
A Design Pattern For Phrasal Constructions

Luc Steels

This paper is the authors’ draft and has now been officially published as:

Luc Steels (2011). A Design Pattern for Phrasal Constructions. In Luc Steels (Ed.), Design Patterns in Fluid

Construction Grammar, 71–114. Amsterdam: John Benjamins.

Abstract
This chapter has two objectives. It discusses a design pattern for phrasal

constructions and introduces the templates that can be used to instantiate this
pattern in Fluid Construction Grammar, using as illustration nominal phrases
such as “the green mouse” or “this mouse of mine”. Phrasal constructions not
only build phrases but also combine the meanings contributed by their con-
stituents and possibly add meaning of their own. Phrasal constructions are
interesting because they involve hierarchy, compositionality, recursion, agree-
ment and percolation. The paper also illustrates how FCG uses templates to
organise the grammar design process and to simplify the definition of the con-
structions relevant for a particular language.

1. Introduction

Human natural language grammars are extraordinarily complicated because as-
pects of meaning and form are tightly packaged to maximise the amount of informa-
tion that can be transmitted with a minimal amount of signals. In this sense, human
languages are like natural living systems in which the same components serve multi-
ple purposes. The components have not been designed and put together in a strictly
modular hierarchical fashion, the way one would design a machine, but evolved in
a step-wise fashion, exploiting and building further on whatever was already there.
The challenge for grammar designers (and for language learners) is to unpack this
complexity without losing sight of the full richness of real grammar. Studying how
grammars have historically evolved is often instructive because it shows how an
additional layer of complexity (for example determiners) can be absent in one stage
of the language and then gradually appear and become more complicated.

1

2 L. Steels

Fluid Construction Grammar is a general formalism for defining and applying
constructions and it can be used to explore different approaches to linguistic theo-
rizing, as long as the notion of a construction is accepted as the fundamental orga-
nizing principle. In our own work on grammar design, we have found it useful to
start from a clear understanding of the grammar square (shown in figure 1), which
is intended to illustrate that lexicons and grammar specify bi-directional relations
between meaning and form, in the case of grammar by going through semantic and
syntactic categorizations. Different constructions express different aspects of such
bi-directional mappings.

The primary purpose of lexical constructions is to establish a direct mapping
between meaning and form. Some parts of the meaning to be expressed are directly
associated with a lexical item in the form of a string. It is therefore already possible
to have a purely lexical communication system which consists of a set of individual
words that each contribute some meaning to the meaning of the sentence as a whole.

Grammatical constructions come on top of this to serve two purposes:

1. Grammar helps to figure out how the meaning introduced by the different lexi-
cal items gets combined. If individual meanings are just introduced as isolated
elements, it is up to the listeners to do so. They often can achieve this because
human listeners know the context, can apply common sense knowledge, and
can keep track of the communicative goals in the ongoing conversation. But
there may still be occasions where all of this is not enough to allow the listener
to reconstruct with certainty the interpretation the speaker desired or where it
may require more cognitive effort than the listener is willing to supply. The
speaker can therefore improve the chance of higher communicative success
by expressing how meanings are to be combined through grammar.

2. Grammar is also used to express additional aspects of meaning by modulat-
ing the forms already supplied by the lexical items and thus package more
information with the same materials. For example, many languages feature
a grammatical system of tense and aspect to convey the temporal ordering
and structuring of events, or a grammatical system of argument structure to
express the roles of participants in events. Modulation takes many forms:
the ordering of words, adding morphological markers (prefixes and suffixes),
changing the basic word form (as from “spring” to “sprang”), using gram-
matical function words (like auxiliaries), imposing an intonation structure or
stress pattern. Different languages make different choices in which aspects of
meaning they express grammatically and how they do it.

A Design Pattern for Phrasal Constructions 3

!"#$%$&'' ()*+'

,"+#$-.'

/#0"&)*%1#-)$2'

,3$0#.-.'

/#0"&)*%1#-)$2'

Figure 1. The grammar square shows the kinds of bi-directional mappings between
meaning and form that lexical and grammatical constructions establish. A language
is said to be grammatical if these mappings go through the intermediary of syntactic
and semantic categorizations.

Human grammars have two characteristic features: First of all grammar oper-
ates through semantic and syntactic categorizations. The conceptual meanings are
semantically re-categorized to fit with the conceptual patterns that a language has
adopted, and these re-categorizations are known to be language specific (Talmy,
2000). For example, the participant in an event (for example the one pushing a
block) is semantically re-categorized as agent, and then the grammar specifies how
to express more generally the agent role rather than just the role of pusher. Or the
temporal moment of an event is categorized with respect to the time of speaking
in terms of past/present/future, and the grammar then expresses these temporal dis-
tinctions rather than other more fine-grained distinctions that could potentially be
adopted (and are adopted in some languages). So semantic categorizations make
it possible to achieve more abstract bi-directional mappings between meaning and
form.

Syntactic categorizations have the same role, i.e. making grammatical mappings
more abstract and therefore more widely applicable. They categorize the surface
forms because they are often (but certainly not always) explicitly expressed using
morpho-syntactic or phonological devices. Examples of syntactic categorizations
are the distinctions between nominative and dative or masculine vs. feminine vs.
neuter. How a syntactic categorization is explicitly expressed depends itself on
the context, the form of the lexical item being modified, or on other grammatical

4 L. Steels

mappings, and all this makes it possible to package more information into the same
marker than just the expression of a single syntactic category.

Second, grammar operates through hierarchical structure. Different lexical
items are brought together into larger units, usually called phrases, which can then
have their own syntactic and semantic categorizations. They in turn function as units
which can again be combined with other ones to form new phrases. The meaning
and properties of a phrase are based on combining the meanings and properties of
the individual elements but a phrase can be more than the sum of its parts. For
example, a nominal phrase like “the green mouse”1 combines an article “the”, an
adjective “green”, and a noun “mouse”. The phrase as a whole can appear as such in
different parts of the sentence, as in “I read a paper about the green mouse” or “The
green mouse escaped the genetic engineering laboratory.” It is possible that a phrase
of a certain type appears as a constituent of a phrase of the same type, in which case
we talk about recursive hierarchical structure. For example, the nominal phrase
“the green mouse from the Japanese genetic engineering lab” has a nominal phrase
“the Japanese genetic engineering lab” as one of its constituents.

In the design of a grammar, we want to treat different grammatical systems
separately and introduce separate constructions to handle them, because that makes
it more doable to cope with the complexity of human language. For example, it
is desirable that there are separate constructions which focus on the expression of
tense or aspect, others focus on argument structure, on information structure, etc.
But of course in the final sentence everything has to be brought together again and
it may therefore not always be so easy to tease apart different grammatical systems,
particularly if they interact strongly. Moreover, language users most probably store
recurring expressions and patterns as single complex constructions so that they can
retrieve and apply them very fast. In that case, a division into different grammatical
systems is no longer explicitly present and the stored pattern may start to behave
as a construction it its own right, which is only partly influenced by the governing
grammatical systems. This is indeed what happens when phrases become idiomatic
and the meaning is no longer derivable in a compositional way from the meaning of
the parts.

Phrase structures are generally regarded as forming the backbone skeleton
of sentences and other grammatical systems (such as argument structure, aspect,
modality, negation, etc.) operate over them, in the sense that they may add new
constituents in phrases or modulate the form of some of their parts. Phrase struc-

1. This example is inspired by efforts in genetic engineering to make colored mammals, including a green
fluorescent mouse (Masahito et al., 1999)

A Design Pattern for Phrasal Constructions 5

tures are therefore comparable to the basic architectural frame of a house, whereas
other grammatical systems add more elements or embellish this frame to add more
function and esthetic quality to the house. That is why we are going to study phrase
structure first in this chapter, and later contributions in this book focus on how other
grammatical systems then enhance or modulate this backbone or its various com-
ponents, illustrated in particular for constructions dealing argument structure (van
Trijp, 2011a).

2. Functional and Constituent Structure

There are two main traditions in linguistic investigations of phrase structure.
The first tradition focuses on function. It considers that units are grouped together
in a phrase because they play a certain role in that phrase. For example, “the”
and ”mouse” combine into the phrase “the mouse” because “the” is a determiner
of “mouse”. This perspective is explored in functional grammar (see for exam-
ple (Dik, 1978; Siewierska, 1991), relational grammar (Perlmutter, 1983), and de-
pendency grammar (See for example Mel’cuk (1988), Anderson (1971), Sgall &
Panevova (1989)). The second tradition focuses on syntactic types (parts of speech
or lexical categories for individual words, such as Noun, Verb, Article), and phrase
types (such as Noun Phrase, Verb Phrase and the like). This perspective argues that
units are grouped together because they belong to certain syntactic types. For ex-
ample, “the cat” is a phrase because “the” is an article and “cat” is a “noun” and
an article and a noun combine, by definition, into a noun phrase. This tradition has
its roots in structural linguistics, particularly Bloomfieldian immediate constituent
analysis (Bloomfield, 1993) and the Chomskyan generative tradition that starts with
(Chomsky, 1957).

In this chapter, we will study a design pattern for handling phrasal structures
that integrates both perspectives. The hierarchy itself (with units and subunits) is
represented independently of whether it is based on functional or syntactic consid-
erations. Phrases combine units if they satisfy various syntactic criteria, possibly
including the syntactic type of the unit, and they impose specific functions on each
unit. For example, a noun can function as the nominal of a phrase (which is there-
fore called a nominal phrase), as in “the mouse”, and a nominal phrase can function
as the subject of a sentence, as in “the mouse escapes”.

In what follows, the term for denoting a phrase is chosen based on the syntactic
function of the main constituent (usually called head) of a phrase. For example, the
term nominal phrase designates a phrase that has as its main constituent a unit with
the syntactic function nominal. In constituent structure traditions the same phrase-

6 L. Steels

type would be designated through the lexical category of the head of the phrase, as
in noun phrase. Both terms are equivalent.

What makes grammar complicated is that there is not a one-to-one relation be-
tween syntactic type and syntactic function, in the sense that the same function can
usually be achieved by many different syntactic types. For example, a nominal can
also consist of an adjectival phrase and a noun as in “the green mouse” or a noun
combined with another noun as in “the beach ball”. Moreover the same syntactic
type can have multiple syntactic functions. For example, a nominal phrase can act
as the subject of a sentence but also as a direct object or indirect object, and even as
a predicate, as in the phrase:

“The mouse caught yesterday in a Roppongi night club is a green mouse
of the kind that escaped last year from a genetic engineering lab.”

The same lexical item can have multiple syntactic types and hence functions. For
example, the word “left” can have an adjectival function in a nominal phrase in
which case its syntactic type is adjective, as in “the left block”, but it can also have
an adverbial function, as in “she turned left after the traffic light”, in which case its
syntactic type is that of an adverb, modifying the verb.

Construction grammar strives for a tight integration of syntax and semantics. On
the semantic side, we indeed find that syntactic functions are mirrored by seman-
tic functions (although there is certainly not a simple one-to-one correspondence).
Indeed one of the primary roles of syntactic functions is precisely that they help
decide which semantic function a particular unit has. For example an adjectival
function points to the semantic function of qualifier, an adverbial function to that of
modifier, a determiner introduces the access-function (usually called reference) for
the class of objects identified by the noun.

Semantic functions are denoted by terms like identifier, referring expression,
qualifier, modifier, etc. and they have been studied most intensively by cognitive
linguists (as for example (Langacker, 2008)) and by formal semanticists (as for
example (Partee, 2003)). Which semantic function is chosen for specific meanings
depends partly on the communicative goals of the speaker, but also on what lexical
items are chosen to cover these meanings and on constraints imposed by the rest
of the semantic and syntactic context. At the same time, the semantic functions
that need to be expressed impose constraints on syntactic functions, constituent
structure, and lexical items.

Unfortunately, the linguistic terminology for denoting syntactic types or syn-
tactic and semantic functions is not standardised across the field. This fact can be

A Design Pattern for Phrasal Constructions 7

problematic for the novice, but in defense of the linguist it is hardly possible to stan-
dardize the terminology insofar as all linguistics categorizations appear language-
specific and have a prototypical nature (Croft, 2001; Haspelmath, 2007). This is
why the terminology of syntactic and semantic categories is not fixed in FCG. It
is at the discretion of the grammar designer. At the same time, of course all terms
need to be used consistently within the same grammar.

Given the representational power of feature structures, it is not difficult to rep-
resent notions of functional and constituent structure using feature structures. The
hierarchy of units and subunits is represented using the subunits feature on the se-
mantic and syntactic side (which makes it in principle possible to have a different
structure on each side) and syntactic and semantic functions as well as syntactic
types are represented as categorizations associated with units. For example, the
unit for “green” in the phrase “the green mouse” would include in its syn-cat

feature value information that its lex-cat is adjective and its syn-function

adjectival and its sem-cat feature value would include the information that its
sem-function is qualifier.

Defining constructions in such a way that they can support the linguistic
decision-making process both for parsing and for producing phrase structures is
a more complex matter, because decisions at different levels influence each other
and often decisions need to be left open until more information becomes avail-
able. Three different types of constructions contribute to the decision-making
process, and there is a template for each: def-lex-cxn builds lexical construc-
tions, def-fun-cxn builds functional constructions, and def-phrasal-cxn builds
phrasal constructions.

1. In addition to specifying the lexical stem and meaning of a word (more
precisely a lexical stem), lexical constructions can contribute information on the
lexical category and on semantic categorizations that are helpful to decide which
semantic function can be realized by this item. For example, the lexical construction
for “mouse” would include information that this word is a noun and that its meaning
designates a class of objects. Lexical constructions are therefore defined using two
templates (as explained already earlier in this book, (Steels, 2011b)). A template
called def-lex-skeleton introduces the meaning and the string, and a template
called def-lex-cat introduces the semantic and syntactic categorizations.

2. Functional constructions specify (potential) syntactic and semantic functions
based on the properties of lexical items. For example, there could be a construction
specifying that a noun can be the nominal (head) of a nominal phrase in which case
they introduce the identifier of a referring expression. Functional constructions are a

8 L. Steels

specific case of categorizing constructions that introduce new semantic or syntactic
categorizations given existing ones. Functional constructions are built with a tem-
plate called def-fun-skeleton which defines the syntactic and semantic functions
that go together and the phrase-types that are required.

3. Phrasal constructions do the horsework for combining different units
(whether lexical items or phrases) into phrasal units. The core objective of a phrasal
construction is to take care of syntactic compositionality. Given units with specific
syntactic and semantic properties, the construction should define how they can be
combined into a unit with a new phrase-type and new semantic function. This is de-
fined using a template called def-phrasal-skeleton. But phrasal constructions
must typically do a lot more:

1. They must specify also how the meaning of the unit as a whole is built based
on the meanings of the individual components by detailing the linking of the
arguments. This is done with a template called def-phrasal-linking. Ar-
gument linking can become quite complicated and versatile not only in the
case of sentences but also adjectival or nominal phrases. In the case of sen-
tences, linking issues are usually lifted out of the phrasal construction and
delegated to a separate set of constructions, called argument-structure

constructions. How FCG deals with argument-structure constructions is
discussed in detail in a later chapter of this (van Trijp, 2011a).

2. Construction grammarians argue that the constructions that build new phrases
can also add new meaning to a phrase, which is more than the sum of the
meanings provided by individual constitutents. Phrasal constructions there-
fore use another template called def-phrasal-require to achieve this func-
tion. This template can impose new meanings but also new semantic catego-
rizations to a phrase that may be relevant for triggering other constructions.

3. And then there are of course the specific form constraints that the construc-
tion has to look out for or impose. For example, there are typically or-
dering relations between the different units, or there may be a particular
stress pattern imposed on the units. These are defined in the template called
def-phrasal-require.

4. Human languages not only use word order but also syntactic and semantic
agreement relations to constrain which constituents can be combined. For ex-
ample, an article and a noun have to agree for number to be considered part of

A Design Pattern for Phrasal Constructions 9

the same nominal phrase in English. “a” can be combined with “house” form-
ing “a house” because both of them are singular, whereas “a houses” would
be ungrammatical. Moreover often a phrase adopts some of the syntactic or
semantic categorizations of one of its constituents, a phenomenon known as
percolation. For example, definiteness percolates from the determiner to its
nominal phrase or number percolates from the noun to the nominal phrase
as a whole. The agreement and percolation imposed by a particular phrasal
construction are defined using a template called def-phrasal-agreement.

The remainder of this chapter provides more detail on these various templates
and how the constructions they build interact with each other. The chapter has
a tutorial character and sticks to simplified examples, not worrying yet about the
fact that usually the same linguistic element can have multiple uses. A compan-
ion paper (Bleys et al., 2011) illustrates in more detail how the different types of
constructions introduced here apply and it provides more information on the un-
derlying search process. Later chapters introduce not only more complex examples
of phrasal constructions but also techniques to deal with more sophisticated agree-
ment and percolation phenomena based on feature matrices (van Trijp, 2011b) and
with open-ended choices about syntactic and semantic functions by using potentials
(Spranger & Loetzsch, 2011). This chapter assumes that the reader has had an in-
troduction to FCG by studying the previous chapter of this book “A First Encounter
with FCG” (Steels, 2011a). Occasionally the full expansion of a template is pro-
vided, which the computational linguist might find relevant to understand precisely
how a construction is operationalized in FCG. However these expansions need not
be understood in detail by the reader who just wants to grasp the general approach
to phrase structure commonly practiced in FCG.

The next section introduces first how meaning and form are going to be repre-
sented, with subsequent sections examining lexical constructions, functional con-
structions, and phrasal constructions.

3. Representing meaning and form

Language users must be able to map meanings to forms in speaking and forms
to meanings in comprehension. Designing a lexicon and grammar that captures the
knowledge needed to achieve these mappings for a particular fragment of language
therefore starts by considering how meanings and forms are represented.

10 L. Steels

3.1. Representing meaning

Fluid Construction Grammar is not dogmatic about what approach is used for
representing the meaning of utterances. Some researchers use variants of first order
predicate calculus, others use frame semantics (Micelli et al., 2009), and still others
use grounded procedural semantics (Spranger & Loetzsch, 2011). In this paper I
will use predicate calculus expressions, which can be interpreted against a fact base
as in PROLOG style semantics. In what follows, the domain of discourse consists of
individuals (such as ‘a mouse’), which is denoted by unique names consisting of a
symbol and an index, as in mouse-1, mouse-2, ..., etc., and sets of individuals, such
as { green-mouse-1, green-mouse-2, ... } also denoted by unique names con-
sisting of a symbol and an index, as in green-mice-1, or light-green-mice-45.
The indices have no meaning, except to distinguish between different instances.

Predicates are semantically treated as relations between sets. A predicate relates
a source set of elements to produce a target set containing the elements in the source
set that satisfy a particular condition. For example, the predicate mouse determines
how far the elements in a source-set satisfy the image schema of a mouse. We
use prefix-notation to represent a primitive fact, consisting of a predicate and its
arguments, as in:

(mouse mice-33 source-set-67)

The indices have no particular meaning. source-set-67 is a set provided by
further context. mice-33 is a set of mice within that source-set. The source-set is
provided as an important part of a predicate. For example, a box could be called
“blue” in the context of green boxes because it is the box that is most blue, but the
same box could be called “green” when it is the greenest box in the context of other
blue boxes.

Predicates may also have individuals as arguments. For example, a predicate
may occasionally pick-out a single member from a set, typically the best represen-
tative at that point. The operation of picking out the referent can be postponed until
enough information is available to do it. For example, in the sentence “the child that
was brought to school by her mother yesterday”, the referent of the child can only
be computed when the meaning of “yesterday” has become available.

Finally, every element (individuals, predicates, sets) can be bound to a variable,
which consists of a question mark followed by a symbol and possibly an index as
in: ?set-1, ?individual-5, ?predicate-24, ... As before the names of variables
have only meaning for us and are chosen to be as clear as possible, they have no
function in the system itself. We could just as well have used ?s-1, ?i-5, ?p-24.

A Design Pattern for Phrasal Constructions 11

Given that sentences may involve dozens of variables it is clear that unmotivated
names would make it much harder to follow what is going on.

Using this approach, the meaning of a phrase like “the green mouse” can be
expressed with the following list of predicate-argument expressions representing a
conjunction of facts. The names of the predicates or variables is chosen entirely for
this occasion:

((context ?context)

; ?context is the set of all objects in the context
(mouse ?mouse-set ?context)

; ?mouse-set represents all elements in the context which are mice
(green ?green-mouse-set ?mouse-set)

; ?green-mouse-set represents the subset of mice that are green
(unique-definite ?the-mouse ?green-mouse-set))

; ?the-mouse gets bound to the unique individual that
; remains in the singleton set ?green-mouse-set.

The aim of this paper is to design a lexicon and grammar that maps such mean-
ings to phrases and vice-versa. I use English-like nominal phrases, although there
is no effort made to come close to a complete coverage.

3.2. Representing form

Similar to other unification-based formalisms, the form of an utterance is repre-
sented in FCG using a set of predicates that define constraints on what the utterance
should look like. This has numerous advantages, not only because every relevant
form aspect can be taken into account, but also because constraints on form can be
gradually assembled by many different constructions without having to go through
complex manipulations of tree structures. The form constraints are translated in a
concrete utterance by the renderer or reconstructed from an utterance by the de-
renderer. It is perfectly possible that the constraints are incomplete, in which case
the renderer makes random decisions. For example, if the ordering is not fully spec-
ified, some of the words may appear anywhere in the utterance. Issues of morphol-
ogy, intonation, etc. are not addressed in this paper, so only two form-predicates are
needed: string and meets, as illustrated in the following examples:

(string unit-1 "green")

states that a particular unit (here unit-1) covers the string “green”.
(meets unit-a unit-b)

12 L. Steels

states that the relation between two units, in this case unit-a and unit-b, requires
the second unit immediately follows the first unit of the utterance.

Using these predicates, the form of the utterance “the green mouse” is described
with the following set of predicate-argument expressions:
((string the-unit "the")

(string green-unit "green")

(string mouse-unit "mouse")

(meets the-unit unit-green)

(meets green-unit unit-mouse))

The names of the units are of course arbitrary chosen here. A set of construc-
tions can now be developed that is able to map from the kind of meanings shown
in section 3.1. to ordered sequences of strings, and back. Each step progressively
makes the grammar or lexicon more complex in order to handle the various chal-
lenges discussed earlier.

4. Lexical constructions

The natural way to start is with lexical constructions. We have already seen
examples of these in an earlier chapter (Steels, 2011). A lexical construction is built
with the template def-lex-cxn that introduces a name for the lexical construction
and then evokes a set of subtemplates to progressively build the construction as
a whole. The first subtemplate simply defines the meaning, i.e. a set of predicate-
argument expressions, and the word-string. So the definition of a construction using
a template would typically take the following form:

(def-lex-cxn cx-name
(def-lex-skeleton cx-name

:meaning ...

:string ...)

)

The def-lex-skeleton template has a slot for the meaning called :meaning

and a slot for the string called :string. Here is an example to define the lexical
construction for “mouse” using the def-lex-cxn template:

(def-lex-cxn mouse-cxn

(def-lex-skeleton mouse-cxn

:meaning (== (mouse ?mouse-set ?base-set))

:string "mouse"))

A Design Pattern for Phrasal Constructions 13

The filler of the :meaning slot specifies that the meaning covered includes, i.e.
==, the predicate-argument expression (mouse ?mouse-set ?base-set). The
filler of the :string slot specifies the word string “mouse”.

For the interested reader, I give here the equivalent operational construction
when the template is expanded. The elements that are specified as fillers of slots in
the template are in bold, the rest is filled in by the template itself.

(def-cxn mouse-cxn ()

((?top-unit

(tag ?meaning

(meaning (== (mouse ?mouse-set ?base-set))))
(footprints (==0 mouse-cxn)))

((J ?word-mouse ?top-unit)

?meaning

(footprints (==1 mouse-cxn))))

<-->

((?top-unit

(tag ?form

(form (== (string ?word-mouse ”mouse”))))
(footprints (==0 mouse-cxn)))

((J ?word-mouse ?top-unit)

?form

(footprints (==1 mouse-cxn)))))

It is important to note how the covered meaning and the covered form are tagged
and moved to a new unit bound to ?word-mouse. This unit is created by the J-
operator, and from then on it functions as the representation of the word “mouse”.
A footprint mouse-cxn is added and tested so that the construction does not keep
applying indefinitely. Footprints are by convention equal to the name of the con-
struction that adds the footprint.

Here is the definition of another lexical construction for “the” using the
def-lex-cxn template:

(def-lex-cxn the-cxn

(def-lex-skeleton the-cxn

:meaning (== (unique-definite ?indiv ?base-set))

:string "the"))

and one for ”green”:

14 L. Steels

(def-lex-cxn green-cxn

(def-lex-skeleton green-cxn

:meaning (== (green ?green-set ?base-set))

:string "green")))

When these various lexical constructions are applied to “the green mouse” we
obtain the transient structure shown in Figure 2. A similar transient structure would

12/08/10 22:55Babel web interface

Page 1 of 1http://localhost:8000/

top

sem-subunits

top

(mouse-4
the-4
green-3)

syn-subunits

form

Parsing "the green mouse"

Applying construction set (3) in direction !

Found a solution

initial
structure top

application
process

applied
constructions

resulting
structure

top

(mouse-4 the-4
green-3)

((meets green-3
mouse-4)

(meets the-4
green-3))

Meaning:
((mouse ?mouse-set-9 ?base-set-297) (green ?green-set-5 ?base-set-299)
(unique-definite ?indiv-70 ?base-set-298))

reset

sem syn

initial * green-cxn (lex t), the-cxn (lex t) mouse-cxn (lex t)

mouse-cxn (lex t) the-cxn (lex t) green-cxn (lex t)

meaning

footprints

mouse-4

((mouse
?mouse-set-9
?base-set-297))

(mouse-cxn)

meaning

footprints

green-3

((green
?green-set-5
?base-set-299))

(green-cxn)

meaning

footprints

the-4

((unique-definite
?indiv-70
?base-set-298))

(the-cxn)

sem syn

form

footprints

mouse-4

((string
mouse-4
"mouse"))

(mouse-cxn)

form

footprints

the-4

((string
the-4
"the"))

(the-cxn)

form

footprints

green-3

((string
green-3
"green"))

(green-cxn)

Figure 2. Applying only the lexical constructions gets us already quite some dis-
tance in parsing and producing utterances. This figure shows the result of parsing
“the green mouse”.

be built in production given as input the following meaning:

((unique-definite indiv-mouse-1 green-1)

(green green-1 mouse-1)

(mouse mouse-1 context-1)

(context context-1))

The utterance being produced would be “mouse the green” or “green the
mouse”, or some other permutation, because the transient structure does not con-
tain any ordering constraints. This illustrates that a set of lexical constructions is in

A Design Pattern for Phrasal Constructions 15

itself already enough to achieve some form of communication even though it relies
entirely on the listener to connect the different meanings.

How can the job of communication be done better? Let us look first at the
outcome of parsing. The meaning assembled by taking the union of the meanings
of all units in the transient structure in Figure 2 looks like this:

((unique-definite ?indiv-70 ?base-set-298)

(green ?green-set-5 ?base-set-299)

(mouse ?mouse-set-9 ?base-set-297))

This can be paraphrased as: There is a unique individual member ?indiv-70
out of a base-set ?base-set-298. There is a green set of things ?green-set-5

all belonging to the set ?base-set-299, and there is a set of mice ?mouse-set-9

all belonging to the set ?base-set-297. These formulations are all correct but
incomplete. The linking between the base-set used for picking an individual, the set
of green objects and the set of mice is not stated explicitly. Hence, the individual
can be a member of any set and the set of green things is not necessarily a subset of
the set of mice. Moreover the general context of this phrase, i.e. ?base-set-297,
is not grounded to the current context. We therefore need additional (grammatical)
constructions to combine the meanings provided by the lexicon.

The job of production is also not yet complete. The sentence produced here
consists of the right set of words, but there is no ordering specified among the words.
Consequently the renderer might happen to produce the correct order, but it might
just as well render the words in another order. We need grammar to fix this, and this
grammar needs to be compositional. We should be able to do “the mouse” but also
“the green mouse” or “the very green mouse” or “the slightly blue green mouse”.

Before developing the necessary grammatical constructions to achieve this, it
is worthwhile to point to the advantages of using only lexical constructions as the
first step both in parsing and producing. Despite the meanings obtained from lexi-
cal parsing being incomplete, nevertheless an interpretation process that has access
to a world model would in fact already be able to come up with a very plausible
interpretation. This possibility is good news for achieving robust parsing or for
building learning systems that may not yet have acquired complete grammar. Fur-
thermore, even if some aspects of form are missing, such as correct word order or
morphology, a purely lexicon-based production process might already be able to
produce sentences fragments that are interpretable by a human listener, who might
then correct the sentence and thus generate a learning opportunity for the speaker.

16 L. Steels

5. Functional constructions

Next we need constructions whose primary role is to decide on the syntactic and
semantic functions of the lexical items. Therefore, they are called functional con-
structions. For example, a noun can have the syntactic function of nominal, and, if it
has this function, its semantic function is to identify the class of objects that is used
in a referring phrase. This information gets packaged into a functional construction
that associates syntactic types (like noun) with syntactic functions (such as nominal)
and at the same time associates semantic categorizations (like introducing a class of
objects) with semantic functions (such as identifier). This step is necessary because
the same syntactic or semantic types can be used in many different functions, or
they can even be coerced into functions that are not yet conventionalized. These
bi-directional mappings come as a complete package. When one of these mappings
is blocked for one reason or another then the other relation is blocked as well. For
example, if the semantic function is identifier because a word introduces a class of
objects, but the word itself does not belong to the lexical class of nouns, then the
whole mapping is blocked.

To define these relations, we will use a template called def-fun-cxn that has
only one skeletal template def-fun-skeleton. It has a slot :sem-cat for the rel-
evant semantic categorizations, a slot :sem-function for the semantic function, a
slot :syn-cat for the relevant syntactic categorizations and a slot :syn-function
for the relevant syntactic function. The syntactic and semantic categorizations can
be as complex as is necessary, and the template may include other slots, but for now
we only need these ones. Below is an example of the use of this template:

(def-fun-cxn noun-nominal-cxn

(def-fun-skeleton noun-nominal-cxn

:sem-cat (==1 (class object))

:sem-function identifier

:syn-cat (==1 (lex-cat noun))

:syn-function nominal))

This construction relates the semantic category class of objects with the seman-
tic function identifier and the part of speech noun (lex-cat noun) with the
syntactic function nominal. Syntactic and semantic aspects are always considered
at the same time, and the mapping is blocked when either side shows a conflict. For
example, even though a unit identifies a class of objects, it may not be categorized
as a noun if the part of speech of the word being used is not a noun.

A Design Pattern for Phrasal Constructions 17

For the interested reader, the expansion of the noun-nominal-cxn definition us-
ing templates into an operational definition is given below. The elements that have
been explicitly supplied by the template are in bold. Everything else is automati-
cally added by the template itself:

(def-cxn noun-nominal-cxn ()

((?top-unit

(sem-subunits (== ?nominal-unit)))

(?nominal-unit

(footprints (==0 noun-nominal-cxn))

(sem-cat (==1 (class object))))
((J ?nominal-unit)

(sem-cat

(==1 (sem-function identifier)))
(footprints (==1 noun-nominal-cxn))))

<->

((?top-unit (syn-subunits (== ?nominal-unit)))

(?nominal-unit

(footprints (==0 noun-nominal-cxn))

(syn-cat (==1 (lex-cat noun))))
((J ?nominal-unit)

(syn-cat (==1 (syn-function nominal)))
(footprints (==1 noun-nominal-cxn)))))

We see that this functional construction does not create a new unit of its own
but uses the J-operator to add more information to an existing unit (bound to
?unit-name). The footprint noun-nominal-cxn is added to avoid infinite appli-
cation of this construction and to trace its use. Strictly speaking, we do not need
this footprint because the construction could also test whether the change it wants to
make has already been made and, if so, block another application on the same unit.
At the same time, uniform usage of footprints in all constructions avoids errors.

Here is another example of a functional construction that relates articles to de-
terminers with the semantic function reference:

(def-fun-cxn article-determiner-cxn

(def-fun-skeleton article-determiner-cxn

:sem-cat (==1 (determination ?definiteness))

:sem-function reference

:syn-cat (==1 (lex-cat article))

:syn-function determiner))

18 L. Steels

Before these functional constructions can be used, we need to extend lexical
constructions with the necessary syntactic and semantic categorizations. This ex-
tension can be done easily by the def-lex-cat template that adds semantic and
syntactic categorizations (:sem-cat and :syn-cat) to the skeleton of a lexical con-
struction, so that for the noun “ mouse” we get the following definition:

(def-lex-cxn mouse-cxn

(def-lex-skeleton

:meaning (== (mouse ?mouse-set ?base-set))

:string "mouse")

(def-lex-cat

:sem-cat (==1 (class object))

:syn-cat (==1 (lex-cat noun))))

For the article “ the” we get:

(def-lex-cxn the-cxn

(def-lex-skeleton

:meaning (== (unique-definite ?indiv ?context))

:string "the")

(def-lex-cat

:syn-cat (==1 (lex-cat article))

:sem-cat (==1 (determination definite))))

When both of these lexical and functional constructions are available, and we
give “mouse” as input, i.e. the value of the form feature in the top is (string

mouse-6 ‘‘mouse’’), we get the structure shown in Figure 3. A similar struc-
ture is obtained if we would start a production process with a target meaning like
((mouse mouse-set-14 base-set-5))

6. Phrasal constructions

A phrasal construction is developed in steps, just as the lexical construction dis-
cussed earlier. Each step is captured in a template that operates on the result of
the previous step. The first step is to combine constituents based on their syntactic
and semantic functions by the def-phrasal-skeleton template, then to handle
agreement and percolation (def-phrasal-agreement), next to achieve argument
linking (def-phrasal-linking), and finally to specify how the construction adds

A Design Pattern for Phrasal Constructions 19

12/08/10 23:06Babel web interface

Page 1 of 1http://localhost:8000/

top

sem-subunits

top

(mouse-6)

syn-subunits

Parsing "mouse"

Applying construction set (5) in direction !

Found a solution

initial
structure top

application
process

applied
constructions

resulting
structure

top

(mouse-6)

Meaning:
((mouse ?mouse-set-13 ?base-set-313))

reset

sem syn

initial mouse-cxn (lex t) noun-nominal-cxn (cat t)

noun-nominal-cxn (cat t) mouse-cxn (lex t)

meaning

sem-cat

footprints

mouse-6

((mouse
?mouse-set-13
?base-set-313))

((class object)
(sem-function
identifier))

(mouse-cxn
noun-nominal-cxn)

sem syn

form

syn-cat

footprints

mouse-6

((string mouse-6
"mouse"))

((lex-cat noun)
(syn-function
nominal))

(mouse-cxn
noun-nominal-cxn)

Figure 3. Transient structure obtained after applying a construction that adds the
syntactic function nominal and the semantic function identifier to words character-
ized as nouns.

its own additional constructional meaning or form using (def-phrasal-require).
The order in which these templates operate is irrelevant but the skeleton has to
come first because it introduces the different constituents involved in the construc-
tion. The determiner-nominal-phrase construction serves as a primary exam-
ple, with more complex examples provided in the next section. The determiner-
nominal-phrase construction combines a nominal and a determiner to build a nom-
inal phrase, such as “the mouse”.

All phrasal constructions are grouped with a template def-phrasal-cxn,
which does not much more than group all the different steps in building an op-
erational construction. It is of the form

(def-phrasal-cxn cxn-name
(def-phrasal-skeleton cxn-name

...)

...)

6.1. Combining constituents

We begin by focusing on compositionality handled by the
def-phrasal-skeleton template. For the determiner-nominal construction,
this means the following:

20 L. Steels

1. On the semantic side, the construction requires a unit ?determiner-unit
with the semantic function of reference and a unit ?nominal-unit with the
function identifier, and it then constructs a new unit ?nominal-phrase
with as semantic function referring.

2. On the syntactic side, the construction requires a unit ?determiner-unit
with the syntactic function determiner and a unit ?nominal-unit with
the syntactic function nominal, and it should construct a new unit
?nominal-phrase categorized syntactically as a nominal-phrase.

This suggests the beginning of a template for phrasal constructions, which is called
def-phrasal-skeleton. It has two slots: one is called :phrase for defin-
ing semantic and syntactic categorizations of the new phrase, and one is called
:constituents for defining the various constituents, where each constituent is
defined in terms of what semantic and syntactic function to expect and possibly
a phrasal type. The template introduces variables for the different units involved.
These variables provide motivated names when symbols for units need to be cre-
ated in production or parsing and, more importantly, they make it possible later to
formulate additional parts of the construction. The template handles any number of
possible constituents, and the order in which they are defined does not play a role.

Here is an example of the use of this template for defining the
determiner-nominal-phrase construction:

(def-phrasal-skeleton determiner-nominal-phrase-cxn

:phrase

(?nominal-phrase

:sem-function referring

:phrase-type nominal-phrase)

:constituents

((?determiner-unit

:sem-function reference

:syn-function determiner)

(?nominal-unit

:sem-function identifier

:syn-function nominal)))

The nominal phrase requires a determiner and a nominal, which are here only
defined in terms of what syntactic and semantic functions they should have. The

A Design Pattern for Phrasal Constructions 21

phrase as a whole is given a semantic function (referring) and a phrase type
(nominal-phrase).

This definition is not to be confused with a generative rewrite rule of the sort

NounPhrase --> Article Noun

First of all the construction operates on the basis of syntactic and semantic func-
tions, rather than syntactic types although we could have added more constraints
on the syntactic type of constituents as well. More importantly, the determiner-
nominal-phrase construction combines a determiner and a nominal into a nominal
phrase both in parsing and in production. The constituents have to be there already
from the application of earlier constructions and they have to satisfy all the con-
straints defined here in order to be combined. It is never the case that the nominal
phrase exists as a unit and is then ’rewritten’ with two new constituents. FCG is not
designed to support generation (as in generative grammar). Instead it focuses on
production, in the sense of mapping meaning to form, and parsing.

For the interested reader, I provide here the operational construction for the
example given. The information provided explicitly is in bold. All the rest is added
by the template itself:

(def-cxn determiner-nominal-cxn ()

((?top-unit

(footprints (==0 determiner-nominal-cxn))

(sem-subunits (== ?determiner-unit ?nominal-unit)))

(?determiner-unit
(sem-cat (==1 (sem-function reference))))
(?nominal-unit
(sem-cat (==1 (sem-function identifier))))
((J ?nominal-phrase ?top-unit

(?determiner-unit ?nominal-unit))

(sem-cat (==1 (sem-function referring)))
(footprints (==1 determiner-nominal-cxn))))

←→

((?top-unit

(footprints (==0 determiner-nominal-cxn))

(syn-subunits (== ?determiner-unit ?nominal-unit)))

(?determiner-unit
(syn-cat (==1 (syn-function determiner))))
(?nominal-unit

22 L. Steels

(syn-cat (==1 (syn-function nominal))))
((J ?nominal-phrase ?top-unit

(?determiner-unit ?nominal-unit))

(syn-cat (==1 (phrase-type nominal-phrase)))
(footprints (==1 determiner-nominal-cxn)))))

The sem- and syn-functions appear in the sem-cat and syn-cat unit-features of
the relevant constituents. The J-operator creates the nominal phrase both on the
semantic and syntactic side with the determiner and nominal units as subunits. It
adds information about the phrase as a whole (the phrase-type on the syntactic side
and the sem-function on the syntactic side). There are footprints added on both
sides to control and report the application of the construction and these footprints
are tested in the ?top-unit.

Using this phrasal construction and the lexical and categorization constructions
given earlier, we obtain the semantic and syntactic pole of the transient structure
shown respectively in Figure 5 and Figure 4 after parsing “the mouse”.

An entirely similar structure is obtained when we start a production process with
the input meaning:

((unique-definite individual-1 mouse-1)

(mouse mouse-1 context-1))

6.2. Agreement and percolation

The phrasal-skeleton template is a good start, but phrasal constructions must
do a lot more. Let us focus first on handling agreement and percolation. Agreement
means that certain syntactic or semantic features of one unit are shared with that
of another unit. For example, determiner and nominal have to agree with respect
to number. Interestingly, agreement often flows in both directions. It is possible
that we do not know the number of the determiner for sure (as in the case of “the”)
and then the nominal determines it (as in “the mouse”) or it may be that we do
not know the number of the nominal for sure (as in the case of “sheep”) and then
the determiner might determine it (as in “a sheep”). It is even possible that neither
the determiner nor the nominal allow a decision to be made, as would be the case
for “the sheep”. It is only in a larger context that number can be decided, as in
“the sheep is eating grass” where the auxiliary “is” has to agree in number with the
subject.

All this suggests that we should think about agreement in terms of constraint
propagation. It is handled in unification-based grammars by using variables for the

A Design Pattern for Phrasal Constructions 23

top

sem-subunits

top

(nominal-phrase-2)

syn-subunits

form

Removed from construction set (0)

Added to construction set (1)

Removed from construction set (1)

Added to construction set (2)

Removed from construction set (2)

Added to construction set (3)

Removed from construction set (3)

Added to construction set (4)

Removed from construction set (4)

Added to construction set (5)

Parsing "the mouse"

Applying construction set (5) in direction !

Found a solution

initial
structure top

application
process

queue

applied
constructions

resulting
structure

top

(nominal-phrase-2)

((meets
nominal-phrase-2
nominal-phrase-2))

Meaning:
((unique-definite ?indiv-12 ?context-7) (mouse ?mouse-set-11 ?base-set-23))

reset

the-cxn (t)

the-cxn (t)

mouse-cxn (t)

mouse-cxn (t)

determiner-cxn

determiner-cxn

noun-nominal-cxn

noun-nominal-cxn

determiner-nominal-phrase-cxn

determiner-nominal-phrase-cxn

sem syn

initial * mouse-cxn (t), noun-nominal-cxn, the-cxn (t), determiner-cxn determiner-nominal-phrase-cxn

determiner-cxn the-cxn (t) mouse-cxn (t)

determiner-nominal-phrase-cxn determiner-cxn the-cxn (t) noun-nominal-cxn mouse-cxn (t)

sem-subunits

footprints

sem-cat

nominal-phrase-2

(mouse-5 the-4)

(determiner-nominal-phrase-cxn)

((sem-function referring))

footprints

args

meaning

sem-cat

the-4

(the-cxn
determiner-cxn)

(?indiv-12
?context-7)

((unique-definite
?indiv-12
?context-7))

((is-countable +)
(determination
definite)

(sem-function
reference))

footprints

args

meaning

sem-cat

mouse-5

(mouse-cxn
noun-nominal-cxn)

(?mouse-set-11
?base-set-23)

((mouse
?mouse-set-11
?base-set-23))

((is-countable +)
(is-animate +)
(class object)
(sem-function
identifier))

sem syn
syn-subunits

footprints

syn-cat

nominal-phrase-2

(mouse-5 the-4)

(determiner-nominal-phrase-cxn)

((phrase-type nominal-phrase))

form

syn-cat

footprints

the-4

((string the-4
"the"))

((is-definite +)
(number
?sing-or-plural-3)

(pos article)
(syn-function
determiner))

(the-cxn
determiner-cxn)

form

syn-cat

footprints

mouse-5

((string mouse-5
"mouse"))

((number singular)
(pos noun)
(syn-function
nominal))

(mouse-cxn
noun-nominal-cxn)

Figure 4. The semantic pole of the transient structure obtained after applying the
determinal-nominal-phrase construction when parsing “the mouse”. A unit for the
nominal phrase has been constructed with the semantic function referring.

relevant syntactic or semantic features. They get bound in one place, and then used
in other places. It is not necessary to specify where the variables get bound and
where they are used. This approach is used also in FCG. (See a later chapter by van
Trijp, 2011b, for a more sophisticated way of dealing with agreement.)

Percolation means that a newly constructed phrase obtains some of its syntactic
or semantic features from its constituents. For example, definiteness is usually
expressed in English with the determiner (“the” versus “a”), but then it becomes a
property of the nominal phrase as a whole, as with “the table” which is considered

24 L. Steels

top

sem-subunits

top

(nominal-phrase-2)

syn-subunits

form

Removed from construction set (0)

Added to construction set (1)

Removed from construction set (1)

Added to construction set (2)

Removed from construction set (2)

Added to construction set (3)

Removed from construction set (3)

Added to construction set (4)

Removed from construction set (4)

Added to construction set (5)

Parsing "the mouse"

Applying construction set (5) in direction !

Found a solution

initial
structure top

application
process

queue

applied
constructions

resulting
structure

top

(nominal-phrase-2)

((meets
nominal-phrase-2
nominal-phrase-2))

Meaning:
((unique-definite ?indiv-12 ?context-7) (mouse ?mouse-set-11 ?base-set-23))

reset

the-cxn (t)

the-cxn (t)

mouse-cxn (t)

mouse-cxn (t)

determiner-cxn

determiner-cxn

noun-nominal-cxn

noun-nominal-cxn

determiner-nominal-phrase-cxn

determiner-nominal-phrase-cxn

sem syn

initial * mouse-cxn (t), noun-nominal-cxn, the-cxn (t), determiner-cxn determiner-nominal-phrase-cxn

determiner-cxn the-cxn (t) mouse-cxn (t)

determiner-nominal-phrase-cxn determiner-cxn the-cxn (t) noun-nominal-cxn mouse-cxn (t)

sem-subunits

footprints

sem-cat

nominal-phrase-2

(mouse-5 the-4)

(determiner-nominal-phrase-cxn)

((sem-function referring))

footprints

args

meaning

sem-cat

the-4

(the-cxn
determiner-cxn)

(?indiv-12
?context-7)

((unique-definite
?indiv-12
?context-7))

((is-countable +)
(determination
definite)

(sem-function
reference))

footprints

args

meaning

sem-cat

mouse-5

(mouse-cxn
noun-nominal-cxn)

(?mouse-set-11
?base-set-23)

((mouse
?mouse-set-11
?base-set-23))

((is-countable +)
(is-animate +)
(class object)
(sem-function
identifier))

sem syn
syn-subunits

footprints

syn-cat

nominal-phrase-2

(mouse-5 the-4)

(determiner-nominal-phrase-cxn)

((phrase-type nominal-phrase))

form

syn-cat

footprints

the-4

((string the-4
"the"))

((is-definite +)
(number
?sing-or-plural-3)

(pos article)
(syn-function
determiner))

(the-cxn
determiner-cxn)

form

syn-cat

footprints

mouse-5

((string mouse-5
"mouse"))

((number singular)
(pos noun)
(syn-function
nominal))

(mouse-cxn
noun-nominal-cxn)

Figure 5. Syntactic pole of the transient structure obtained after applying the
determiner-nominal-phrase construction. The new phrase has the phrase-type
nominal-phrase.

a definite nominal phrase. Percolation is computationally the same as agreement.
Both processes establish which features are shared between units, whether this is
horizontal (between constituents in agreement) or vertical (between phrases and
their constituents in percolation). They are therefore handled with the same tem-
plate called def-phrasal-agreement.

The def-phrasal-agreement takes as arguments the name of the construction
it is building and a list of agreement specifications for each of the units in the phrasal
skeleton, where each specification has one slot for which syntactic features have to
agree (called :syn-cat) and one for which semantic features have to agree (called
:sem-cat). The general structure is therefore as follows:

A Design Pattern for Phrasal Constructions 25

(def-phrasal-agreement cxn-name
(unit-variable
:syn-cat features
:sem-cat features))

...)

The unit-variables used to specify which unit we are talking about are those that
were used to define the original phrasal skeleton in the first place. The use of this
template is illustrated in the following example which builds further on the skeleton
of determiner-nominal-phrase-cxn defined earlier:

(def-phrasal-agreement determiner-nominal-phrase-cxn

(?nominal-phrase

:syn-cat

(==1 (is-definite ?definiteness)

(number ?number)))

(?determiner-unit

:sem-cat

(==1 (is-countable ?countable))

:syn-cat

(==1 (is-definite ?definiteness)

(number ?number)))

(?nominal-unit

:sem-cat

(==1 (is-countable ?countable))

:syn-cat

(==1 (number ?number))))

Number appears in all units, ensuring that there is agreement for number be-
tween determiner and nominal and that number percolates to the nominal phrase
as a whole. is-definite percolates up from the ?determiner-unit to the
?nominal-phrase but is not mentioned with the nominal because (in English) this
information is not marked or associated with nouns. The determiner-nominal also
shows an example of semantic agreement for the feature is-countable between
determiner and nominal. The phrase “a milk” is ungrammatical because “milk” is a
mass noun, i.e. uncountable, and therefore cannot be combined with the article “a”
which signals countability. (Although we get some unusual exceptions when milk
is coerced into meaning “a bottle of milk”, as in “I ordered a milk”.)

26 L. Steels

In regards to the operational definition, below is the worked out
determiner-nominal-cxn after these agreement constraints have been added.
The additions are shown in bold. The features that percolate are found in the J-
units and the ones that have to agree are found in the other units. Using the same
variable (e.g. ?countable) in the determiner-unit and the nominal-unit ensures that
the variables are either unknown but from now on their values will be considered
equal or they have bindings and then the bindings have to be equal.

(def-cxn determiner-nominal-phrase-cxn ()

((?top-unit

(footprints (==0 determiner-nominal-cxn))

(sem-subunits

(== ?determiner-unit ?nominal-unit)))

(?determiner-unit

(sem-cat (==1 (is-countable ?countable))))
(?nominal-unit

(sem-cat (==1 (is-countable ?countable))))
((J ?nominal-phrase ?top-unit

(?determiner-unit ?nominal-unit))

(footprints (==1 determiner-nominal-cxn))

(sem-cat (==1 (sem-function referring)))))

<-->

((?top-unit

(footprints (==0 determiner-nominal-cxn))

(syn-subunits

(== ?determiner-unit ?nominal-unit)))

(?determiner-unit

(syn-cat

(==1 (is-definite ?definiteness)
(number ?number))))

(?nominal-unit

(syn-cat (==1 (number ?number))))
((J ?nominal-phrase ?top-unit

(?determiner-unit ?nominal-unit))

(syn-cat

(==1 (is-definite ?definiteness)
(number ?number)))

(footprints (==1 determiner-nominal-cxn)))))

An example of the application of this construction follows shortly (see Figures
6 and 7).

A Design Pattern for Phrasal Constructions 27

6.3. Linking variables

Next, we want the phrasal construction to combine the meanings contributed by
the different constituents, which can be done by linking their variables. However,
we cannot specify directly in a construction what kind of linking should be done
because the construction has to be general and apply with any kind of lexical item
that satisfies the functional and agreement constraints. Thus, linking goes through
arguments that are explicitly declared for this purpose.

First the lexical constructions for “the” and “mouse” are extended to include
declarations of the arguments that are available for linking (additions in bold).
Rather than adding another template, we do this with an additional slot called :args
for the def-lex-skeleton template:

(def-lex-cxn the-cxn

(def-lex-skeleton the-cxn

:meaning (== (unique-definite ?indiv ?context))

:args (?indiv ?context)
:string "the")

(def-lex-cat the-cxn

:sem-cat (==1 (is-countable +)

(determination definite))

:syn-cat (==1 (lex-cat article)

(number ?sing-or-plural)

(is-definite +))))

(def-lex-cxn mouse-cxn

(def-lex-skeleton mouse-cxn

:meaning (== (mouse ?mouse-set ?base-set))

:args (?mouse-set ?base-set)
:string "mouse")

(def-lex-cat mouse-cxn

:sem-cat (==1 (is-animate +)

(is-countable +)

(class object))

:syn-cat (==1 (lex-cat noun)

(number singular))))

What this means for example for “mouse” is that the variables ?mouse-set and
?base-set are available to link the meaning of “mouse” to meanings provided by
other lexical items.

28 L. Steels

Another template called def-phrasal-linking is introduced to add the link-
ing of variables between the different units to a phrasal construction already set up
with def-phrasal-skeleton. Here is an example of its use:

(def-phrasal-linking determiner-nominal-cxn

(?nominal-phrase

:args (?referent ?context))

(?determiner-unit

:args (?referent ?nominal-referent))

(?nominal-unit

:args (?nominal-referent ?context)))

The ?referent variable is shared between the ?nominal-phrase and the
?determiner-unit and the ?context variable between the ?nominal-phrase

and the ?nominal-unit. The variable ?nominal-referent links the meaning
supplied by the determiner to that supplied by the nominal.

The above specification expands into the following full construction, with ad-
ditions by def-phrasal-linking in bold. The additions consist of feature values
for the args feature in the semantic pole. The args feature of the phrase is part of
the J-unit because it is to be added by the construction.

(def-cxn determiner-nominal-phrase-cxn ()

((?top-unit

(footprints (==0 determiner-nominal))

(sem-subunits (== ?determiner-unit ?nominal-unit)))

(?determiner-unit

(args (?referent ?nominal-referent))
(sem-cat (==1 (is-countable ?countable))))

(?nominal-unit

(args (?nominal-referent ?context))
(sem-cat (==1 (is-countable ?countable))))

((J ?nominal-phrase ?top-unit

(?determiner-unit ?nominal-unit))

(args (?referent ?context))
(footprints (==1 determiner-nominal))

(sem-cat (==1 (sem-function referring)))))

<-->

((?top-unit

(footprints (==0 determiner-nominal))

(syn-subunits (== ?determiner-unit ?nominal-unit)))

A Design Pattern for Phrasal Constructions 29

(?determiner-unit

(syn-cat (==1 (is-definite ?definiteness)

(number ?number))))

(?nominal-unit

(syn-cat (==1 (number ?number))))

((J ?nominal-phrase ?top-unit

(?determiner-unit ?nominal-unit))

(syn-cat

(==1 (is-definite ?definiteness)

(number ?number)))

(footprints (==1 determiner-nominal)))))

This example demonstrates how templates help to deal with complex-
ity. Things are beginning to look fairly complicated even though the
determinal-nominal-cxn is still highly simplified.

6.4. Constructional Form and Meaning

Finally a phrasal construction should obviously be able to impose additional
form constraints, such as the word order of the constituents. Moreover, one of the
key tenets of construction grammar is that a construction can also contribute novel
meanings and semantic categorizations to a phrase or its constituents. New forms
and meanings could also be added to any of the constituents as well. For example,
a construction could determine the syntactic and semantic functions of one of its
constituents.

To be able to specify this information, we employ a new template: def-

phrasal-require. It specifies what the construction itself requires (when it is
used in matching) or imposes (when it is used in merging) on the respective units.
The constructional form constraint concerns here concerns only that the determiner
and the nominal have to follow each other, and the constructional meaning intro-
duces the context of the referring expression:

(def-phrasal-require determiner-nominal-cxn

(?nominal-phrase

:cxn-form (== (meets ?determiner-unit ?nominal-unit))

:cxn-meaning (== (context ?context))))

The fully expanded determiner-nominal construction now looks as follows
(with additions in bold). This is now the complete definition of the construction.

30 L. Steels

(def-cxn determiner-nominal-phrase-cxn ()

((?top-unit

(tag ?meaning (meaning (== (context ?context))))
(sem-subunits

(== ?determiner-unit ?nominal-unit))

(footprints (==0 determiner-nominal-cxn)))

(?determiner-unit

(sem-cat (==1 (is-countable ?countable)

(determiner ?determiner)))

(args (?referent ?nominal-referent)))

(?nominal-unit

(args (?nominal-referent ?context))

(sem-cat (==1 (is-countable ?countable)

(sem-function identifier))))

((J ?nominal-phrase ?top-unit

(?determiner-unit ?nominal-unit))

?meaning
(args (?referent ?context))

(sem-cat (==1 (sem-function referring)))

(footprints (==1 determiner-nominal-cxn))))

<->

((?top-unit

(footprints (==0 determiner-nominal-cxn))

(syn-subunits (== ?determiner-unit ?nominal-unit))

(tag ?form
(form

(== (meets ?determiner-unit ?nominal-unit)))))
(?determiner-unit

(syn-cat (==1 (syn-function determiner)

(number ?number)

(is-definite ?definiteness))))

(?nominal-unit

(syn-cat (==1 (number ?number)

(syn-function nominal))))

((J ?nominal-phrase ?top-unit

(?determiner-unit ?nominal-unit))

?form
(footprints (==1 determiner-nominal-cxn))

(syn-cat (==1 (phrase-type nominal-phrase)

A Design Pattern for Phrasal Constructions 31

(is-definite ?definiteness)

(number ?number))))))

Note how the semantic and syntactic pole of the ?top-unit specifies respec-
tively the form and meaning that the construction requires or imposes. The feature-
values are tagged with ?meaning and ?form respectively and their bindings are
then moved to the phrasal-unit, just like lexical constructions tag meanings and
forms and move them to the lexical units they create.

top

sem-subunits

top

(nominal-phrase-4)

Parsing "the mouse"

Applying construction set (5) in direction !

Found a solution

initial
structure top

application
process

queue

applied
constructions

resulting
structure

top

Meaning:
((context ?context-9) (unique-definite ?indiv-14 ?base-set-26)
(mouse ?base-set-26 ?context-9))

reset

sem syn

initial * mouse-cxn (t), noun-nominal-cxn, the-cxn (t), article-determiner-cxn determiner-nominal-phrase-cxn

article-determiner-cxn the-cxn (t) mouse-cxn (t)

determiner-nominal-phrase-cxn article-determiner-cxn the-cxn (t) noun-nominal-cxn mouse-cxn (t)

meaning

sem-subunits

footprints

args

sem-cat

nominal-phrase-4

((context ?context-9))

(mouse-7 the-6)

(determiner-nominal-phrase-cxn)

(?indiv-14 ?context-9)

((sem-function referring))

footprints

meaning

sem-cat

args

the-6

(the-cxn
article-determiner-cxn)

((unique-definite
?indiv-14
?base-set-26))

((determination
definite)

(sem-function
reference)

(is-countable +))

(?indiv-14 ?base-set-26)

footprints

meaning

sem-cat

args

mouse-7

(mouse-cxn
noun-nominal-cxn)

((mouse
?base-set-26
?context-9))

((is-animate +)
(class object)
(sem-function
identifier)

(is-countable +))

(?base-set-26
?context-9)

sem syn nominal-
phrase-
4

the-6

mouse-
7

Figure 6. Semantic pole of transient structure after application of the determiner-
nominal phrasal construction when parsing “the mouse”.

The application of the complete phrasal construction is illustrated in Figure 6
and Figure 7 and is an example of parsing with the phrase “the mouse” as input. We
now see that the variables have all been chosen so as to link the predicates supplied
by the constituent meanings. The nominal phrase introduces the context-variable
?base-set-332, which is the one that is taken by the predicate mouse in the noun
unit to come up with a set of mice, bound to ?context-737. This noun is then used

32 L. Steels

by the determiner unit to pick out the unique individual ?indiv-285. Suppose in
production a meaning like the following one is given as input:

((unique-definite indiv-mouse-1 mouse-1)

(mouse mouse-1 context-1)

(context context-1))

Then the same set of constructions produces a transient structure which is en-
tirely similar. All constructions are perfectly reversible.

top

top syn-subunits

Parsing "the mouse"

Applying construction set (5) in direction !

Found a solution

initial
structure top

application
process

queue

applied
constructions

resulting
structure

top

(nominal-phrase-4)

Meaning:
((context ?context-9) (unique-definite ?indiv-14 ?base-set-26)
(mouse ?base-set-26 ?context-9))

reset

sem syn

initial * mouse-cxn (t), noun-nominal-cxn, the-cxn (t), article-determiner-cxn determiner-nominal-phrase-cxn

article-determiner-cxn the-cxn (t) mouse-cxn (t)

determiner-nominal-phrase-cxn article-determiner-cxn the-cxn (t) noun-nominal-cxn mouse-cxn (t)

nominal-
phrase-
4

the-6

mouse-
7

sem syn

form

syn-subunits

syn-cat

footprints

nominal-phrase-4

((meets the-6 mouse-7))

(mouse-7 the-6)

((is-definite +)
(number singular)
(phrase-type nominal-phrase))

(determiner-nominal-phrase-cxn)

form

syn-cat

footprints

the-6

((string the-6 "the"))

((is-definite +)
(number singular)
(pos article)
(syn-function
determiner))

(the-cxn
article-determiner-cxn)

form

syn-cat

footprints

mouse-7

((string mouse-7
"mouse"))

((number singular)
(pos noun)
(syn-function nominal))

(mouse-cxn
noun-nominal-cxn)

Figure 7. Syntactic pole of transient structure after parsing “the mouse”.

7. Other examples of phrasal constructions

These templates are now exercised with three more examples: an adjectival
phrase built from an adverbial and an adjectival, a nominal built from an adjecti-
val and a nominal, and a postposed genitive, such as “this friend of mine”, which
combines a nominal phrase and a genitive into a new nominal phrase.

7.1. Building adjectival phrases

An adjectival phrase combines an adverbial and an adjectival, as in “very green”.
Let us first extend the lexicon with an example of an adverb and an adjective:

A Design Pattern for Phrasal Constructions 33

(def-lex-cxn green-cxn

(def-lex-skeleton green-cxn

:meaning (== (green ?green-set ?context))

:args (?green-set ?context)

:string "green")

(def-lex-cat green-cxn

:sem-cat (==1 (category hue))

:syn-cat (==1 (lex-cat adjective))))

and

(def-lex-cxn very-cxn

(def-lex-skeleton

:meaning (== (very ?very-set ?very-base-set))

:args (?very-set ?very-base-set)

:string "very")

(def-lex-cat

:sem-cat (== (similarity prototype))

:syn-cat (==1 (lex-cat adverb))))

Next we need functional constructions for adjectivals and adverbials all defined
using templates:

(def-fun-cxn adjectival

(def-fun-skeleton

:sem-cat (==1 (sem-function qualifier))

:sem-function qualifier

:syn-cat (==1 (lex-cat adjective))

:syn-function adjectival))

(def-fun-cxn adverbial

(def-fun-skeleton

:sem-cat (==1 (sem-function modifier))

:sem-function modifier

:syn-cat (==1 (lex-cat adverb))

:syn-function adverbial))

34 L. Steels

And finally we define a phrasal construction combining adverbials and adjectivals
into an adjectival phrase. There are no agreement relations, so we only need to
specify the phrasal skeleton and the linking of variables:

(def-phrasal-cxn adverbial-adjectival-cxn

(def-phrasal-skeleton adverbial-adjectival-cxn

:phrase

(?adjective-phrase

:sem-function qualifier

:syn-function adjectival

:phrase-type adjectival-phrase)

:constituents

((?adverbial-unit

:sem-function modifier

:syn-function adverbial)

(?adjectival-unit

:sem-function qualifier

:syn-function adjectival)))

(def-phrasal-linking adverbial-adjectival-cxn

(?adjective-phrase

:args (?adverbial-referent ?base-set))

(?adverbial-unit

:args (?adverbial-referent ?adjectival-referent))

(?adjectival-unit

:args (?adjectival-referent ?base-set)))

(def-phrasal-require adverbial-adjectival-cxn

(?adjective-phrase

:cxn-form (== (meets ?adverbial-unit ?adjectival-unit)))))

These constructions can parse phrases such as “very green”. They can also be used
to illustrate how FCG deals with recursion. When the adjectival construction ap-
plies, it not only constructs an adjectival-phrase, but it also assigns the sem-function
qualifier and the syn-function adjectival to this new phrase, so that the newly
constructed phrasal unit can itself be used again as a component of an adjectival-
phrase. Here is such an example for production. Processing starts from the follow-
ing initial meaning:

((very very-set-2 very-set-1)

(very very-set-1 green-set-1)

(green green-set-1 context-1))

A Design Pattern for Phrasal Constructions 35

top

sem-subunits

top

(adjective-phrase-3)

Producing
((very very-set-2 very-set-1) (very very-set-1 green-set-1)
(green green-set-1 context-1))

Applying construction set (5) in direction !

Found a solution

initial
structure top

application
process

queue

applied
constructions

resulting
structure

top

Utterance: "very very green"

reset

sem syn

initial * very (t), adverb-adverbial-cxn, very (t), adverb-adverbial-cxn, green-cxn (t), adjective-adjectival-cxn, adverbial-adjectival-phrase-cxn adverbial-adjectival-phrase-cxn

adverbial-adjectival-phrase-cxn adjective-adjectival-cxn green-cxn (t) very (t) very (t)

adverbial-adjectival-phrase-cxn adverbial-adjectival-phrase-cxn adjective-adjectival-cxn green-cxn (t) adverb-adverbial-cxn very (t) adverb-adverbial-cxn very (t)

sem-subunits

footprints

args

sem-cat

adjective-phrase-3

(adjective-phrase-2 word-very-4)

(adverbial-adjectival-phrase-cxn)

(very-set-2 context-1)

((sem-function qualifier))

sem-subunits

footprints

args

sem-cat

adjective-phrase-2

(word-green-3 word-very-2)

(adverbial-adjectival-phrase-cxn)

(very-set-1 context-1)

((sem-function qualifier))

args

meaning

sem-cat

footprints

word-green-3

(green-set-1 context-1)

((green
green-set-1
context-1))

((category hue)
(sem-function qualifier))

(green-cxn
adjective-adjectival-cxn)

args

meaning

sem-cat

footprints

word-very-2

(very-set-1 green-set-1)

((very very-set-1
green-set-1))

((similarity prototype)
(sem-function modifier))

(very
adverb-adverbial-cxn)

args

meaning

sem-cat

footprints

word-very-4

(very-set-2 very-set-1)

((very very-set-2
very-set-1))

((similarity prototype)
(sem-function modifier))

(very adverb-adverbial-cxn)

sem syn
adjective-
phrase-3

word-very-4

adjective-
phrase-2

word-
green-
3

word-
very-2

Figure 8. Semantic pole of the transient structure after a recursive application of
the adjectival-phrase-cxn.

It produces the result shown in Figure 8 and Figure 9. First an adjectival phrase
is built for the lexical items “very” and “green” that cover

(very very-set-1 green-set-1)

(green green-set-1 context-1)

Then the resulting unit is combined with a second lexical unit for “very” that
covers

(very very-set-1 green-set-1)

The same constructions work perfectly well in parsing and would produce a
similar transient structure. It is worthwhile to point out that processing recursive
language in FCG is not handled by a separate stack mechanism that acts as an
additional memory (as you would typically find in context-free grammar parsers).
The transient structure itself acts as a memory and the standard mechanisms for
applying constructions based on the matching and merging operations apply.

36 L. Steels

top

top syn-subunits

Producing
((very very-set-2 very-set-1) (very very-set-1 green-set-1) (green green-set-1 context-1))

Applying construction set (5) in direction !

Found a solution

initial
structure top

application
process

queue

applied
constructions

resulting
structure

top

(adjective-phrase-3)

Utterance: "very very green"

reset

sem syn

initial * very (t), adverb-adverbial-cxn, very (t), adverb-adverbial-cxn, green-cxn (t), adjective-adjectival-cxn, adverbial-adjectival-phrase-cxn adverbial-adjectival-phrase-cxn

adverbial-adjectival-phrase-cxn adjective-adjectival-cxn green-cxn (t) very (t) very (t)

adverbial-adjectival-phrase-cxn adverbial-adjectival-phrase-cxn adjective-adjectival-cxn green-cxn (t) adverb-adverbial-cxn very (t) adverb-adverbial-cxn very (t)

adjective-
phrase-3

adjective-
phrase-2

word-
green-
3

word-
very-2

word-very-4

sem syn

form

syn-subunits

footprints

syn-cat

adjective-phrase-3

((meets word-very-4
adjective-phrase-2))

(adjective-phrase-2 word-very-4)

(adverbial-adjectival-phrase-cxn)

((phrase-type adjectival-phrase)
(syn-function adjectival))

footprints

form

syn-cat

word-very-4

(very adverb-adverbial-cxn)

((string word-very-4
"very"))

((pos adverb)
(syn-function adverbial))

footprints

syn-subunits

form

syn-cat

adjective-phrase-2

(adverbial-adjectival-phrase-cxn)

(word-green-3 word-very-2)

((meets
word-very-2
word-green-3))

((phrase-type adjectival-phrase)
(syn-function adjectival))

footprints

form

syn-cat

word-green-3

(green-cxn
adjective-adjectival-cxn)

((string word-green-3
"green"))

((pos adjective)
(syn-function
adjectival))

footprints

form

syn-cat

word-very-2

(very
adverb-adverbial-cxn)

((string word-very-2
"very"))

((pos adverb)
(syn-function adverbial))

Figure 9. Syntactic pole of the transient structure after recursive application of the
adjectival phrase construction.

7.2. Building nominals

By using syntactic and semantic functions for constraining whether an item or
phrase can be part of another one, we get the unbounded compositionality and recur-
sivity required in natural language processing. Here is another example to illustrate
this feature.

A second way to get a nominal is by combining an adjectival with a nominal, as
in “green mouse” or “very green mouse”. The two units have to follow each other
sequentially, and the arguments have to be linked in particular ways. Moreover,
there are semantic and syntactic categorizations that have to be satisfied by each.
If that is the case, a new adjectival-nominal unit can be constructed that is still a
nominal and functions as an identifier:

A Design Pattern for Phrasal Constructions 37

(def-phrasal-cxn adjectival-nominal-cxn

(def-phrasal-skeleton adjectival-nominal-cxn

:phrase

(?adjectival-nominal

:sem-function identifier

:syn-function nominal

:phrase-type adjectival-nominal)

:constituents

((?adjectival-unit

:sem-function qualifier

:syn-function adjectival)

(?nominal-unit

:sem-function identifier

:syn-function nominal)))

(def-phrasal-require adjectival-nominal-cxn

(?adjectival-nominal

:cxn-form

(== (meets ?adjectival-unit ?nominal-unit))))

(def-phrasal-agreement adjectival-nominal-cxn

(?adjectival-nominal

:sem-cat (==1 (is-countable ?countable))

:syn-cat (==1 (number ?number)))

(?nominal-unit

:sem-cat (==1 (is-countable ?countable))

:syn-cat (==1 (number ?number))))

(def-phrasal-linking adjectival-nominal-cxn

(?adjectival-nominal

:args (?adjectival-referent ?context))

(?adjectival-unit

:args (?adjectival-referent ?nominal-referent))

(?nominal-unit

:args (?nominal-referent ?context))))

Based on this definition we can now parse and produce a phrase like “the green
mouse” but also “the very green mouse”. The semantic pole at the end of the pro-
cess for parsing the latter sentence is shown in Figure 10. It shows that meanings
contributed by individual words have all been linked together properly and that all
agreement and percolation requirements are satisfied.

38 L. Steels

09/10/10 13:41Babel web interface

Page 1 of 1http://localhost:8000/

top

sem-subunits

top

(nominal-phrase-17)

Parsing "the very green mouse"

Applying construction set (11) in direction !

Found a solution

initial
structure top

application
process

queue ... and 2 more

applied
constructions

... and 1 more

resulting
structure

top

Meaning:
((context ?context-138) (mouse ?context-140 ?context-138) (very ?base-set-40 ?very-base-set-2)
(green ?very-base-set-2 ?context-140) (unique-definite ?indiv-49 ?base-set-40))

reset

sem syn

initial
very-cxn
(lex nil)

adverb-adverbial-

cxn (cat t)

green-cxn
(lex nil)

adjective-adjectival-

cxn (cat t)

adverbial-adjectival-phrase-cxn

(marked-phrasal)

mouse-cxn
(lex nil)

noun-nominal-

cxn (cat t)

adjectival-nominal-cxn

(marked-phrasal)

the-cxn
(lex nil)

article-determiner-

cxn (cat t)

determiner-nominal-phrase-cxn

(marked-phrasal)

article-determiner-cxn (cat t) adjectival-nominal-cxn (marked-phrasal) noun-nominal-cxn (cat t) adverbial-adjectival-phrase-cxn (marked-phrasal) adjective-adjectival-cxn (cat t)

determiner-nominal-phrase-cxn (marked-phrasal) article-determiner-cxn (cat t) the-cxn (lex nil) adjectival-nominal-cxn (marked-phrasal) noun-nominal-cxn (cat t) mouse-cxn (lex nil) adverbial-adjectival-phrase-cxn (marked-phrasal) adjective-adjectival-cxn (cat t)

green-cxn (lex nil) adverb-adverbial-cxn (cat t)

meaning

sem-subunits

footprints

args

sem-cat

nominal-phrase-17

((context ?context-138))

(adjectival-nominal-phrase-3
the-57)

(determiner-nominal-phrase-cxn
marked-phrasal)

(?indiv-49 ?context-138)

((sem-function referring))

footprints

meaning

sem-cat

args

the-57

(the-cxn
article-determiner-cxn)

((unique-definite
?indiv-49
?base-set-40))

((determination definite)
(sem-function reference)
(is-countable +))

(?indiv-49 ?base-set-40)

footprints

sem-subunits

sem-cat

args

adjectival-nominal-phrase-3

(adjectival-nominal-cxn
marked-phrasal)

(mouse-4
adjective-phrase-3)

((sem-function
identifier)

(is-countable +))

(?base-set-40
?context-138)

footprints

meaning

sem-cat

args

mouse-4

(mouse-cxn noun-nominal-cxn)

((mouse
?context-140
?context-138))

((is-animate +) (class object)
(sem-function identifier)
(is-countable +))

(?context-140 ?context-138)

footprints

sem-subunits

sem-cat

args

adjective-phrase-3

(adverbial-adjectival-phrase-cxn
marked-phrasal)

(green-3 very-3)

((sem-function qualifier))

(?base-set-40 ?context-140)

footprints

meaning

sem-cat

args

very-3

(very-cxn
adverb-adverbial-cxn)

((very ?base-set-40
?very-base-set-2))

((similarity prototype)
(sem-function modifier))

(?base-set-40
?very-base-set-2)

footprints

meaning

sem-cat

args

green-3

(green-cxn
adjective-adjectival-cxn)

((green
?very-base-set-2
?context-140))

((category hue)
(sem-function qualifier))

(?very-base-set-2
?context-140)

sem syn nominal-
phrase-
17

the-57

adjectival-
nominal-
phrase-3

mouse-4

adjective-
phrase-3

green-
3

very-3

Figure 10. Semantic pole after compositional application of different lexical and
phrasal constructions progressively constructing a complex nominal phrase for
parsing “the very green mouse”.

Using exactly the same constructions, we can produce the same phrase starting
from the following initial meaning:

((unique-definite indiv-mouse-1 very-1)

(context context-1)

(very very-1 green-1)

(green green-1 mouse-1)

(mouse mouse-1 context-1))

After all relevant constructions are applied, the syntactic pole is shown in Figure
11. Individual words and ordering constraints have all been properly added.

A Design Pattern for Phrasal Constructions 39

09/10/10 13:47Babel web interface

Page 1 of 1http://localhost:8000/

top

top syn-subunits

top

top syn-subunits

Parsing "the very green mouse"

Applying construction set (11) in direction !

Found a solution

initial
structure top

application
process

queue ... and 2 more

applied
constructions

... and 1 more

resulting
structure

top

(nominal-phrase-17)

Meaning:
((context ?context-138) (mouse ?context-140 ?context-138) (very ?base-set-40 ?very-base-set-2)
(green ?very-base-set-2 ?context-140) (unique-definite ?indiv-49 ?base-set-40))

Producing

((unique-definite indiv-mouse-1 very-set-1) (very very-set-1 green-1) (green green-1 mouse-1) (mouse mouse-1 context-1)
(context context-1))

Applying construction set (11) in direction "

Found a solution

initial
structure top

application
process

queue ... and 2 more

applied
constructions

... and 1 more

resulting
structure

top

(nominal-phrase-18)

Utterance: "the very green mouse"

reset

sem syn

initial
very-cxn
(lex nil)

adverb-adverbial-

cxn (cat t)

green-cxn
(lex nil)

adjective-adjectival-

cxn (cat t)

adverbial-adjectival-phrase-cxn

(marked-phrasal)

mouse-cxn
(lex nil)

noun-nominal-

cxn (cat t)

adjectival-nominal-cxn

(marked-phrasal)

the-cxn
(lex nil)

article-determiner-

cxn (cat t)

determiner-nominal-phrase-cxn

(marked-phrasal)

article-determiner-cxn (cat t) adjectival-nominal-cxn (marked-phrasal) noun-nominal-cxn (cat t) adverbial-adjectival-phrase-cxn (marked-phrasal) adjective-adjectival-cxn (cat t)

determiner-nominal-phrase-cxn (marked-phrasal) article-determiner-cxn (cat t) the-cxn (lex nil) adjectival-nominal-cxn (marked-phrasal) noun-nominal-cxn (cat t) mouse-cxn (lex nil) adverbial-adjectival-phrase-cxn (marked-phrasal) adjective-adjectival-cxn (cat t)

green-cxn (lex nil) adverb-adverbial-cxn (cat t)

nominal-
phrase-
17

the-57

adjectival-
nominal-
phrase-3

mouse-4

adjective-
phrase-3

very-3

green-
3

sem syn

form

syn-subunits

syn-cat

footprints

nominal-phrase-17

((meets the-57
adjectival-nominal-phrase-3))

(adjectival-nominal-phrase-3
the-57)

((is-definite +)
(number singular)
(phrase-type nominal-phrase))

(determiner-nominal-phrase-cxn
marked-phrasal)

form

syn-cat

footprints

the-57

((string the-57 "the"))

((is-definite +) (number singular)
(lex-cat article)
(syn-function determiner))

(the-cxn
article-determiner-cxn)

form

syn-subunits

syn-cat

footprints

adjectival-nominal-phrase-3

((meets
adjective-phrase-3
mouse-4))

(mouse-4
adjective-phrase-3)

((number singular)
(phrase-type
adjectival-nominal)

(syn-function
nominal))

(adjectival-nominal-cxn
marked-phrasal)

form

syn-cat

footprints

mouse-4

((string mouse-4 "mouse"))

((number singular)
(lex-cat noun)
(syn-function nominal))

(mouse-cxn noun-nominal-cxn)

form

syn-subunits

footprints

syn-cat

adjective-phrase-3

((meets very-3 green-3))

(green-3 very-3)

(adverbial-adjectival-phrase-cxn
marked-phrasal)

((phrase-type adjectival-phrase)
(syn-function adjectival))

form

syn-cat

footprints

green-3

((string green-3 "green"))

((lex-cat adjective)
(syn-function
adjectival))

(green-cxn
adjective-adjectival-cxn)

form

syn-cat

footprints

very-3

((string very-3 "very"))

((lex-cat adverb)
(syn-function adverbial))

(very-cxn
adverb-adverbial-cxn)

sem syn

initial
very-cxn
(lex nil)

adverb-adverbial-

cxn (cat t)

green-cxn
(lex nil)

adjective-adjectival-

cxn (cat t)

adverbial-adjectival-phrase-cxn

(marked-phrasal)

mouse-cxn
(lex nil)

noun-nominal-

cxn (cat t)

adjectival-nominal-cxn

(marked-phrasal)

the-cxn
(lex nil)

article-determiner-

cxn (cat t)

determiner-nominal-phrase-cxn

(marked-phrasal)

article-determiner-cxn (cat t) adjectival-nominal-cxn (marked-phrasal) noun-nominal-cxn (cat t) adverbial-adjectival-phrase-cxn (marked-phrasal) adjective-adjectival-cxn (cat t)

determiner-nominal-phrase-cxn (marked-phrasal) article-determiner-cxn (cat t) the-cxn (lex nil) adjectival-nominal-cxn (marked-phrasal) noun-nominal-cxn (cat t) mouse-cxn (lex nil) adverbial-adjectival-phrase-cxn (marked-phrasal) adjective-adjectival-cxn (cat t)

green-cxn (lex nil) adverb-adverbial-cxn (cat t)

nominal-
phrase-
18

word-the-1

adjectival-
nominal-
phrase-4

word-mouse-1

adjective-
phrase-4

word-
green-
1

word-
very-1

sem syn

form

syn-subunits

syn-cat

footprints

nominal-phrase-18

((meets word-the-1
adjectival-nominal-phrase-4))

(adjectival-nominal-phrase-4
word-the-1)

((is-definite +)
(number singular)
(phrase-type nominal-phrase))

(determiner-nominal-phrase-cxn
marked-phrasal)

footprints

form

syn-cat

word-the-1

(the-cxn
article-determiner-cxn)

((string word-the-1 "the"))

((lex-cat article)
(number singular)
(syn-function determiner)
(is-definite +))

footprints

syn-subunits

form

syn-cat

adjectival-nominal-phrase-4

(adjectival-nominal-cxn
marked-phrasal)

(word-mouse-1
adjective-phrase-4)

((meets
adjective-phrase-4
word-mouse-1))

((phrase-type
adjectival-nominal)

(syn-function nominal)
(number singular))

footprints

form

syn-cat

word-mouse-1

(mouse-cxn noun-nominal-cxn)

((string word-mouse-1
"mouse"))

((lex-cat noun)
(syn-function nominal)
(number singular))

footprints

syn-subunits

form

syn-cat

adjective-phrase-4

(adverbial-adjectival-phrase-cxn
marked-phrasal)

(word-green-1 word-very-1)

((meets
word-very-1
word-green-1))

((phrase-type adjectival-phrase)
(syn-function adjectival))

footprints

form

syn-cat

word-very-1

(very-cxn
adverb-adverbial-cxn)

((string word-very-1
"very"))

((lex-cat adverb)
(syn-function adverbial))

footprints

form

syn-cat

word-green-1

(green-cxn
adjective-adjectival-cxn)

((string word-green-1
"green"))

((lex-cat adjective)
(syn-function
adjectival))

Figure 11. Compositional application of phrasal constructions in producing “the
very green mouse”. This figure shows the syntactic pole at the end of the process.

7.3. The postposed-genitive

To further illustrate the templates proposed here, let us look at the so-called
postposed-genitive construction, seen in phrases such as “this dog of mine”,
“these silly ideas of yours”. It consists of a nominal phrase followed by the prepo-
sition “of”, which has here a purely grammatical function, followed by a genitive.
The genitive can be a proper name (as in “this dog of John’s”) or a pronoun in
the genitive case (“mine”, “yours”, “theirs”) (Lyons, 1985). The focus is on the
pronoun case, with “of” treated as a purely grammatical function word.

Firstly, more lexical constructions are defined, using the same def-lex-cxn

template as before. The word “this” is treated as a determiner so that the determiner-
nominal construction can be reused. This step is of course a short-cut to keep the
examples discussed here as simple as possible.

40 L. Steels

(def-lex-cxn this-cxn

(def-lex-skeleton this-cxn

:meaning (== (proximal-reference ?indiv ?context))

:args (?indiv ?context)

:string "this")

(def-lex-cat this-cxn

:sem-cat (==1 (is-countable +)

(determination definite))

:syn-cat (==1 (lex-cat article)

(number singular)

(is-definite +))))

The word “mine” is treated as a genitive pronoun. “Mine” refers to the speaker in
the dialogue. It is given a possessive semantic function.

(def-lex-cxn mine-cxn

(def-lex-skeleton mine-cxn

:meaning

(== (dialogue-participant ?indiv speaker))

:args (?indiv)

:string "mine")

(def-lex-cat mine-cxn

:sem-cat (==1 (sem-function possessive))

:syn-cat (==1 (lex-cat pronoun)

(person 1st)

(number singular)

(case genitive))))

The postposed-genitive construction is defined using the def-phrasal-cxn

template again. It needs to construct a new nominal phrase based on two con-
stituents: a nominal phrase and a pronominal. The construction introduces the
possessive meaning and adds form constraints to its constituents, namely con-
stituent ordering and the use of the grammatical function word “of”. Arguments
must get properly linked to express the possessive relation.

A Design Pattern for Phrasal Constructions 41

(def-phrasal-cxn postposed-genitive-cxn

(def-phrasal-skeleton postposed-genitive-cxn

:phrase

(?possessive-nominal-phrase

:sem-function referring

:phrase-type nominal-phrase)

:constituents

((?nominal-unit

:sem-function referring

:phrase-type nominal-phrase)

(?pronominal-unit

:sem-function possessive

:lex-cat pronoun

:syn-cat (==1 (case genitive)))))

(def-phrasal-require postposed-genitive-cxn

(?possessive-nominal-phrase

:cxn-meaning

(== (possessive ?referent-nominal

?referent-pronominal))

:cxn-form (== (meets ?nominal-phrase ?word-of)

(string ?word-of "of")

(meets ?word-of ?pronominal-unit))))

(def-phrasal-agreement postposed-genitive-cxn

(?possessive-nominal-phrase

:syn-cat (==1 (number ?number)

(is-definite ?definiteness)))

(?nominal-unit

:syn-cat (==1 (is-definite ?definiteness)

(number ?number))))

(def-phrasal-linking postposed-genitive-cxn

(?possessive-nominal-phrase

:args (?referent-nominal))

(?nominal-unit

:args (?referent-pronominal))

(?pronominal-unit

:args (?referent-pronominal))))

42 L. Steels

The semantic pole after processing the various lexical, categorial and phrasal con-
structions for the sentence “this mouse of mine” is shown in Figure 12. Notice how
the possessive meaning has been added to the top unit and how all the different ar-
guments have been correctly linked. The syntactic pole created after processing the

top

sem-subunits

top

(possessive-nominal-phrase-8)

Parsing "this mouse of mine"

Applying construction set (9) in direction !

Found a solution

initial
structure top

application
process

queue

applied
constructions

resulting
structure

top

Meaning:
((possessive ?indiv-42 ?indiv-41) (mouse ?set-23 ?set-22)
(proximal-reference ?indiv-42 ?set-23) (context ?set-22) (context ?context-39)
(dialog-participant ?indiv-41 speaker ?context-39))

reset

sem syn

initial * this-cxn (t), article-determiner-cxn, mine-cxn (t), mouse-cxn (t), noun-nominal-cxn, determiner-nominal-phrase-cxn postposed-genitive-cxn

determiner-nominal-phrase-cxn noun-nominal-cxn mouse-cxn (t) this-cxn (t)

postposed-genitive-cxn determiner-nominal-phrase-cxn noun-nominal-cxn mouse-cxn (t) mine-cxn (t) article-determiner-cxn this-cxn (t)

meaning

sem-subunits

footprints

sem-cat

possessive-nominal-phrase-8

((possessive
?indiv-42
?indiv-41))

(mine-2
nominal-phrase-13)

(postposed-genitive-cxn)

((sem-function
referring))

footprints

sem-subunits

meaning

sem-cat

args

nominal-phrase-13

(determiner-nominal-phrase-cxn)

(mouse-9 this-2)

((context ?set-22))

((sem-function referring))

(?indiv-42)

footprints

meaning

sem-cat

args

mouse-9

(mouse-cxn
noun-nominal-cxn)

((mouse ?set-23
?set-22))

((is-animate +)
(class object)
(sem-function
identifier)

(is-countable +))

(?set-23 ?set-22)

footprints

meaning

sem-cat

args

this-2

(this-cxn
article-determiner-cxn)

((proximal-reference
?indiv-42 ?set-23))

((determination
definite)

(sem-function
reference)

(is-countable +))

(?indiv-42 ?set-23)

footprints

meaning

sem-cat

args

mine-2

(mine-cxn)

((context ?context-39)
(dialog-participant
?indiv-41 speaker
?context-39))

((sem-function possessive))

(?indiv-41)

sem syn possessive-
nominal-
phrase-8

nominal-
phrase-
13

mouse-
9

this-2

mine-2

Figure 12. An example of parsing using the postposed-genitive phrasal construc-
tion. Only the semantic pole is shown.

following meaning is shown in Figure 13.

((context context-1)

(mouse mouse-set-1 context-1)

(proximal-reference indiv-1 mouse-set-1)

(context context-2)

(dialogue-participant indiv-2 speaker context-2)

(possessive indiv-1 indiv-2))

The word “of” functions here purely as a grammatical word that does not have
its own lexical unit. It is simply part of the postposed-genetive.

A Design Pattern for Phrasal Constructions 43

top

top syn-subunits

Producing
((context context-1) (mouse mouse-set-1 context-1) (proximal-reference indiv-1 mouse-set-1) (context context-2)
(dialog-participant indiv-2 speaker context-2) (possessive indiv-1 indiv-2))

Applying construction set (9) in direction !

Found a solution

initial
structure top

application
process

queue

applied
constructions

resulting
structure

top

(possessive-nominal-phrase-7)

Utterance: "this mouse of mine"

reset

sem syn

initial * this-cxn (t), article-determiner-cxn, mine-cxn (t), mouse-cxn (t), noun-nominal-cxn, determiner-nominal-phrase-cxn postposed-genitive-cxn

determiner-nominal-phrase-cxn noun-nominal-cxn mouse-cxn (t) this-cxn (t)

postposed-genitive-cxn determiner-nominal-phrase-cxn noun-nominal-cxn mouse-cxn (t) mine-cxn (t) article-determiner-cxn this-cxn (t)

possessive-
nominal-
phrase-7

nominal-
phrase-
12

word-
mouse-
8

word-
this-7

word-mine-6

sem syn

form

syn-subunits

syn-cat

footprints

possessive-nominal-phrase-7

((meets ?nominal-unit-32
?word-of-12)

(string ?word-of-12
"of")

(meets ?word-of-12
word-mine-6))

(word-mine-6
nominal-phrase-12)

((number singular)
(is-definite +)
(phrase-type
nominal-phrase))

(postposed-genitive-cxn)

footprints

syn-subunits

form

syn-cat

nominal-phrase-12

(determiner-nominal-phrase-cxn)

(word-mouse-8 word-this-7)

((meets
word-this-7
word-mouse-8))

((number singular)
(phrase-type nominal-phrase)
(is-definite +))

footprints

form

syn-cat

word-mouse-8

(mouse-cxn
noun-nominal-cxn)

((string word-mouse-8
"mouse"))

((pos noun)
(syn-function nominal)
(number singular))

footprints

form

syn-cat

word-this-7

(this-cxn
article-determiner-cxn)

((string word-this-7
"this"))

((pos article)
(number singular)
(syn-function
determiner)

(is-definite +))

footprints

form

syn-cat

word-mine-6

(mine-cxn)

((string word-mine-6
"mine"))

((number singular)
(person 1st)
(pos pronoun)
(case genitive))

Figure 13. An example of production using the postposed-genitive phrasal con-
struction. Only the syntactic pole is shown.

8. Conclusions

This paper has considered examples of phrasal constructions and how they are
handled in Fluid Construction Grammar. More concretely, it shows how composi-
tionality, hierarchy, recursion, percolation, agreement and constructional meaning
or form can be defined and processed. The examples were deliberately simplified so
that there would be no search or other problems in dealing with multi-functionality,
ambiguity or indeterminacy. These topics are discussed in other chapters in this
book.

The paper also illustrates how templates are used to simplify the writing of lex-
icons and grammars. Templates make it much easier to write constructions and
they help to avoid errors in the definition of a grammar. Moreover these templates
are also useful to start thinking about learning operators in the sense that the el-
ements that can fill the various slots in a template are a heuristic guide on what
needs to be learned in the acquisition of phrasal constructions. It is important nev-
ertheless to understand the behavior of the fully expanded operational definition of
constructions in order to understand how transient structures get built, and to pos-

44 L. Steels

sibly extend or develop new templates that give better support for issues raised in a
particular language.

Acknowledgements

The research reported here was conducted at the Sony Computer Science Lab-
oratory in Paris and the Artificial Intelligence Laboratory of the Free University of
Brussels (VUB). and the EU-FP7 project ALEAR.

References

Anderson, John (1971). Dependency and grammatical functions. Foundations of
Language, 7, 30–37.

Bleys, Joris, Kevin Stadler, Joachim De Beule (2011). Search in linguistic pro-
cessing. In Luc Steels (Ed.), Design Patterns in Fluid Construction Grammar.
Amsterdam: John Benjamins.

Bloomfield, Leonard (1993). Language. New York: Henry Holt.

Chomsky, Noam (1957). Syntactic Structures. Berlin: Mouton de Gruyter.

Croft, William (2001). Radical Construction Grammar: Syntactic Theory in Typo-
logical Perspective. Oxford: Oxford UP.

Dik, Simon (1978). Functional Grammar. London: Academic Press.

Haspelmath, Martin (2007). Pre-established categories don’t exist. Linguistic Ty-
pology, 11(1), 119–132.

Langacker, Ron (2008). Cognitive Grammar. A Basic Introduction. Oxford: Oxford
University Press.

Lyons, Christopher (1985). The syntax of english genitive constructions. Linguis-
tics, 12, 123–143.

Masahito, Ikawa, Shuichi Yamada, Tomoko Nakanishi, Masani Okabe (1999).
Green fluorescent protein (gfp) as a vital marker in mammals. Curr Top Dev
Biol., 44, 1–20.

Mel’cuk, Igor (1988). Dependency syntax: Theory and Practice. Albany NY: State
University Press of New York.

A Design Pattern for Phrasal Constructions 45

Micelli, Vanessa, Remi van Trijp, Joachim De Beule (2009). Framing fluid con-
struction grammar. In N.A. Taatgen, H. van Rijn (Eds.), Proceedings of the 31th
Annual Conference of the Cognitive Science Society, 3023–3027. Cognitive Sci-
ence Society.

Partee, Barbara (2003). Compositionality in Formal Semantics: Selected Papers of
Barbara Partee. Oxford: Blackwell Publishers.

Perlmutter, David (1983). Studies in Relational Grammar. Chicago: Chicago Uni-
versity Press.

Sgall, Peter, Jarmila Panevova (1989). Dependency syntax - a challenge. Theoreti-
cal Linguistics, 15, 30–37.

Siewierska, Anna (1991). Functional Grammar. London: Routledge.

Spranger, Michael, Martin Loetzsch (2011). Syntactic indeterminacy and semantic
ambiguity: A case study for German spatial phrases. In Luc Steels (Ed.), Design
Patterns in Fluid Construction Grammar. Amsterdam: John Benjamins.

Steels, Luc (2011a). A first encounter with Fluid Construction Grammar. In Luc
Steels (Ed.), Design Patterns in Fluid Construction Grammar. Amsterdam: John
Benjamins.

Steels, Luc (2011b). Introducing Fluid Construction Grammar. In Luc Steels (Ed.),
Design Patterns in Fluid Construction Grammar. Amsterdam: John Benjamins.

Talmy, Leonard (2000). Toward a Cognitive Semantics, Concept Structuring Sys-
tems, vol. 1. Cambridge, Mass: MIT Press.

van Trijp, Remi (2011a). A design pattern for argument structure constructions. In
Luc Steels (Ed.), Design Patterns in Fluid Construction Grammar. Amsterdam:
John Benjamins.

van Trijp, Remi (2011b). Feature matrices and agreement: A case study for Ger-
man case. In Luc Steels (Ed.), Design Patterns in Fluid Construction Grammar.
Amsterdam: John Benjamins.

