Chapter 10

Fluid Construction Grammar
on Real Robots

Luc Steels!'2, Joachim De Beule?, and Pieter Wellens?

This paper is the authors’ draft and has now been officially published as:
L. Steels, J. De Beule and P. Wellens (2012). Fluid Construction Grammar on Real Robots. In Luc
Steels and Manfred Hild (Eds.), Language Grounding in Robot, 195-213. New York: Springer.

Abstract This chapter introduces very briefly the framework and tools for lexical
and grammatical processing that have been used in the evolutionary language game
experiments reported in this book. This framework is called Fluid Construction
Grammar (FCG) because it rests on a constructional approach to language and em-
phasizes flexible grammar application. Construction grammar organizes the knowl-
edge needed for parsing or producing utterances in terms of bi-directional mappings
between meaning and form. In line with other contemporary linguistic formalisms,
FCG uses feature structures and unification and includes several innovations which
make the formalism more adapted to implement flexible and robust language pro-
cessing systems on real robots. This chapter is an introduction to the formalism and
how it is used in processing.

Key words: computational linguistics, construction grammar, Fluid Construction
Grammar, parsing, production, grammar design

10.1 Introduction

In previous chapters of this volume, several layers of processing have already been
discussed, from embodiment, low level motor control and signal processing, and
feature extraction and pattern recognition, to the construction of world models and
the planning and interpretation of the meaning of utterances. We have now arrived at
the top-most layer which uses all this information to maintain dialogs in the form of
evolutionary language games. This chapter introduces the fundamental framework
and implementation tools that we have developed for this purpose. This framework
is based on the notion of a construction.

'Sony Computer Science Laboratory Paris, France, e-mail: steels@arti.vub.ac.be
2ICREA Institute for Evolutionary Biology (UPF-CSIC), Barcelona, Spain
3 Artificial Intelligence Laboratory Vrije Universiteit Brussel, Belgium

195

196 L. Steels, J. De Beule, and P. Wellens

The notion of a construction has been at the core of linguistic theorizing for cen-
turies (Ostman and Fried, 2004). A construction is a regular pattern of usage in a
language, such as a word, a combination of words, an idiom, or a syntactic pattern,
which has a conventionalized meaning and function (Goldberg and Suttle, 2010).
The meaning and functional side of a construction, as well as relevant pragmatic
aspects, are captured in a semantic pole. All aspects which relate to form, includ-
ing syntax, morphology, phonology and phonetics are captured in a syntactic pole.
Constructions clearly form a continuum between quite abstract grammatical con-
structions, such as the determiner-nominal construction, and so called item-based
constructions, which are built out of lexical materials and frozen syntactic patterns.
They contain open slots in which structures with specific semantic and syntactic
properties can fit, as in the “let-alone” construction, underlying a sentence like “Joan
is unable to write 5 pages, let alone a whole book” (Fillmore et al, 1988).

From a linguistics point of view, a constructional approach to language implies
developing a catalog of all constructions in a language. This goal differs profoundly
from a generative grammar approach which attempts to generate all possible syntac-
tic structures of a language. In construction grammar, meaning and form always go
hand in hand and the key issue is to understand the bi-directional mapping between
the two.

The constructional approach has abundantly proven its worth in descriptive lin-
guistics (Goldberg, 1995) and is also used almost universally in second language
teaching. Moreover empirical evidence from child language acquisition shows that
language learning can be understood by the progressive usage-based acquisition of
constructions (Lieven and Tomasello, 2008). The constructional perspective has also
been very productive for historical linguists, and there is now a large body of clear
examples showing how new constructions may develop from the creative extension
of existing constructions by a few individuals to a productive common pattern that
is adopted by the linguistic community as a whole (Fried, 2009).

But construction-based approaches to language are also relevant for language
processing, and particularly for language processing on robots, because they inte-
grate aspects of meaning directly in considerations of grammar. This has many ad-
vantages. Most of the utterances produced by real speakers are incomplete and un-
grammatical in the strict sense. Hearers focus on meaning. They try to understand an
utterance, even if syntactic structures are not conform the established norms or if it
is still incomplete. A construction-based grammar makes this much easier because
aspects of meaning are directly available for semantic analysis as soon as certain
words or partial fragments have been recognized.

Second, language is non-modular in the sense that many linguistic decisions on
how to say or interpret something involve many different levels: pragmatics, se-
mantics, syntax, morphology, and phonology. For example, the suffix added to a
Hungarian verb expresses features such as number and gender which are both de-
rived from the subject and the direct object (so called poly-personal agreement, see
Beuls, 2011). It follows that constructions should have access to whatever layer of
analysis they need in order to define all the constraints relevant for a particular step
in linguistic decision-making. Because constructions can cross all these levels they

10 Fluid Construction Grammar on Real Robots 197

are much more efficient representations of grammar than if these constraints are
teased apart in separate autonomous layers.

There are many ways to implement construction grammars, depending on what
representational and computational mechanisms are adopted as underlying foun-
dation. Here we focus on a new formalisation called Fluid Construction Grammar
(FCG for short) which has been developed in the project described in this book. As
the name suggests, FCG was specifically designed to deal with the robustness and
flexibility that natural language processing on real robots requires.

FCG uses techniques now common in formal and computational linguistics,
such as the representation of linguistic structures with feature structures (Copes-
take, 2002), and the use of unification for applying constructions to expand lin-
guistic structures in language parsing and production, as pioneered in Functional
Unification Grammar (Kay, 1986), and also used in Lexical Functional Grammar
(Dalrymple et al, 1995), and Head-driven Phrase structure Grammar (Pollard and
Sag, 1994). Like many other computational linguistics efforts, the FCG-system is
embedded within a contemporary Common LISP-based programming environment
from which it inherits well-tested mechanisms for representing and processing com-
plex symbolic structures. Other proposals for operationalizing construction gram-
mar, such as Embodied Construction Grammar (Bergen and Chang, 2005) and Sign-
Based Construction Grammar (Michaelis, 2009) draw on mechanisms arising from
the same computational tradition but use them in different ways. Given the current
state of the field, it is highly beneficial that many approaches are explored in order
to discover the best way to formalize and implement construction grammars.

Fluid Construction Grammar has been fully implemented in a system called
the FCG-system, which is made available for free to the research community
(http://www.fcg-net.org/). The FCG-system contains a core component (called the
FCG-interpreter) that performs basic operations needed for parsing and production,
as well as various tools to aid linguistic research, such as a tool for browsing through
linguistic structures and a tool for monitoring the success rate of a grammar when
processing a set of test cases. The FCG-system has been under development from
around 1998 in order to support experiments in modeling language evolution us-
ing language games played by autonomous robots (Steels, 1998). Since then, it has
undergone major revisions and enhancements and the system is still continuously
being adapted and revised to cope with new linguistic phenomena and new process-
ing challenges. Nevertheless, the system is already sufficiently stable that it can be
used to tackle sophisticated issues in the representation and processing of language.
A full overview and many detailed examples for different languages are given in
Steels (2011, 2012).

FCG is in principle neutral with respect to which representation is used for se-
mantics, but in the case of applications with robots, the meaning always consists of
(partial) IRL networks, as explained in earlier contributions to this volume (Spranger
et al, 2012). This meaning is either directly associated with words or it is first
mapped to semantic categorizations, then to syntactic categorizations, and finally
to a surface form through a variety of constructions.

198 L. Steels, J. De Beule, and P. Wellens

There are two different levels in Fluid Construction Grammar. The first lowest
level is the processing level. It concerns the fundamental primitive datastructures
and operations that are available for writing construction grammars and the machin-
ery for computing syntactic and semantic structures during parsing and production.
The second level is the design level. It concerns methods and techniques that have
been developed for coping with the complexity of writing real grammars and com-
putational abstractions in the form of templates that capture these methods. The
remainder of this chapter discusses very briefly each of these levels. It is not possi-
ble within the available space limitations to do more than give readers a suggestive
glimpse of the formalism, but many additional sources are available to learn more
(Steels, 2011, 2012).

10.2 The processing level

FCG uses transient structures to represent all the information about the sentence
being parsed or produced. Transient structures consist of a set of units, roughly
corresponding to morphemes, words, or phrases, and information attached to each
of these units in the form of features and values. The example in Figure 10.1 shows
the outline of the transient structure for the German phrase “der Block links von
mir” (the block left of me) as it is displayed in the FCG-interface. Spranger and
Loetzsch (2011) describes in detail the grammar used in this example. At first sight
this structure looks like the kind of trees found in all parsing and production systems,
except that it is visualized from left to right for the semantic and from right to left
for the syntactic structure. The names of the units (such as left-unit-14 or
von-unit-21) are purely conventional. The names have been chosen to make
it easier to follow what is going on. The indices are added because there may be
several units with the same role, for example more than one occurrence of the word
“von”. These indices are automatically computed when new units are created during
processing.

When we click on one of these boxes in the FCG user interface, the features as-
sociated with each unit reveal themselves. These features may concern any level of
language: pragmatic and semantic information is grouped in the semantic pole of the
unit and syntactic, morphological, and phonological features in the syntactic pole.
For example, if we click on left-unit-14 we see the semantic (left) and syn-
tactic pole (right) associated with this unit as shown in Figure 10.2. Which features
are adopted for a particular grammar is entirely open to the grammar designer. We
see here on the semantic pole information about the meaning of the word “links”
and its semantic categories (namely that it is an angular lateral spatial category).
The syntactic pole contains a form feature with information on what is the stem for
this unit (namely “link”™), the string it covers (namely “links”) and a syn-cat (syntac-
tic category) feature containing information relevant for morphology (case/gender)
and the lexical category or part of speech (lex-cat). The FCG processing level is en-

10 Fluid Construction Grammar on Real Robots 199

lateral - left-
adverb/preposition- unit-
lateral- unit-148 14
region-
I:\r;?‘g:r_k- von-unit-21
referring- 61 ”
syn referring- expression- E:’:?;n_ iﬁﬁz gr-
—» top expression- adverbial-
unit-152 phrase-
unit-176 article- unigue-
unit- unit-
determiner- 397 100
nominal-phrase-
unit-380 noun- block-
unit- unit-
351 48

Fig. 10.1 Syntactic pole of a transient structure created during the production or parsing of the
German phrase “der Block links von mir”.

tirely agnostic about which features and values are used in the grammar. A grammar
designer can introduce new ones at any time by just using them.

left-unit-14

form ((stem left-unit-14 "link")
(string left-unit-14

left-unit-14 Links®))
. syn-cat
meaning ((morph
((bind lateral-category (case/gender
-?cat-5 left)) ((nom - - - -) (gen - - - =)
(dat ?dat-11 ?dat-m-13
sem-cat ?dat-f-15 2dat-n-11)
((type (value lateral-category) (acc - - = =))))
(potential (lex-cat
(lateral-category ((potential
angular-spatial-category (spatial-adjective
spatial-category)))) (l?teral-adverb/preposition))
value
footprints (left-1lex) lateral-adverb/preposition))))
args ((ref -?cat-5)) footprints (left-lex links-morph)

Fig. 10.2 Details of left-unit-14 in the transient structure covering the word “links”. On the left the
semantic pole of a unit and on the right the syntactic pole of this unit.

Transient structures are also used to represent the hierarchy of units and subunits,
as shown in Figure 10.3, which displays the semantic pole of speaker-unit-15
(covering the word "mir") and pronoun—unit-76, which is its parent-unit (hier-
archy is shown from right to left because this is the semantic pole). The parent-unit
was created by the application of a construction (see later). Notice the feature sem-
subunits in pronoun—unit—76, which is filled with a list of subunits, in this case
only speaker-unit-15. The explicit representation of subunits makes it possi-
ble to represent trees which are not strictly hierarchical, and the separation between

200 L. Steels, J. De Beule, and P. Wellens

semantic and syntactic subunits makes it possible to have differences in semantic or
syntactic structure.

pronoun-unit-76

speaker-unit-15 meaning

meaning ((identify-discourse-participant
bind di 1 -?reference-2 -?src-4

((bin iscourse-role —?role-1))

-?role-1 speaker))
sem-subunits (speaker-unit-15)

sem-cat

((type sem-cat
(value ((sem-function
discourse-role) ((value reference)
(potential (potential (reference)))))

(discourse-role))))

i footprints -cat
footprints (speaker-lex) P (pronoun-cat)

args
((ref -?reference-2)
(src -?src-4))

args ((ref -?role-1))

Fig. 10.3 Small section of a hierarchical semantic structure. The pronoun-unit is the parent node
of the speaker-unit.

Constructions have the same structure as transient structures. They also consist of
units, features and values for these features and the information is again organized
into two poles. Constructions in FCG are considered to be bi-directional associa-
tions, in the sense that they establish bi-directional mappings between meaning and
form through the intermediary of syntactic and semantic categorizations. They are
usable both as part of a production process that translates meaning into form or a
parsing process that translates form into meaning. This dual usage happens without
changing or recompiling the representation of a construction and without giving up
the efficiency needed both for language production and parsing.

Constructions (and transient structures) have not only a graphical representation
(as shown in Figure 10.4) but also a list representation which is particularly useful
if constructions become complicated with many units and syntactic and semantic
specifications attached to them. The list representation of the construction shown in
Figure 10.4 is as follows:

Example 1.

(def-cxn mouse-cxn ()
((?top-unit
(tag ?meaning
(meaning
(== (bind object-class ?class mouse)))))
((J ?mouse-unit ?top-unit)
?meaning
(args (?class))
(sem—cat
(==1 (is—-animate +) (class object)
(is—countable +)))))

10 Fluid Construction Grammar on Real Robots 201

<==>
((?top-unit
(tag ?form}

(form (== (string ?mouse-unit "mouse")))))
((J ?mouse-unit ?top-unit)
?form
(syn—-cat

(==1 (lex—cat noun)
(number singular))))))

This example is a lexical construction named mouse—cxn that defines the mean-
ing contributed by the word “mouse”. The details are probably overwhelming at this
point but not important for getting a first impression. This is a representation at the
lowest level, like machine code, and a higher level representation using templates
will be introduced in the next section. On the semantic side the construction intro-
duces an IRL operation that binds the semantic entity mouse—-class to a variable
?class. There are also semantic categorizations, namely that this class refers to
an animate countable object. On the syntactic side, the construction introduces the
word and some syntactic categorizations, namely that “mouse” is a singular noun.

?top-unit-5 ?top-unit-5
tag ?meaning-3878 sem svn footprints (==0 mouse-cxn lex)
f’fg:“lng 4_”, tag ?form-6130

(mouse ?mouse-set-1 (form

?base-set-1))) (==

(string ?word-mouse-1

footprints (==0 mouse-cxn lex) "mouse")))
?word-mouse-1 ?word-mouse-1
— ?meaning-3978 2top- ?top-unit- — ?form-6130
footprints unit-5 5 footprints
(mouse-cxn lex) (mouse-cxn lex)

Fig. 10.4 Example of a lexical construction for the word “mouse”. The top part describes the
semantic (left) and syntactic (right) constraints on the application of the construction. The bottom
part describes what is contributed by the constraint to the transient structure.

Notice that there are two parts to constructions, as shown in Figure 10.5. The top
part is the conditional part and defines what has to be there in the transient structure
before the construction can apply. There is both a semantic and a syntactic condi-
tional part. The semantic conditions are checked first in production and the syntactic
conditions in parsing. The bottom part is the contributing part of a construction. It
defines what will be added to the transient structure. Again there is both a seman-
tic and a syntactic contributing part. The semantic part is added in parsing and the
syntactic part in production. So FCG constructions are not like generative grammar
rules that rewrite a non-terminal symbol, they always associate semantic with syn-
tactic structure. Moreover each construction not only defines a syntactic structure
but also how that syntactic structure is to be interpreted semantically, which makes

202 L. Steels, J. De Beule, and P. Wellens

it possible to have a tighter integration of syntax and semantics, as compared to pro-
posals where syntax and semantics are kept separate (as in Montague grammar for
example).

Conditional —> Conditional
Semantic Pole Syntactic Pole
| |
Contributing «—> Contributing
Semantic Pole Syntactic Pole

Fig. 10.5 General structure of a construction. There is a conditional part and a contributing part.
In parsing, the conditional part of the syntactic pole is matched first and the rest is merged into the
transient structure if successful. In production, the conditional part of the semantic pole is matched
first and the rest is merged into the transient structure if successful.

Constructions are applied in a process of matching and merging, described more
formally in Steels and De Beule (2006):

e Matching means that the conditional part C of one pole of the construction (the
semantic pole in production or the syntactic pole in parsing) is compared with
the corresponding pole T in the transient structure to see whether correspondents
can be found for every unit, feature, and value. C and T may both contain vari-
ables. Variables are denoted by names preceded by a question mark. As part of
the matching process, these variables get bound with specific values (or other
variables) in the target using a unification operation familiar from logic program-
ming or other feature-based formalisms. For example, if the construction con-
tains the value (stem ?left-unit “link’) and the transient structure contains the
value (stem left-unit-14 “link”) for the same feature, then these two values match
if 2left-unit is assumed to be bound to left-unit-14.

e Merging means that the conditional part of the other pole of the construction (the
syntactic pole in production or the semantic pole in parsing) is combined with the
corresponding pole in the transient structure, in the sense that everything missing
in the target pole of a transient structure is added unless they are in conflict. In
addition, the contributing parts of both poles from the construction are added to
the corresponding poles of the transient structure.

An example of the application of a construction is shown in Figure 10.6. The con-
struction itself, taken from Spranger and Loetzsch (2011), is defined in the appendix,
but the details are not important. The construction takes a nominal phrase with the
potential and turns it into a referring expression. On the syntactic side it settles case
and gender and on the semantic side it adds extra meaning. The detailed seman-
tic and syntactic poles after construction application are shown in Figures 10.7 and
10.8.

203

10 Fluid Construction Grammar on Real Robots

“xrpuadde oy} U [TeIOp UI PAULSP UOTIONIISUOD
Q) JO OIBWIAYDS dY) SMOYS S[PPIW Y], ‘UoIssaIdxa SuLLIojol ay) J0J JIUN [EUONIPPE Uk Sy 2Inonys judisuer) y L, “SurSiow pue Suryoyew jo uonerodo ay Joije
QImonns Judlsuer) papuedxa oy smoys wonoq ay) pue uonesrjdde o10joq a1monys Judtsuen oy} smoys doj ayJ, ‘uonesrdde uononnsuos jo ojdwexy 9°Qy "SI

Lch 79¢€ 79¢€ Lck
un | -pun un | -uun
-enbiun -soIe GEP-HUN R - GEY-HUN -sjoIue -anbiun

! 101U ~oseiyd GgL-Hun Gg81L-Hun ~oseiyd 101U |

— | -uoissaidxa A|VEII -uoIssaidxs |
- leuiwou 5 N 5 - leuiwou

95 ooy -IBUILLISIOP -burisjel -butesel -Jsulwelep 00¥ 95
qun | -yun |- : : LI aqun— -y
-300|q -unou -unou -300|q
L-NUN-du-18pg, .- m-u_c:-:o_wmwaxw-mc_:&w&v -.i g9-dolg, 69-doyg, e _m-ﬁ_cs-:o_wwwk_axw-mc_t&m‘_m -t 1-pun-du-19py,

4-Hun-du-jep¢ || 69-doy;, ——| 69-doy; | |-Hun-du-jep;
UAs wes

9S-uun | | 0Op-Hun v9g-Hun | | LgL-Hun
-)00|q -unou -9|o1ue -anbjun
Gep-Hun-aseiyd Gep-uun-aseiyd
| -|[BUILOU-JBUIWIB}BP IIE > -[eulWwoU-JauIwIBIep | |
LZL-Hun ¥9g-Hun uAs wies 00p-Hun 9G-Hun
-enbun || -spoiue [] -unou || -300|q

204 L. Steels, J. De Beule, and P. Wellens

An important property of FCG is that exactly the same construction applies both
in parsing and in production. This means that if during parsing a unit is found with
the stem “mouse”, this triggers the same construction and builds the same struc-
tures as it would in production. This mirror property has a large number of advan-
tages. For example, during parsing it is possible to start applying constructions in
a top-down manner to predict properties of words or phrases that have not been
pronounced yet or to fill in information about fragments of the utterance that have
not been understood properly or are unknown. During production it is possible to
engage in self-monitoring, because partial structures constructed by application of
constructions from meaning to form can be re-entered in a parsing process, in order
to see for example whether any combinatorial search is occurring or whether the
utterance to be pronounced indeed expresses the intended meaning as accurately as
possible. Although top-down prediction at the syntactic level is also possible with
generative grammars, FCG has direct access to the semantic level and can therefore
make much more precise predictions based on partial understanding.

Language users often have stored several alternative constructions in their mem-
ory because there is unavoidably a lot of variation in the language they encounter
and because of constructional synonymy, syncretism, homonymy and ambiguity.
Constructions therefore have an associated score which reflects their past success in
utilisation. Usually more than one construction can apply to a given transient struc-
ture and consequently the exploration of a search space is unavoidable. Part of such
a search space for the example of “un gros ballon rouge” is shown in Figure 10.9
(taken from Bleys et al, 2011). The different nodes in the search space are repre-
sented in a tree. At the moment of parsing “ballon”, it is still unclear whether the
phrase will end with “ballon” (as in “un gros ballon”), or whether it will continue,
as it does in this case. FCG supports standard heuristic best-first search.

A score is computed for every possible expansion and then the transient struc-
ture with the highest score is pursued further. This score might for example take
into account what constructions had most success in the past and are therefore prob-
ably more entrenched in the population. Another component that determines the
score, particularly of final nodes in the search space, are goal tests. They examine
a transient structure to see whether it satisfies desired criteria. The FCG-interpreter
performs backtracking to earlier nodes in the search space if a particular transient
structure reaches a dead-end or if an unsatisfactory end state was reached.

Human language users must have hundreds of thousands of constructions in
memory and they are applying them at incredible speeds. Increasing efficiency and
damping combinatorial explosions in search is therefore one of the key challenges
in building operational parsing and production systems. This challenge can partly be
tackled by writing grammars in such a way that they minimize search (see section on
design below). In addition, FCG has various mechanisms to help grammar designers
control at a more fine-grained level the selection and application of constructions:

205

10 Fluid Construction Grammar on Real Robots

‘9’01 2In31] Ul UMOYSs uononnsuod ay) Jurk[dde 19)je aInjonns judtsuen) ay) jo djod onuewas £°0f “S1q

{ggT-3TUun-uoTssaidxa-butizagax)
s|UNgNsS-LUas

doy

((g-gazz- 3ax)) sbe
(uoTssazdxa-butizagzax) sjupdioo)

{cEp-3Tun-aseIyd-TePuTWOU-IauTII=3ap)

SHUNGNS-Was
(({g-oasz~- 3xajuoco-3ab)) Bujuesw
G@ L-}un-uo|ssaldxs-Guluaie)

({g-3ax¢- Fax) (g-oas¢- ois))
sbue
{aspayd-~-TeUuTWOU-~TaUuTWIa3ap)
sjupdioo)
({{{{aouazagaz) TeTiuajzod)
(@apuazagex anTeal)
UOTIOUNF-was))
1e0-Was
(F9E-3TUN-2TOTIIE
00F-3TUN-UnNou)
SHUNGNS-Was

SEF-HUN-aseIyd-[EujuCU-JaULIBIED

({g=-Dass~- Das)
(g-Faxz~- yai))
sbe
{3e0-aT0T3aE)
sjupdioo)
{{{{{zouTI®32P)
TeT3uajod)
(zauTwIajzap
antea))
uoTIOUNF-was))
1eo-was
{TzT-3Tun-anbrun)
SHUNgNS-Wwas
((1-Tase-
£-0a8¢- £-FaI¢-
FojoaTtas-ATdde))
Bujueaw

F9E-HuUN-8[o|uEe

{(z-o38Z- DI8)
(g-oas¢- 3aI))
sbe

(3e0o-unou) sjuudioo)

(({{{za1FT3U9PT)
TeT3uajod)
(Z9TFTIUaPT
antea))
uoTIoUNF-was))
1e2-Was
(g9g-3TuUn-x¥001q)
SYUNQNS-Was
({1-sseTD~
g-0a8¢- £-2I8¢-
sseTo-ATdde))
Bujuesw

((1-Tas¢- 323)) sbe
(xaT-anbTun)
sjupudioo)

{{{{z0300Ta8])
TeT3uajod)
(zo309Tas anTea)

] adfa))

1Bd-Was

{{anbTun T-Tasi-
I0308Tas putq))
Bujuesw

LZ2L-yun-anbjun

((1-sseTo¢~- 3ai))
sbue

(xaT-¥00T1q) siuudioo)

{{{({sseTD-309(q0)
TeT3uajod)
(sseTo-30algo
anTea)
adfa))
1E3-Was

((¥001q T-S8BT2L-
sseTo-309(go putqg))
Bujuesw

95-un-4o0|q

00f-Hun-unou

L. Steels, J. De Beule, and P. Wellens

206

({{({aToT3am
antea)
{{aToT3aE)
TeTIUa3od))
Jeo-%aT)
[
- - - pom)
(= = = = 3@p)
(- - = - uab)
(- - + + wou))
zapuab/aseo)
ydzou))

1ED-ufs
({.,p,

TZT-3Tun=-anbrun
wazs))

wioy
(xaT-anbTun)
S1udIo0)

LZL-1un-anbjun

({ { {zauTI=32pD
anTea)
{ (FauTwIazap)
TeTIua30d))
coauUcSW|chmv
[
- - - pow)
(= = = = 3ep)
(= = = = uab)
{= = 4+ + wou))
aapuabsased)
ydzou))
E2-ufs
(1ZT-3TUN-anbTun)
s1UnNgns-ufs
{3e0-a10T33R)
sjupdioo)

FOE-lun-sjoue

‘9’01 2In31] Ul UMOYS uononnsuod Ay} JurA[dde 19)je 2Injonns judtsuen)) Jo d[od onovjuks °01 “S1g

{{ { {unou
antea)
{ {unou)
TeTIuajod))
Jeo-XaT)
(-

= + + wou))
zapuabsased)
ydaouw))

1E3-Ufs
((,¥001q,

95-3TUN-¥20Tq
wais))

wioy
(®a1-x007q)
sjudioo)

95-Jun-y2e|g

({{ { TeuTmOU
anTea)
{ { TRUTWOU)
TeT3Uuajod))
uoTIouUNF-uds)
-:wu
- - - pow)
(= = = = 3ep)
(= = = = uab)
{= = 4+ + wou))
aapuabsased)
ydzou))
E2-ufs

(9g=3TUN~-}20Tq)
s1UnNgns-ufs

(3eo-unou) suudioo]

00f-3uUN-unou

({{{{uoTssazdxa-buTazagaz)
mﬂucuuce
{uoTssazdxa-butizagal
anteal)
uoT3ounF-uds)
(({{= = = = Dow)
(= = = - 3ep)
(= = = = uab)
(= = + + wou))
zapuak/asea)
ydzouw))
1B0-Ufs

{ {poF-3TUN-UNOU
FOE=3TUN=3TOTIAR
sjaau)) wio}

(F9E=3TUN=ATOTIIAR
0OF-3TUN=unou)

sHUNGNS-UAs
(@seayd=--TRUTWOU==-IaUTLIZGap)
sludion)

GEF-1UN-8sE)yd-[BULICU-J3U WS8R

({uoTssaxdxa-buTtizazax) siuudioo)

{SEF-3TUN-258Rayd-TEUTWOU-IAUTUISFAIP)

syuNgns-uis
G@ L-Hun-uc|ssaldxa-Busis)

{cgT-3Tun-uoTssaidxa-burtIizagaz)
S1UNgNs-ufs

doy

T
ufis

10 Fluid Construction Grammar on Real Robots 207

1. Constructions can add footprints to transient structures, in a sense tagging the
points where they have made a change, so that later on when the construction
is tried again on the same transient structure the construction does not re-apply
endlessly. Footprints can also be used to regulate the activation of families of
constructions or to handle defaults (Beuls, 2011). By convention the name of the
footprint is equal to the name of the construction. The use of footprints can be
seen for example in Figure 10.4. We see that ?top—unit-5 tests in the con-
ditional part, both on the semantic and the syntactic side, whether the footprints
feature does not already include mouse-cxn and lex. The contributing part
will add these footprints to avoid circular application of this construction.

color- weak-gs-

. L determiner-
nominal- adjectival- e —
— adjectival- — nominal- —
— &0 phrase-cxn
(phrasal) (phrasal) (phrasal)
__ determiner- _ | _ determiner-nominal-
cxn (cat) weak-gs- ‘ phrase-cxn (phrasal)
adjectival- I
nominal- — €90 determiner-
cxn TllliE]= nominal-
(phrasal) 23:160“%'- phrase-cxn
(phrasal) (phrasal)

Fig. 10.9 Search space computing all possible parses of the utterance “un gros ballon rouge”. The
process branches after the application of the functional constructions. The two successful branches
(the top and bottom one) lead to similar meanings, the failed branch (with darker background)
leads to an incomplete parse.

2. Constructions are organized in sets and networks. Sets are useful to ensure that
a certain set of constructions, for example all morphological constructions, have
operated before another set, for example the phrase structure constructions. Net-
works give a more fine-grained way to prioritize the execution of constructions.
For example, one network could be based on the generality/specificity relations
between constructions, used for example to represent families of constructions.
Another network is based on conditional dependencies (see Figure 10.10 from
Wellens, 2011): One construction C-1 (for example a determiner-nominal con-
struction) conditionally depends on another construction C-2 (for example a
nominal construction) if the triggering of C-2 creates some of the conditions
under which C-1 could potentially trigger. Conditional dependencies can be used
for priming. If a nominal construction was able to operate, it will make it more
likely that the determiner-nominal construction is applicable, and conversely
if no nominal construction was able to apply it does not make sense to try a
determiner-nominal construction either.

3. Networks of constructions that have proven to be useful can be chunked. Chunk-
ing means that the information required or supplied by individual constructions
is combined into a single construction which can thus be matched and merged

208 L. Steels, J. De Beule, and P. Wellens

more efficiently. Intermediary steps that are no longer necessary can be removed
(Stadler, 2012).

sem: [(TOP-FRAME ?X-4)]
syn: [(POS N)]

sem: [LOCATIVE_RELATION
(TOP-FRAME (OR RELATION STATE TRAJECTOR_LANDMARK))]
syn: [(POS PREP)]

<> S

sem: [BEING_LOCATED]
syn: [REFERRING-EXPRESSION]

sem: [REFERENT]
syn: [(POS N)]

sem: [(TYPE (LOCATION))]
syn: [(POS PREP)]|

Fig. 10.10 Example of dependency relations between constructions. Such networks can be used to
support priming which aids considerably to reduce search and speech up construction access.

10.3 The design level

Writing operational constructions is a very difficult exercise for two reasons. First
of all, many factors normally intervene in a single construction, indeed it is one of
the main tenets of construction grammar that linguistic knowledge should be pack-
aged in such a way that as many constraints as possible get incorporated in each
construction. So a construction could include a phonological constraint (for exam-
ple vowel harmony to select a morphological affix) or a pragmatic constraint (for
example which constituent is being emphasized in the sentence). This makes pro-
cessing much more efficient compared to horizontally structured grammars where
the syntactic level is viewed as autonomous and cannot incorporate issues of mean-
ing or phonology. Second, there are many interactions between constructions that
may not be immediately obvious to the grammar designer: Constructions can be in
competition with each other because they cover the same meaning or the same form,
and the implications of the best choice could only become visible much later.

In the design or investigation of highly complex systems it is often useful to
introduce higher level abstractions that then translate into detailed structures and
processes. For example, computer programs are usually written in a high level pro-
gramming language (like LISP or Python) and code written at this level is then

10 Fluid Construction Grammar on Real Robots 209

translated automatically by compilers or interpreters into a huge number of detailed
operations that can be executed at the machine level. The grammar of a human lan-
guage is certainly a highly complex system and it therefore makes sense to use the
same approach.

Through various case studies in Fluid Construction Grammar, a set of design
patterns is gradually being discovered, some of which have in fact already a long
tradition in linguistics. The notion of a design pattern comes from architecture and
is also widely used in computer science. An architectural design pattern is for in-
stance the use of a dome structure (such as the Santa Maria del Fiore Duomo in
Florence built by Bruneschelli). There are general principles of dome design but
specific details depend on the required size and height of the space that needs to be
covered as well as on esthetic considerations. In the context of grammar, a design
pattern circumscribes the core solution to a particular aspect of grammar, not just
in a descriptive way but also in terms of processing and learning operations. The
specific details how the design pattern is instantiated in a particular language still
need to be worked out and the details will be significantly different from one lan-
guage to another one. Some languages may even use certain design patterns which
are entirely absent from others.

Here are two examples of design patterns:

1. Many languages feature complex morphological and agreement systems which
group a set of features (such as number, case and gender). But there is almost
never a simple mapping. Often the same word or morpheme may express differ-
ent competing feature bundles (for example, the German article “die” expresses
the nominative and accusative feminine singular, as well as all plural nomina-
tive and accusative cases.) A design pattern to efficiently handle the processing
of these ambiguities, is a feature matrix, reminiscent of the distinctive feature
matrices in phonology (van Trijp, 2011). It contains rows and columns for the
different dimensions and either + or - if there is a known value or a variable if the
value is not yet known. Putting the same variable in different slots of the matrix
can be used to capture constraints between values. Given such feature matrices,
agreement and percolation phenomena can be handled by the standard match-
ing and merging operations of unification-based grammars. Ambiguity does not
need to translate into exploding branches in the search tree but translates into
open variables which get bound whenever the information becomes available.

2. All human languages tend to reuse the same word forms for different purposes.
For example, the English word “slow” may be used as an adjective (The slow
train), a verb (They slow down), a predicate (The train was slow) or a noun
(The slow go first). It would be highly costly to create new nodes in the search
space each time the word “slow” is encountered. An alternative is to use a design
pattern based on a distinction between actual and potential. A particular word has
the potential to belong to several word classes but then in the course of processing
it becomes clear which of these is the actual value. By explicitly representing
the potential, it is possible for constructions to eliminate some possibilities or
add others (for example through coercion) before a final decision is made, as
illustrated clearly in Spranger and Loetzsch (2011).

210 L. Steels, J. De Beule, and P. Wellens

The FCG-system comes with a collection of templates for supporting such design
patterns and with facilities for introducing new templates if the grammar designer
wishes to do so. These templates provide ways to leave out many details, particu-
larly details related to the operationalization of constructions. They help to focus
on the linguistic aspects of constructions and bridge the gap between the detailed
operational level and the level at which linguists usually work. For example, there is
a template for defining the skeleton of lexical constructions which has slots to spec-
ify the meaning and the word stem. This template then creates the necessary units,
features, and values, including the structure building operations that are required.

Concretely, the earlier example of the mouse—-cxn (Figure 10.4 and Example 1)
would actually be defined in a more abstract way using the def-lex—-skeleton
and def-lex-cat templates. The skeleton defines the basic structure of the lex-
ican construction: its meaning, arguments and string. The cat-template introduces
semantic and syntactic categorizations associated with the word. All the intricacies
of J-units, footprints, etc. are all hidden here from the grammar designer.

Example 2.

(def-lex—cxn mouse—-cxn
(def-lex—-skeleton mouse—-cxn
:meaning (== (mouse ?mouse-set ?base-set))
rargs (?mouse-set ?base-set)
:string "mouse")
(def-lex—cat mouse-cxn
:sem—-cat (== (is—animate +)
(is—countable +)
(class object))
:syn—-cat (==1 (lex—cat noun)
(number singular))))

There are also templates for defining the components of phrasal constructions,
including templates for specifying what agreement relations hold between the con-
stituents, how information from constituents percolates to the parent unit, how the
meanings of the different constituents gets linked, what meanings are added by the
construction to the meanings supplied by the different units, and what additional
form constraints are imposed by the construction. Other templates are available for
defining more complex feature matrices and the grammatical paradigms on which
they are based, and for using these feature matrices to establish agreement and per-
colation, for defining the topology of fields and the constraints under which a con-
stituent can be ‘grabbed’ by a field, and so on. The inventory of possible templates
now used in FCG is certainly not claimed to be a universal or complete set, on the
contrary, we must expect that this inventory keeps being expanded and elaborated
as new design patterns are uncovered.

10 Fluid Construction Grammar on Real Robots 211

10.4 Conclusions

Fluid Construction Grammar shows that construction grammar need not stay at a
verbal level only. It is entirely possible to formalize notions of construction grammar
and use this formalization for achieving the parsing and production of sentences. A
constructional approach has a number of advantages for human-robot interaction
compared to those used traditionally in computational linguistics, in particular from
the viewpoint of efficiency (because constructions can stretch all levels of linguistic
analysis), from the viewpoint of robustness (because constructions can be flexibly
applied), and from the viewpoint of modeling language as an open, adaptive system,
which it certainly is.

Acknowledgements

The FCG system was developed at the Artificial Intelligence Laboratory of the Vrije
Universiteit Brussel and the Sony Computer Science Laboratory in Paris. The earli-
est ideas and implementations already date from the late nineties when the first im-
plementations were made by Luc Steels and Nicolas Neubauer. Since then the sys-
tem has undergone many revisions and expansions with major contributions to the
present version by Joachim De Beule, Martin Loetzsch, Remi van Trijp and Pieter
Wellens. We gratefully acknowledge support from the EU FP6 and FP7 framework
programs, particularly the ECAgents and Alear projects.

References

Bergen B, Chang N (2005) Embodied Construction Grammar. In: Ostman JO, Fried
M (eds) Construction Grammars: Cognitive Grounding and Theoretical Exten-
sions, John Benjamins, Amsterdam, pp 147-190

Beuls K (2011) Construction sets and unmarked forms: A case study for Hungarian
verbal agreement. In: Steels L (ed) Design Patterns in Fluid Construction Gram-
mar, John Benjamins, Amsterdam

Bleys J, Stadler K, De Beule J (2011) Linguistic processing as search. In: Steels L
(ed) Design Patterns in Fluid Construction Grammar, John Benjamins, Amster-
dam

Copestake A (2002) Implementing Typed Feature Structure Grammars. CSLI Pub-
lications, Stanford

Dalrymple M, Kaplan R, Maxwell J, Zaenen A (eds) (1995) Formal issues in
Lexical-Functional Grammar. CSLI Lecture Notes 47, CSLI, Stanford CA

Fillmore C, Kay P, O’Connor M (1988) Regularity and idiomaticity in grammatical
constructions: The case of let alone. Language 64(3):501-538

212 L. Steels, J. De Beule, and P. Wellens

Fried M (2009) Construction grammar as a tool for diachronic analysis. Construc-
tions and Frames 1(2):261-290

Goldberg A (1995) A Construction Grammar Approach to Argument Structure.
Chicago UP, Chicago

Goldberg A, Suttle L (2010) Construction grammar. Wiley Interdisciplinary Re-
views: Cognitive Science 1(4):468—-477

Kay M (1986) Parsing in functional unification grammar. In: Grosz B, Sparck-Jones
K, Webber B (eds) Readings in Natural Language Processing, Morgan Kaufmann

Lieven E, Tomasello M (2008) Children’s first language acquistion from a usage-
based perspective. In: Robinson P, Ellis N (eds) Handbook of Cognitive Linguis-
tics and Second Language Acquisition, Routledge

Michaelis L (2009) Sign-based construction grammar. In: Heine B, Narrog H (eds)
The Oxford Handbook of Linguistic Analysis, Oxford University Press, Oxford,
pp 155-176

Ostman JO, Fried M (2004) Historical and intellectual background of construc-
tion grammar. In: Fried M, Ostman JO (eds) Construction Grammar in a Cross-
Language Perspective, John Benjamins Publishing Company, pp 1-10

Pollard C, Sag I (1994) Head-Driven Phrase Structure Grammar. University of
Chicago Press, Chicago

Spranger M, Loetzsch M (2011) Syntactic indeterminacy and semantic ambiguity:
A case study for German spatial phrases. In: Steels L (ed) Design Patterns in
Fluid Construction Grammar, John Benjamins

Spranger M, Pauw S, Loetzsch M, Steels L (2012) Open-ended procedural seman-
tics. In: Steels L, Hild M (eds) Language Grounding in Robots, Springer Verlag,
New York

Stadler K (2012) Chunking constructions. In: Steels L (ed) Computational Issues in
Fluid Construction Grammar, Springer-Verlag, Berlin

Steels L (1998) The origins of syntax in visually grounded robotic agents. Artificial
Intelligence 103:133-156

Steels L (ed) (2011) Design Patterns in Fluid Construction Grammar. John Ben-
jamins Pub., Amsterdam

Steels L (ed) (2012) Computational Issues in Fluid Construction Grammar.
Springer-Verlag, Berlin

Steels L, De Beule J (2006) Unify and merge in Fluid Construction Grammar.
In: Vogt P, Sugita Y, Tuci E, Nehaniv C (eds) Symbol Grounding and Beyond.,
Springer, Berlin, LNAI 4211, pp 197-223

van Trijp R (2011) Feature matrices and agreement: A case study for German case.
In: Steels L (ed) Design Patterns in Fluid Construction Grammar, John Ben-
jamins, Amsterdam

Wellens P (2011) Organizing constructions in networks. In: Steels L (ed) Design
Patterns in Fluid Construction Grammar, John Benjamins, Amsterdam

10 Fluid Construction Grammar on Real Robots 213

Appendix
Example 3.
(def-cxn referring-expression (:label gram)
((?top
(tag ?meaning (meaning (== (get-context ?src-det-np))))
(sem-subunits (==p ?det-np-unit))

(footprints nil))
(?det-np-unit
(sem—cat (== (sem—function ((value reference)
(potential (== reference))))))
(args (== (ref ?ref-det-np)
(src ?src-det-np))))
((J ?referring-expression-unit ?top (?det-np-unit))

?meaning
(footprints (referring-expression))
(args (== (ref ?ref-det-np)))))
<—=>
((?top
(syn—-subunits (==p ?det-np-unit))

(footprints nil))
(?det-np-unit

(syn-cat (==1 (syn—-function (== (potential (== referring-expression))
(value referring-expression)))
(morph (case/gender ((nom + ?nom-m ?nom-f ?nom-n)
(gen - - - -)
(dat = = = -)
(acc = = = =)))))))
(

((J ?referring-expression-unit ?top (?det-np-unit))
(footprints (referring-expression)))))

