icant change. For example, the amount of memory required by a component, the
number of rules learned, the number of nodes or links in a network, etc. can all be
quantified so that their evolution during development can be followed. Each com-
ponentci has therefore an associated skill vector< si,1, ..., si,n > which measures
knowledge and skill levels.

It follows that each componentci (and the agent as a whole) has an associ-
ated tripleci =< Pi,j, Mi,k, Si,l >, wherePi,j =< pi,1, ...pi,n > is the challenge
parameter vector,Mi,k =< mi,1, ...,mi,k > is the monitor vector andSi,l =<
si,1, ..., si,l > is the skill vector.

4 Self-regulation

Assuming that all components of the developing agent are designed this way, we
can now focus on the global behavior of the agent, and particular the strategy to
regulate challenge levels for a smooth, progressive self-development. The global
system is an instance of combinatorial optimisation and hence has the same struc-
ture as well-known optimisation algorithms such as simulated annealing [10], in
which a configuration of parameters needs to be found which gives optimal perfor-
mance. There are two complications compared to traditional optimisation tasks:
(1) The cost of a parameter configuration cannot simply be computed by apply-
ing a simple function (as in the travelling sales man for example, where cost is
basically the length of a path) but must be derived from monitoring actual perfor-
mance of the system over a particular period of time, including enought time to
achieve the acquisition of the necessary skills to reach a certain performance level,
(2) this monitoring period must include enough time for the system to acquire the
necessary skills to reach a certain performance level. It is to be noted that the
objective is not to get optimal performance, but rather to explore the landscape of
possibilities in such a way that a higher degree of complexity is reached.

Optimization algorithms typically combine iterated improvement, in which

10



there are small-scale changes to a configuration in order to find optimal parameter
settings in a hill-climbing process, and randomisation, in which there is a change
in a parameter which may initially cause a decrease in performance but helps the
system to get out of a local minimum. Both aspects are present in the algorithms
that we propose in the form of two alternating phases: (1) a phase in which chal-
lenge parameters are clamped until a steady performance level is reached after
increases in skill levels through learning or resource allocation, this is called the
operation phase, (2) a phase in which the challenge parameters are changed either
because a steady performance could be reached, and so the skill level is getting
too high for the challenge posed, or because performance could not be reached,
and so the challenge is too high for the skill level. This is called the shake-up
phase.

In our experiments to date we have found that the system should start with
the lowest challenge levels possible for all components (instead of starting with a
random configuration) so as to build up steadily in a bottom-up fashion.

4.1 Operation phase

The operation phase assumes that the challenge parameters are set at certain lev-
els. The agent exercises its components and monitors the performance of each. A
component becomes active when its various inputs are available. In case of fail-
ures, each component is assumed to have a set of processes (called ’repairs’) that
can be used to fix the failure. For example, if a grasp action failed, the categorisa-
tion component receives a negative feedback signal and must extend its categorial
repertoire to distinguish a new situation. Some of the repairs just involve the ad-
dition of additional resources, such as more memory or more processing cycles,
others may require more sophisticated forms of learning. Because there are many
possible failures in a given run and many possible repairs, some choice must be
made about which repairs will be tried and how many.

The operation phase can be algorithmically described as follows:
Procedure Operation Phase

1. Select all executable components, i.e. components for which inputs are
available, and activate them.

2. Monitor performance of these components (Could the input-output mapping
be established? In how far does it satisfy the criteria set by current challenge
parameters?)

11



3. If a component fails, extract a list of possible repairs and add them to the
’possible repair list’.

4. Consider the next series of components (go to step 1). If no more compo-
nents can be executed, go to step 5.

5. Given a set of repair on the ’possible repair list’. First filter out those repairs
that were executed on the same input stimuli, but failed. If there are repairs
left, select the one(s) with the highest estimated effectiveness and execute it.
If there are no more repairs restart from 0. A possible variation which con-
siderable speeds up development is to restart the execution of components
with the same input stimuli in order to attempt a solution.

4.2 Shake Up Phase

The goal of the shake up phase is to adjust the challenge parameters. In most
combinatorial optimisation algorithms (such as simulated annealing) this is done
in a random fashion by selecting arbitrarily a parameter and changing it. How-
ever, given the size of the parameter space for developmental systems of realistic
complexity, such a weak search method does not give adequate results. Instead it
is necessary to adapt parameters in a more structured way and maximally exploit
available heuristics.

The shake up phase takes place after the system has sufficient experience with
a given parameter setting. Sufficient experience means that the average perfor-
mance level of each of the components and of the total agent does no longer
change significantly during specific observation windows, and that there is no
longer any significant increase in skill.

Two situations can now occur:

1. Performance does not reach anywhere near the desired levels. This means
that the challenge levels are too high and that learning is no longer improv-
ing performance. We call this the A-state (where A comes from Anxiety).

2. Performance is consistently at a very high level. This means that operation
of all components becomes routine and there is a potential for increased
challenge. We call this the B-state (where B comes from Boredom).

Depending on the specific state, specific actions can be performed. Moreover
a fine-grained analysis of these states is possible because performance for one

12



component can be very high whereas that of another one can be very low. So
changes to parameters should be heuristically guided by taking into account which
components are in the A-state and which ones are in the B-state.

Another source of heuristic information is the dependency of components on
each other. If a component is in the A-state, then this can be due to the complexity
of the output coming from components that feed into it.

The final source of heuristic information is performance on the previous pa-
rameter configuration. Because optimisation algorithms are known to require an
iterated approach towards optimal configurations, it is necessary to locally explore
the parameter space hill climbing towards an adequate solution.

Procedure for the A-state
The goal of this procedure is to decide which challenge parameters to decrease.

1. If the previous parameter configuration had a better performance than the
current one, then first switch back to the earlier configuration before making
any change.

2. Select all components which are in the A-state. Either one of the challenge
parameters must be decreased or else, one of the components feeding into
it must be signalled to decrease the complexity of its output, by a recursive
application of step 2. This step generates a set of possible choices for pa-
rameter adaptation. These choices can be heuristically ordered based on the
performance of the components involved.

3. Choose one or more parameters, enact the change, and go back to the
Operation Phase.

Procedure for the B-state
The goal of this procedure is to decide which challenge parameters to increase.

There is a steady performance with the given parameters but there is perhaps an
opportunity for further increase in skill. Note that this phase correspondence to the
’randomisation’ phase of many combinatorial optimisation algorithms, although
the parameter change is not completely random.

1. Collect all components which are in the B-state. The possibilities are: to
increase one of the challenge parameters of this component, or else to recur-
sively collect one of the challenge parameters that give input to this com-
ponent. The possibilities can again be heuristically ordered based on the
performance of the components involved.

13



2. Choose one or more of these parameters, enact the change, and go back to
the Operation Phase.

Note that a record must be kept of parameter configurations and their associ-
ated performance in order to backtrack if needed.

We also know from our experiments that a conservative strategy (where only
one repair is executed in the Operation Phase, and one parameter is changed in the
Shake Up Phase) is much more desirable than drastic and rapid change.

From the viewpoint of optimization theory, the need for this shake-up pro-
cess is not surprising. Optimization algorithms like simulated annealing typically
combine iterated improvement, in which there are small-scale changes to a con-
figuration in order to find optimal parameter settings in a hill-climbing process,
and randomization, in which there is a change in a parameter which may initially
cause a decrease in performance but helps the system to get out of a local min-
imum [14]. In fact it is only because of randomization that these local minima,
i.e. situations where a stable but suboptimal solution is reached, can be avoided.
Given that a complex cognitive agent is exploring a vast parameter space, the
problem is an NP-hard (i.e. nondeterministic polynomial time-hard) problem as
defined according

5 Conclusions

The paper has focused on the problem how an agent can self-regulate his own
developmental process. It has proposed the autotelic principle, as a way to go
beyond the classical reinforcement learning framework initiated by behaviorist
psychology. There must be (i) ways to monitor performance and change in knowl-
edge, skill, or resource use, (ii) ways to control the challenge level for the different
components of the agent, and (iii) a general mechanism that self-adjusts challenge
levels or shakes the system up to push the agent towards new heights. The moti-
vational structure of the agent continuously tries to strike a balance between the
highest possible level of challenge and skill.

6 Acknowledgement

I am indebted to Frederic Kaplan for many discussions on the architecture of
agents.

14



References

[1] Churchland, P. and Sejnowski, T. (1995) The Computational Brain. The MIT
Press, Cambridge Ma.

[2] Cohen, L. et.al. (2002) A constructivist model of infant cognition. Cognitive
Development, 17(2002) 1323-1343.

[3] Csikszentmihalyi, M. (1978) Beyond Boredom and Anxiety: Experiencing
Flow in Work and Play. Cambridge University Press, Cambridge.

[4] Csikszentmihalyi, M. (1990) Flow. The Psychology of Optimal Experience.
Harper and Row, New York.

[5] Csikszentmihalyi, M. and I. Selega (Editors) (2001) Optimal Experience :
Psychological Studies of Flow in Consciousness. Cambridge University Press,
Cambridge.

[6] Elman, J. (1993). Learning and development in neural networks: The impor-
tance of starting small. Cognition, v. 48. p. 71-89

[7] Elman, J. L., Bates, E. A., Johnson, M. H., Karmiloff-Smith, A., Parisi, D.,
Plunkett, K. (1996). Rethinking innateness: A connectionist perspective on
development. Cambridge, MA: MIT Press.

[8] Hopfield, J. (1982) Neural Networks and Physical Systems with Emergent
Collective Computational Abilities. Proceedings of the National Academy of
Sciences, USA, volume 79, pages 2554 to 2558, April 1982

[9] Johnson, M. (2003) The Infant Brain. In: Tokoro, M. and L. Steels (eds.) The
Future of Learning Vol 1. IOS Press, Amsterdam. p. 101-116.

[10] Kirkpatrick, S., Gerlatt, C. D. Jr., and Vecchi, M.P., Optimization by Simu-
lated Annealing, Science 220, 671-680, 1983.

[11] Matthews, J. (1993) Art Education as a form of child abuse. Lecture for the
National Institute of Education Singapore.

[12] Kaplan, F. and PY Oudeyer (2004) A generic engine for open-ended sensory-
motor development. Submitted to Robotics and Autonomous Systems.

15



[13] Newell, A. (1990) Unified Theories of Cognition. Harvard University Press,
Cambridge, MA.

[14] Papadimitrious, C. and K. Steiglitz (1998) Combinatorial Optimization: Al-
gorithms and Complexity. Dover, New York.

[15] Steels, L. and R. Brooks (eds.) (1995) The Artificial life Route to Artificial
Intelligence. Building Situated Embodied Agents. Lawrence Erlbaum, New
Haven.

[16] Skinner, B.F. (1953). Science and Human Behavior. New York: Macmillan.

[17] Steels, L. (2001) Language games for Autonomous Agents. IEEE Intelligent
Systems. Sept/Oct Issues 2001.

[18] Thelen, B. and L. Smith (1994) A dynamic systems approach to cognition
and development. MIT press, Cambridge Ma.

[19] Uchibe, E, M. Asada and K. Hosoda (1998) Environmental complexity con-
trol for vision-based learning mobile robot. In: Proc. of IEEE Int. Conf on
Robotics and Automation. p. 1865-1870.

[20] Weng, J., McClelland, J., Pentland, A., Sporns, O., Stockman, I., Sur, M.,
and Thelen, E. (2001). Autonomous mental development by robots and ani-
mals. Science, 291, 599-600.

16


