

FROM SOUND SAMPLING TO SONG SAMPLING

Jean-Julien Aucouturier, Francois Pachet, Peter Hanappe

SONY CSL Paris
6, rue Amyot, 75005 Paris France.

ABSTRACT

This paper proposes to use the techniques of Music
Information Retrieval in the context of Music
Interaction. We describe a system, the SongSampler,
inspired by the technology of audio sampling, which
automatically samples a song to produce an instrument
(typically using a MIDI keyboard) that plays sounds
found in the original audio file. Playing with such an
instrument creates an original situation in which
listeners play their own music with the sounds of their
favourite tunes, in a constant interaction with a music
database. The paper describes the main technical issues
at stake concerning the integration of music information
retrieval in an interactive instrument, and reports on
preliminary experiments.

1. INTRODUCTION

Music information retrieval research so far has not been
much concerned with building interactive music
systems. Systems which rely on a real-time music
performance generally use it as an input front-end for a
search, in a one-way approach which doesn’t allow any
subsequent interaction. In Query by Humming (QbH,
[1]), the user sings a melody, and audio files containing
that melody are retrieved. However, QbH does not
exploit the resulting songs to respond to the original
musical expression of the user, like e.g. improvising
jazz musicians quoting or mimicking each others ([2]).
Similar paradigms like Query by Rhythm ([3]) or Query
by Timbre ([4]) share the same drawback.
Tzanetakis in [5] proposes an alternative browsing
environment which offers a direct, continuous
sonification of the user’s actions. For instance, changing
the target value of a query on tempo from 60 to 120
would morph the current song into a faster one, whereas
traditional settings would require the user to press a
“submit” button, which would stop the former song, and
trigger the next one. While this is one step towards a
seamless interaction with a music database, the system
still offers no expressive control on the music as a music
instrument would do. It remains a sophisticated jukebox.

Interactive music systems propose ways of transforming
in real time musical input into musical output. Such
responsiveness allows these systems to participate in
live performances, either by transforming the actual
input or by generating new material according to some
analysis of the input. Musical interactive systems have
been popular both in the experimental field [6] as well
as in commercial applications, from one-touch chords of
arranger systems to the recent and popular Korg Karma
synthesizer [7]. While some interactive systems, referred
to in [6] as “sequenced techniques”, use pre-recorded
music fragments in response to the user’s input, these
sequences are usually predetermined, and their mapping
is predefined (triggered by e.g. dynamics, or specific
notes, etc.). With the very large quantity of music
available on personal computers, comes the fantasy of
an interactive instrument able to explore any music
database, responding to the user’s input with
automatically selected extracts or samples.
This paper describes a system, the SongSampler, which
is an attempt at combining both worlds of music
interaction and music information retrieval. Using
techniques inspired by audio sampling, we propose to
automatically produce a music instrument which is able
to play the same sounds as an arbitrary music file. The
SongSampler uses MIR techniques such as content
descriptors or similarity measures in order to select the
song(s) to sample in a music database. The resulting
instrument influences the user’s performance, which, in
turn, is analyzed with MIR tools to produce queries and
modify the sampler’s setting. Playing with such an
instrument creates an original situation in which
listeners play their own music with the sounds of their
favourite tunes, in a constant interaction with a music
database.

2. AUTOMATIC SAMPLING

Audio Sampling ([8]) is the process of mapping
arbitrary sounds (or samples) to a music instrument.
Each note played on the instrument (typically a MIDI
keyboard) triggers an audio sample corresponding to
the pitch of the key (e.g. a C-60) and its loudness. Such
digital samplers have been introduced in the 80s, and
have been very popular thanks the realistic effect
achieved by this technique: virtually any sound can be
produced by a sampler, by definition. However, the
creation of a particular setup for a sampler (e.g. a piano
sound) is known to be a tedious and difficult task:
samples must be first recorded (e.g. from existing, real

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first page.

© 2004 Universitat Pompeu Fabra.

music instruments), then assigned to the keys of a MIDI
instrument. Details concerning the actual triggering of
sounds must be carefully taken into account, such as the
loop of the sustain part of the samples until the key is
released. This process of specifying a sound for a
sampler is usually done by hand [9].
The core of the system described here consists in
producing automatically setups for software-based
samplers, so that the sounds triggered correspond to the
actual sounds present in a given music title.
Consequently, a sampler setup produced from a given
audio file will produce an instrument that plays the
same sounds as the original audio file.
A popular format for what is referred to here as a
“sampler setup” is the SoundFont® file format [10]. A
typical SoundFont® file contains :
• Samples, which can be digital audio files, e.g. .wav,

or loaded from ROM on the wavetable device.
Samples have the option of being looped.

• Generators, which control properties of a sample
such as initial pitch and volume as well as how
these parameters are affected over time.

• Instruments, which use one or more samples
combined with effects generators to create a sound
producing device.

The automatic extraction of a SoundFont®-like setup
from an arbitrary audio file thus requires to :
• analyse (i.e. segment) the audio data to extract

“meaningful” samples in the music
• extract high-level audio descriptors from the

samples to select automatically the most appropriate
samples to use for a given context. Notably, detect
the pitch of each sample so it can be mapped to an
instrument note

• detect parts of the segment that can be looped
automatically (or, as it turns out, do more complex
processing to time-stretch the samples)

Each of these 3 steps have received a vast number of
technical solutions, which we will not review here. The
SongSampler has a modular architecture, in which any
suitable algorithm can fit.
However, we are dealing here with arbitrary music files,
of arbitrary complexity, e.g. polyphonic, containing
percussion instruments, effects, etc. In the next
paragraphs, we propose a number of algorithms which
we have designed specifically to fit this particular
application context.

2.1. Multiscale segmentation

The aim of the segmentation algorithm is to extract
samples that can act as well-defined musical events, i.e.
which have a salient note or percussion played by some
instrument(s) in the foreground, and a background
based on the global sound of the sampled song. For
instance, a typical sample from the song “Yesterday” by
“The Beatles” ([11]) would be Paul McCartney singing
“..day…”, with the song’s original background of

acoustic guitar, bass and violin. The song is cut in the
time domain, which means that each sample contains
several instruments playing at the same time, and not
separated individual tracks.
Typical segmentation algorithms ([12,13,14]) first
computes a set of features from the signal cut into
frames, and then detect the segment boundaries by
looking for abrupt changes in the trajectory of features.
In this work, we look for the energy variations of the
signal. The signal is cut into frames (2048 points at
44100Hz), and for each frame, we compute the short–
term spectrum. The spectrum itself is processed by a
Mel filterbank of 20 bands. Each band’s energy is
weighted according to the frequency response of the
human ear, as described e.g. in [14]. Finally, the energy
is summed across all bands. Change detection is done
by smoothing the energy profile by a zero-phase

filtering by a Hanning window of size wS , and looking

for all the local maxima of the smooth version. The
segment boundaries are the deepest valleys in the raw
energy profile between 2 adjacent peaks in the smooth
profile.

Figure 1A: Segmentation of an extract of “The Beatles - Yesterday”.
(Top) Segmented energy profile using a small Sw (150ms) : short events
(right) get properly detected, while larger events (left) get
oversegmented. (Bottom) Corresponding smoothed energy profile, used
for peak detection.

While this scheme is effective for simple, percussive
music, we observe that for non percussive, richer
polyphonic music, the quality of the segmentation

depends on the choice of wS . In large events such as a

sung note lasting for several seconds (e.g. the final “-
day” in “Yesterday”), there may be several small peaks
of energy corresponding to the other instruments
playing in the background (e.g. a succession of chords
played on the guitar). With a small wS , all these peaks

would be segmented, and the corresponding atomic
event for the sampler application would be cut into
several short identical notes (see Figure 1A). With a
large wS on the other hand, short meaningful events

like isolated guitar chords get missed out (Figure 1B).

Figure 2B: Segmentation of an extract of “The Beatles - Yesterday”.
(Top) Segmented energy profile using a large Sw (1s) : large events
(left) are appropriately recognized, however smaller events (right)
are missed out. (Bottom) Corresponding smoothed energy profile

Therefore we propose a multiscale segmentation
algorithm, which adapts the size of the convolution
window to the local shape of the energy profile. More
precisely, we compute the STFT of the energy profile
on a running 2-second window (with 90% overlap). As
the energy profile is sampled using 50% overlapping,
2048 point frames (i.e. 43Hz), the FFT describes the
frequency content between 0 and 20Hz, with a
frequency resolution finer than 1Hz. We select the
predominant local periodicity of the profile as the
barycentre point (spectral centroid) of the spectral
distribution within each frame :

�

�

=
k

k

kS

kkS
SC

)(

)(

where S is the magnitude spectrum of a frame. We then
smooth the energy profile using a Hanning window size

wS equal to the inverse of the centroid of the

corresponding FFT frame (to ensure continuity,
Hanning window coefficients are normalized so they
sum to one regardless of their length).

Figure 2-Bottom shows the SFFT of the energy profile
used in Figure1. Large events correspond to low
frequencies in the energy profile, i.e. small centroid
frequencies in the spectrogram (order of 1Hz).
Consequently, these zones get smoothed with large
Hanning windows (order of 1 sec.). On the other hand,
short events in the energy profile correspond to higher
frequency content, higher centroids, and smaller
windows size (order of 200ms). Figure 2-Top illustrates
the corresponding multiscale segmentation, which
preserves large, noisy events as well as short, high
amplitude ones.

Figure 3: (Top) Multiscale segmentation of the same extract, using an
adaptive convoluation window size : large windows on the left, and
smaller windows on the right. (Bottom) Corresponding spectrogram of
the energy profile, super-imposed (in black) with the spectral centroid of
each frame, used to determine the windows size

2.2. Automatic Extraction of High-Level Descriptors

Each of the segments generated by the previous step
constitutes a note, which will be mapped on the
instrument. The mapping of the samples is based on
a number of high-level descriptors automatically
extracted for each sample. The SongSampler relies
on the EDS (Extractor Discovery System) [16] to
generate such descriptors. EDS is a system based on
genetic programming which is able to automatically
generate arbitrary perceptual descriptors, given only
a test database and corresponding perceptive tests,
by discovering and optimizing adapted features and
machine learning models. In the current
implementation of the SongSampler, EDS was used
to generate a descriptor of harmonicity (see [16]).
This descriptor is used in the SongSampler to filter
out samples corresponding to non harmonic events
(e.g. a snare-drum hit). However, there is an infinity
of such descriptor/mapping possibilities, depending
on the application context. For instance, if the
mapping is done on a digital MIDI drum kit, we
could use the EDS to generate a drum sound
classifier (see e.g. [17]) in order to affect the
percussive samples to the right pads. One key
advantage of using the EDS is that the descriptors
are by construction adapted to the type of samples
used in the SongSampler. We expose further
possible uses for the EDS in section 5.

2.3. Salient pitch detection

The SongSampler maps the samples to the keyboard key
corresponding to their pitch, so a melody can be played.
In the current implementation of the system, the pitch
descriptor was not generated by the EDS, but rather was
manually designed. We describe this specific algorithm
in this section. Traditional monophonic, mono-

instrument pitch detection algorithms are based on peak
detection in the signal's spectrum. In more complex
sound sources, state-of-art approaches look at spectral
periodicities, either by a “comb-filter” sample-summing
approach ([18,19]), or by a FFT approach ([20]). Such
analyses done with a high frequency resolution have the
advantage of yielding precise estimates of fundamental
frequency, which e.g. can be used to study fine
properties of instrument timbre. However, such high
resolutions come at the expense of rather complex
algorithmic provisions to cope with a number of signal
complexities like inharmonicity or vibrato :
inharmonicity factor, subband processing in [19],
tracking of partial trajectories in [20].
In our context, we are only interested in a rough pitch
estimate, with limited precision both in frequency
(precise to the semi-tone, which is the MIDI resolution)
and time (one salient pitch estimate for each sample).
We apply a STFT to the signal, and converts the
frequency scale into a midi pitch scale, using a bank of
band pass filters, on per midi pitch from C0 to C7 with
the width of one semitone. The remaining of the
algorithm thus deals with a much simpler symbolic
signal, a “pitchogram” which represents the energy of
each potential midi pitch in the signal.
Figure 3f shows such a pitchogram (averaged over time)
for a sample from “Yesterday”, for midi pitches ranging
from 30 (F#1) to 90 (F#6). The pitchogram is then
looked for local maxima, each of which constitute a
pitch hypothesis.
Each pitch hypothesis receives a harmonic score
according to the presence or not of another pitch
hypothesis at the position of its harmonics :
• at octave (midi pitch+12)
• twelfth(octave+fifth) (midi pitch+19)
• fifteenth(two octaves) (midi pitch+24)
• major seventeenth (two octaves+major third) (midi

pitch+28), etc.
The harmonic score is computed as the weighted sum of
the harmonics’ energy. Figure 3 shows the 5 best-score
pitch hypotheses with their harmonics. Each of the
harmonics’ energy is the energy of the corresponding
pitch hypothesis as found in the pitchogram.
Additionally, we reinforce the scores of pitch hypothesis
which uniquely explain one of their harmonics, e.g. the
first harmonic in Figure 3-b. Note that the first
harmonic of 3-b doesn’t become a pitch hypothesis and
doesn’t appear as a new plot in Figure 3, because it has
no harmonics, and thus receives a minimal score.
Finally, we pick the pitch hypothesis with the best score.
In Figure 3, the best hypothesis is 3-c, which both
includes a uniquely explained harmonic, and has an
important harmonic score. The corresponding pitch is
the midi pitch of its fundamental, i.e. 52 (E3). Note that
others strategies are possible to cope with polyphony
(e.g. choosing all hypotheses whose score exceeds a
certain threshold)

Figure 4: the 5 main pitch hypotheses (a-e) corresponding to the time-
averaged pitchogram (f). Brackets show the harmonic relations between
the partials of each hypothesis. Dotted-line squares highlight the partials
which are explained by a unique pitch hypothesis.

We have conducted a small evaluation in order to fine-
tune the weights involved in the computation of the
harmonic score. The test database has 50 samples
extracted automatically from 3 pop songs, and the target
pitch were determined manually. We test 2 parameters :
the number of harmonics to be considered (nh), and the
weights of the harmonics, parameterized by exponential

).exp(nγβα − curves, with gamma ranging from –1

to 1. We observed that these parameters have little
influence on the algorithm’s precision. The best
precision (0.76) was obtained for nh=5 and gamma=0.4
(slightly decreasing weights). For better precision,
harmonic weights could be adapted to specific
instrument timbres.

2.4. Time stretching

The samples extracted by segmentation from the
original song have the same duration as in the original
song (e.g. 1.44 second for the above-mentioned “day”
sample from “yesterday”, in the original recording in
the Help album). However, when these samples are
mapped on a music instrument, we want the duration to
match the musician’s intention: notes can be shorter or
longer than in the original song they were extracted
from.
The process of modifying the duration of a note is
called time stretching. Time stretching in traditional
samplers is done by looping within the sustain part of
the sample for the appropriate (longer) duration. This
requires loop start and end points, which are usually
found manually, and requires much trials-and-errors.
Looping is well adapted for clean monophonic, mono
instrumental samples. However, in our context of
sampling arbitrary recording, with complex polyphony,
background percussion, and “real-world” sound
production like reverberation, this approach yields very
poor results.
We time-stretch the samples using a technique know as
phase-vocoder, which analyses the short term spectrum

of the signal and synthesizes extra frames to morph
between the original signal’s frames (e.g. adding an
extra 50 millisecond every 50 milliseconds). The
technique relies on a phase continuity algorithm called
identity phase locking ([21]).
In our application context, many samples resulting
from the segmentation algorithm described above are
not ideally stable: while each sample is a coherent note
(e.g. “day”), there are still minor events occurring in
the background (e.g. softer notes of the guitar
accompaniment), which creates discontinuities of
timbre, energy, etc…

Figure 5: time stretching with stability zone weighting

If we apply the phase-vocoder to the whole sample, the
algorithm would also stretch these transient events,
leading to unrealistic, “slow-motion” sounds, known as
transient smearing (e.g. guitar attacks lasting for too
long). To avoid stretching zones of discontinuity in the
signal, we first analyze each sample to find zones of
spectral stability, using the EDS harmonicity descriptor
(section 2.2). Each stable zone receives a stability score,
and we only stretch these zones, by a stretch factor
which is proportional to the zone’s stability. (Figure 4)

3. ARCHITECTURE

Figure 5 describes the architecture of the system. The
core of the SongSampler is implemented in Java. It is
composed of 2 concurrent interacting processes, a
player, and a sampler. The interaction occurring
between the Sampler and the Player is at the center of
the application we propose in this work, and is
described in details in the next section. In this section,
we only describe the nature and medium of the
communication between the components.
The SongSampler relies on 2 other components:
• MidiShare [22] is a real-time multi-task MIDI

operating system. MidiShare applications are able to
send and receive MIDI events, schedule tasks and
communicate in real-time with other MidiShare
applications.

• Fluidsynth [23] is a real-time software synthesizer
based on the SoundFont 2 specification. The

SongSampler relies on fluidsynth to efficiently play
the samples analysed by the Sampler.

Figure 6: Architecture of the SongSampler, showing the 4 main
components and their Java native interface.

Both Fluidsynth and the Sampler process are declared as
MidiShare applications. MIDI messages coming from
the user (e.g. through a MIDI keyboard) are routed via
MidiShare to the Sampler.
After analysis, the Sampler forwards the midi messages
to Fluidsynth, which triggers the corresponding samples
and renders them to the audio device.
The Player communicates with a music database. It can
autonomously query the db according to various criteria,
which are inferred from the current state of the system
and the user’s actions. It can also play a song, and
interact with the sampler by proposing new songs to
sample.
The Sampler performs the analysis described in section
2 (possibly prepared in non-real time), assigns samples
to Fluidsynth, reacts to midi messages coming from the
user (e.g. midi program changes), and interacts with the
player by forwarding the incoming user actions.
Fluidsynth is piloted in Java from the Sampler using
Java native interfaces (JNI) which were developed for
this project. Both Fluidsynth and the sampler
communicate with MidiShare via JNI which were
developed by Grame ([22]).

4. PRELIMINARY EXPERIMENTS

The SongSampler can be used in a variety of
playing/listening modes, which results from the many
possibilities of interaction between the Player and the
Sampler process. In this section, we describe our
preliminary experiments with the system.

4.1. Turn Taking

Figure 6 illustrates a first mode of interaction, where the user
and the system’s music player take turns.
In this setting, a song is chosen (e.g. our followed
example, “Yesterday”), and analysed by the sampler :
the song is segmented into meaningful notes and
samples are analysed for pitch. The Sampler then maps
the samples in fluidsynth in such a way that the
samples are changed after each pressed key, and iterate
in time order. For instance, pressing a key 3 times
would trigger the 3 samples “yes-”, “-ter-”, “-day”. The
samples are matched to every note on the keyboard, but
keep a relation to their pitch in the original signal. For
instance, the “yes” sample in “yesterday” has an
original detected pitch of “G3”. If the user triggers this
sample by pressing the “F3” key, fluidsynth
automatically pitch-shifts1 the sample to match the
wanted pitch, i.e. the sample will be played one tone
lower than in the original signal.
When the mode is started, the Player starts playing the
song normally. At anytime, the user can press a note on
the keyboard. When the note is received, the Player
stops, and the Sampler seamlessly triggers the sample
corresponding to the current position in the song. The
user keeps the lead until he stops playing, i.e. a given
time has passed since the last played note, at which
point the Player starts playing the song again, at the
position of the last triggered sample. Moreover, the new
behavior of the Player depends very closely on the
user’s performance :
• bpm interaction: as the user plays with the Sampler,

the bpm of its performance is tracked, using a real-
time beat tracker ([24]). Upon restart of the Player,
the song is time-stretched (using the technique
exposed in section 2.3) to match the bpm of the
user’s performance.

• pitch interaction: the performed pitch of the last
triggered sample is compared to the sample’s
original pitch, and upon restart, the Player pitch-
shifts the song to match the transposition interval
(using a phase-vocoder like for time-stretching).

Using these simple mechanisms, the user can play new
melodies with the sounds of the original song. In turn,
the original song is modified according to the user’s
performance.

Example on Yesterday
Figure 6 is a transcription of a turn-taking interaction
between a user and the song “Yesterday” by The
Beatles. The example starts at the second line of the first
verse. The Player plays the music corresponding to the
melody {D,D,C,Bb,A,G} at a normal rate. At this point
(#1), the user takes the lead, and press the {Bb} key,
which is the original pitch of the next sample in queue

1 In the current version of fluidsynth, pitch-shifting is
done by resampling.

(Paul McCartney singing “here”). Then the user starts
deviating from the melody with an ascending pattern
{C, C#,D}. This successively triggers the samples “to”,
“stay”, “oh”, at a different, increased pitch than in the
original song. Simultaneously, the user increases the
tempo from the original bpm of 100 quarter notes per
minutes to an “allegro” tempo of 140 bpm. After
triggering the “oh” sample, the user stops playing. The
Player now takes the lead (#2), and restarts the original
song at the position of the next sample (“I”). As the last
triggered sample is pitched a perfect fifth higher than
the original pitch, the original song is pitch shifted by a
fifth, which creates a feeling of continuity with the
user’s phrase. At the same time, as the user bpm is
higher than the bpm of the original song, the song is
time-stretched to match the new tempo.

4.2. Collaborating

Figure 7 illustrates another mode of interaction, in
which the Player loops on a section of the original file
(the introduction of Yesterday). In the mean time, the
Sampler processes another section of the song (Paul’s
voice on the first verse and chorus). The user is then
able to improvise a phrase with the accompaniment of
the original song. This mode is an interesting exercise
for musicians, as they have to make the best of the
offered accompaniment, e.g. in Figure 7, although the
song is in the key of F major, the guitar vamping on the
introduction does not play the third degree (A). This
leaves an ambiguity on the major/minor character of the
song2, which is exploited by the user (alternation of
minor third Ab and major third A).

4.3. Exploring the database

The Sampler and the Player need not process the same
song. For instance, in the previous mode, the Sampler
may query a song in the database according to any
metadata, e.g. instrument = piano. Consequently, the
user would play on top of Yesterday’s guitar comping
with e.g. the piano sound of a Beethoven sonata.
Moreover, the Sampler thread can listen to the end of
each of the user’s phrases, and change the synth’s
settings with another piano song so that the user
explores all piano songs/sounds in the database.

5. FURTHER WORK

Many standard techniques of Music Information
Retrieval can be integrated in the interactive system
describe above. This section lists some of the
possibilities we envision :

2 This ambiguity on the song’s key is actually largely
exploited in the melody of original song, as analysed
e.g. in [25]

• Editorial metadata on the songs : play only with
samples from the Beatles, or only “Brasilian
sounds”

• High-Level Descriptors on the samples : Perceived
Energy ([16]) (samples with high energy are
triggered when keys are pressed with a high
velocity, while softer samples are triggered for lower
velocities), Instrument ([27]) (play only samples of
acoustic guitar). As described in section 2, the
SongSampler relies on the EDS to automatically
generate such descriptors.

• Query by Melody ([1]) The user plays the melody of
“Michelle” with the Samples of “Yesterday”, and
the Player replies with “Michelle”

• Query by Harmony ([28]): The player selects a song
whose harmony matches the phrase being played

• Query by Timbre ([4]): the SongSampler may
interact with the user by proposing (i.e. either play
or sample) songs which sound similar to the song
currently being played/listened to.

• Structural Analysis of the songs ([29]) : sections to
sample or to loops (see 4.2.) may be automatically
detected.

6. CONCLUSION

This paper describes a system, The SongSampler, which
automatically samples a music file in order to produce
an instrument that plays the same sounds as the original
audio file. This is an attempt at mutually enriching both
worlds of Music Information Retrieval and Music
Interaction. The process of interacting with a music
collection creates a novel immersive browsing
experience, in which queries are not necessarily
formulated by the user, but are rather inferred from the
user’s actions. On the other hand, playing with such a
MIR-enabled interactive instrument enhances the
feeling of appropriation by letting listeners play their
own music with the sounds of their favorite tunes.

7. ACKNOWLEDGEMENTS

The authors wish to thank Tristan Jehan for interesting
discussions on the topic of segmentation. The scores in
Figure 6 and 7 were obtained with Guido NoteViewer
(http://www.noteserver.org).

8. REFERENCES

[1] Hu, N. and Dannenberg, R. “A Comparison of
Melodic Database Retrieval Techniques Using Sung
Queries”' in Joint Conference on Digital Libraries,
New York: ACM Press, (2002), pp. 301-307.

[2] Monson, I. Saying Something: Jazz Improvisation
and Interaction, Chicago Studies in
Ethnomusicology, The University of Chicago Press,
1996

[3] Chen, J. and Chen, A. “Query by Rhythm: An
Approach for Song Retrieval in Music Databases”,
Proceedings Eighth International Workshop on

Research Issues in Data Engineering, Continuous-
Media Databases and Applications, (1998), pp.
139--146.

[4] Aucouturier, J.-J. and Pachet F., “Improving Timbre
Similarity: How high is the sky?”.
Journal of Negative Results in Speech and Audio
Sciences, 1(1), 2004.

[5] Tzanetakis, George, Ermolinskyi, Andreye, and
Cook, Perry "Beyond the Query-by-Example
Paradigm: New Query Interfaces for Music
Information Retrieval" In Proc. Int. Computer
Music Conference (ICMC), Gothenburg, Sweden
September 2002

[6] Robert Rowe, Interactive Music Systems, MIT Press
Cambridge, Massachusetts 1993.

[7] Karma music workstation, Basic guide. Korg Inc.
Available : www.korg.com/downloads/, 2001.

[8] Roads, C. “Sampling Synthesis” in The Computer
Music Tutorial, pp.117-124, MIT Press,
Cambridge, Massachusetts 1995.

[9] Duffel, D. The Sampling Handbook, Backbeat
Books, May 2004.

[10] SoundFont® is a registered trademark by E-MU.
Specifications available :
www.soundfont.com/documents/sfspec21.pdf

[11] “Yesterday”, John Lennon/ Paul McCartney, in
“Help”, Parlophone, 1965

[12] Tzanetakis, G., and Cook, P., “Multifeature Audio
Segmentation for Browsing and Annotation”, IEEE
Workshop on Applications of Signal Processing to
Audio and Acoustics, New Paltz, NY, Oct 1999.

[13] Rossignol, S. et al. “Feature Extraction and
Temporal Segmentation of Acoustic Signals”, in
Proceedings of the International Computer Music
Conference, 1998.

[14] Pampalk, E., Dixon, S. and Widmer, G. “Exploring
music collections by browsing different views”, in
Proceedings of the International Symposium on
Music Information Retrieval (ISMIR), Paris, France
2003

[15] Foote, J. and Cooper, M. “Media segmentation
using self-similarity decomposition”, in Proc. SPIE
Storage and Retrieval for Multimedia Databases,
Vo. 5021, January 2003.

[16] Pachet, F. and Zils, A. “Evolving Automatically
High-Level Music Descriptors From Acoustic
Signals.” Springer Verlag LNCS, 2771, 2003.

[17] Gouyon, F., Pachet, F. and Delerue, O., “On the use
of zero-crossing rate for an application of
classification of percussive sounds”, in Proceedings
of the Digital Audio Effects (DAFx'00) Conference,
Verona, Italy 2000

[18] Klapuri, A. et al. “Robust multipitch estimation for
the analysis and manipulation of polyphonic
musical signals”, in Proceedings of the Digital

Audio Effects (DAFx'00) Conference, Verona, Italy
2000

[19] Tadokoro, Y., Matsumoto, W. and Yamaguchi, M.
“Pitch detection of musical sounds using adaptive
comb filters controlled by time delay”, in proc.
ICME, Lausanne, Switzerland, 2002..

[20] Marchand, S. “ An Efficient Pitch-Tracking
Algorithm Using a Combination of Fourier
Transforms.” In Proceedings of the Digital Audio
Effects (DAFx'01) Conference, pages 170-174,
Limerick, Ireland, December 2001.

[21] Jean Laroche and Mark Dolson "New Phase
Vocoder Technique for Pitch-Shifting, Harmonizing
and Other Exotic Effects". IEEE Workshop on
Applications of Signal Processing to Audio and
Acoustics. Mohonk, New Paltz, NY. 1999.

[22] Orlarey, Y. and Lequay, H. MidiShare: a Real Time
multitasks software module for MIDI applications,
in Proceedings of the International Computer
Music Conference, Computer Music Association,
San Francisco, pp. 234-237, 1989.

[23] Fluidsynth website http://www.fluidsynth.org

[24] Scheirer, E. D. (1998). “Tempo and beat analysis of
acoustic musical signals,” Journal of the Acoustical
Society of America, 103(1), 588–601.

[25] Pollack, Alan W. (1993), Notes on "Yesterday".
Notes on ... Series no. 74, 1993. Available :
http://www.recmusicbeatles.com

[26] Perfecto Herrera, Geoffroy Peeters, Shlomo Dubnov
“Automatic Classification of Musical Sounds”
Journal of New Musical Research 2003, Vol. 32,
No. 1, pp 3-21

[27] Pickens, J. et al. "Polyphonic Score Retrieval Using
Polyphonic Audio Queries: A Harmonic Modeling
Approach," Journal of New Music Research
32(2):223-236, June 2003.

[28] Geoffroy Peeters, Amaury La Burthe, Xavier Rodet
“Toward Automatic Music Audio Summary
Generation from Signal Analysis”, in proc.
International Conference on Music Information
Retrieval (ISMIR), Paris (France) October 2002

Figure 7: Turn Taking on “Yesterday – The Beatles”.

Figure 8: Playing on top of the introduction of “Yesterday”, with samples from the verse and chorus

