
SCALING UP MUSIC PLAYLIST GENERATION

Jean-Julien Aucouturier, Francois Pachet

SONY Computer Science Laboratory
6, rue Amyot, 75005 Paris, France

Email:
�
jj,pachet � @csl.sony.fr

ABSTRACT

The issue of generating automatically sequences of music titles
that satisfy arbitrary criteria such as user preferences has gained
interest recently, because of the numerous applications in the field
of Electronic Music Distribution. All the approaches proposed so
far suffer from two main drawbacks: reduced expressiveness and
incapacity to handle large music catalogues. We present in this pa-
per a system that is able to produce automatically music playlists
out of large, real catalogues (up to 200,000 titles), and that can han-
dle arbitrarily complex criteria. We describe the basic algorithm
and its adaptation to playlist generation, and report on experiments
performed in the context of the European project Cuidado.

1. INTRODUCTION: THE COMBINATORIAL
APPROACH TO PLAYLIST GENERATION

The goal of Electronic Music Distribution is to make accessible
large catalogues of music titles to the largest possible audience.
Most proposals of EMD systems so far have followed a purely
database-oriented approach, in that users are proposed individual
titles, either queried explicitly (e.g. e-compil.fr, PressPlay.com) or
through recommendation systems (e.g. Amazon). Departing from
these approaches, we have introduced in [1] the idea of producing
automatically sequences of music titles - playlists, instead of indi-
vidual titles. These sequences are produced automatically from a
set of so-called global constraints, which specify properties of the
whole sequence, such as:

- ”All Different” constraint: the playlist should contain 12
different titles

- ”Duration” constraint: the playlist should not last more than
76 minutes

- ”Continuity” constraint: the genre of a title should be close
to the genre of the next title

- ”Progression” constraint: the sequence should contain
titles with increasing tempo, etc.

Solutions to this kind of problem, using titles from our
20,000-title catalogue, can be found in section 3. We have shown
that this approach has many advantages over the traditional, indi-
vidual title-based approaches. First, it is much easier for users to
specify properties of playlists, seen as temporal sequences, than to
specify properties of individual titles. Secondly, the combination
of well-designed sequence properties makes it possible to produce
sequences which provide optimum compromises between desire
for repetition and desire for surprise, which are identified as cen-
tral ingredients of ”interesting” music recommendations. Lastly,

automatic playlist generation is a powerful way of exploiting
systematically large catalogues, as demonstrated in [1].

However, automatic playlist generation comes with a price.
We have shown that the problem of generating a playlist given a
catalogue of titles with musical metadata, and a set of arbitrary
constraints is a combinatorial problem. It its full generality,
the problem is NP-hard, as it boils down to a finite domain
constraint satisfaction problem. We proposed initially in [1] a
proof-of-concept based on a complete search algorithm using
finite domain constraint satisfaction techniques, and a set of spe-
cially designed filtering procedures. This approach demonstrated
the power of constraints for generating playlist, but suffered
from two drawbacks. First the technique did not scale up to
large catalogues, especially when dealing with combinations of
conflicting cardinality and distribution constraints. Second, the
definition of filtering procedures for global constraints required
the design and implementation of tricky look-ahead techniques,
limiting in practice the expressiveness of the system.

Alghoniemy & Tewfik ([2, 3, 4]) have proposed an alterna-
tive approach to the playlist generation problem, based on integer
linear programming and branch & bound techniques. Their
approach is able to handle only two types of constraints, and
is limited to Boolean metadata. The authors report results on
catalogues of limited size (400), and no indication is given on the
scalability, and on the possibility to introduce more complex -
and realistic - constraints. Additionally, the reported performance
is poor (35 seconds for generating playlists from a 400 title
catalogue on a Ultra 5 platform).

Other approaches have been proposed to generate playlists
based on similarity relations between music titles : the user
selects a few ”seed songs”, and the system generates a playlist of
songs that are similar to the seed songs. Several music similarity
measures have been studied for this purpose : timbre similarity
([5, 6]), collaborative filtering ([7, 8]), or machine learning from
existing playlists ([9]). These methods are intrinsically unable to
cope with sequence constraints such as the ones introduced above.
Furthermore, similarity relations - of any kind - can be seen as
specific forms of continuity constraints. These approaches are
therefore totally subsumed by the approach presented here.

In this paper, we present a novel solution to the automatic
playlist generation problem which scales up and handles arbitrar-
ily complex constraints. We report on the use of the technique on
a real music catalogue with real metadata.



2. PROBLEM STATEMENT

The problem we want to solve may be defined as follows. We
consider a playlist as a sequence � of variables ���������
	�	�	��� whose
values ��� can be taken from a finite, possibly very large, catalogue
of music titles. Each variable ��� represents the ����� item in the
playlist. The problem is to assign values to each variable so that
the resulting sequence satisfies a set of constraints chosen by the
user. The constraints may hold on properties of specific attributes
of the music titles. These attributes are typically musical metadata,
such as genre, tempo, duration, artist, etc. The issue of extracting
these metadata is out of the scope of this paper, and is addressed
for instance in [10].

2.1. Adaptive Search

The technique we propose is based on an adaptation of local search
techniques to constraint satisfaction, called adaptive search (see
Codognet [11]). The idea is to explore the search space by refining
progressively solutions, rather than by a complete enumeration. In
this context, constraints are seen as simple cost functions. The cost
of the constraints represents how ”bad” the constraint is satisfied,
for a given assignment of variables.

More precisely, we define:

- the cost �����������������! of a given variable ��� with value ��� ,
with respect to a given constraint � , which represents ”how
badly” ��� satisfies � ,

- the cost �������������� of a given variable ��� with value ��� ,
which is the weighted sum of its costs �����������������! with
respect to each constraint holding on ��� .

The algorithm works as follows:
" Start by a random assignment of values to variables (i.e. a

random sequence of music titles),
" Compute ���������#�$ , the total cost of the sequence. ���������#�$ 

is the sum of the variables’ costs �������������� .
" Repeat until ���������#�$ is below a given threshold:

- For each variable ��� , compute �������������� , i.e. the sum
of the �����������������! for all � holding on ���

- Find ��% , the ”worst variable” in the sequence, i.e.
whose cost is the highest,

- Find its best possible new value by trying succes-
sively all the values in the catalogue, and select the
value that minimizes ���������#�$ ,

- Assign this value to ��% .

Additionally, there is a provision for handling local minima,
through the use of a Tabu list: worst variables for which no value
can be found to decrease the total cost are labelled as Tabu for
a given number of iterations. This trick, along with a technique
inspired by simulated annealing, forces the algorithm to explore
other regions of the search space.

2.2. Definition of Global Constraints

The main interest of this algorithm is that constraints are simply
seen as cost functions, and hence are very easy to define. For
instance, the ”all different” constraint stating that all variables
should have different values is defined as follows:

AllDifferentCt.cost()
Return 1 - the number of different values in the
sequence divided by the size of the sequence

More complex constraints can be defined as easily. For in-
stance, the cardinality constraint on genre (e.g. ”the playlist
should contain at least 60% of instrumental titles”) is defined as
follows:
CardinalityCt.cost()
Return abs(actual number of values that have
the wished attribute - wished number of values)
divided by the size of the sequence

In practice, the cost functions are defined more efficiently,
by passing as argument the lastly modified variable to the
cost functions. This information is used to compute only the
differential cost, instead of the whole cost.

2.3. Pre-filtering

With certain constraints, e.g. ”equality” (”item #2 should be a
song by the Beatles”), or ”set membership” (”the genres of items
#5 to #8 should be one of & jazz, rock ' ”), the previous algorithm
clearly does not need to search through all values in the catalogue.
Therefore, we add a pre-filtering phase in which each variable �(�
is linked to a search domain )*� which is the whole catalogue by
default, but can also be a subset of the catalogue. For the previous
examples, )�� is the set of all songs by the Beatles, and ),+.- - - / is
the subset of all titles of jazz and rock. These domains can be
obtained very efficiently with existing database search techniques,
e.g. a simple ”select” query in a SQL database. Then, the later
adaptive search algorithm only has to look for possible values of a
variable ��� in its domain )*� .

3. EXPERIMENTS

3.1. The database

Experiments were performed in the context of the Cuidado Euro-
pean IST project ([10]). In this project we have setup a database
of 17,075 popular music titles, together with metadata extracted
automatically through different techniques. Metadata for each title
includes duration (in seconds), subjective energy (a float between
0 and 1), tempo (an integer between 60 and 180 bpm), artist, genre,
instrumentation (e.g. ”guitar”, piano”, ”singing”), performer con-
figuration (e.g. ”Rock band”, ”a capella”, ”Man”, ”Woman”, etc.),
vocal quality, etc.

3.2. Example

We give here a typical example of playlist generated by our
system : a 10 title playlist with ”All Different”, increasing tempo,
two cardinality constraints on genre (50% Folk,50% Rock), genre
continuity from item to item (”Folk/Rock” - ”Rock” is better than
”Folk/Blues” - ”Rock”), and genre distribution (items of the same
genre must be as separated as possible from one another).
1) Free Ride - Nick Drake - tempo 64 - genre Folk0
Pop

2) Shadowboxer - Fiona Apple - tempo 71 - genre
Rock

0
Folk

0
Alternatif

3) The Future - Leonard Cohen - tempo 72 - genre
Folk

0
Pop



4) To your love - Fiona Apple - tempo 80 - genre
Rock

0
Folk

0
Alternatif

5) City of New Orleans - Arlo Guthrie - tempo 85
- genre Folk

0
Rock

6) Carrion - Fiona Apple - tempo 88 - genre Rock0
Folk

0
Alternatif

7) Tom’s Dinner - Suzanne Vega - tempo 123 -
genre Folk

0
Pop

8) Talkin about a revolution - Tracy Chapman -
tempo 125 - genre Rock

0
Folk

9) The Boy In The Bubble - Paul Simon - tempo 138
- genre Folk

0
Pop

10) Quand plus rien ne va - Mes souliers sont
rouges - tempo 144 - genre Rock

0
Alternatif

0
Folk

An exact solution was found in 256 iterations, and took 4
seconds. It is easy to check that the genre cardinality is correct
(5 folk, 5 rock), that the tempo is increasing and the genre
distribution constraint is also well satisfied. The two constraints
of genre continuity and distribution are contradictory, however
the system has found a solution by selecting the right subgenres
(Folk/Rock and Rock/Folk).

3.3. Quantitative evaluations

We report here systematic results on the convergence time of the
search algorithm, using the same constraint set as above in 3.2.

" For a given set of constraints, increasing the size of the
playlist (from 4 to 50) does not increase significantly the
convergence time. The search algorithm does not explore
the sequence space extensively, but starts at random and ex-
ecute a number of ”best local moves”, which number does
not seem to grow with the sequence’s size.

" The convergence time grows linearly with the size of the
database, since all possible values are tested on each it-
eration. Figure 1 shows the time to converge to an exact
solution to the problem stated above with database sizes
growing from 200 to 200,000. Solutions for sizes smaller
than 1000 are computed in less than 100 ms, which is sev-
eral hundred times faster than previous attempts [1, 2, 3, 4].
For our 20,000 item database, the mean convergence time
is ��	 ��� second. To show that the technique scales up to
very large databases, we artificially duplicated the original
database to reach up to 200,000 items, taking about 20 sec-
onds for an exact solution. As shown in the next paragraph,
this time can be greatly reduced by considering only ap-
proximate solutions.

One strong advantage of our algorithm over the previous attempts
described in section 1 is that it tries to minimize a cost-function.
Thus, it can give approximate solutions at any time. Figure 2
shows a typical convergence profile: the convergence speed is
very fast at the beginning, and a nearly exact solution is found
in very few iterations (e.g. going down from cost = 500 to cost
= 2 in the first 5 iterations). Most of the total time is then spent
in simulated annealing to try to find the exact solution. (found at
iteration # 68 in Figure 2).

A statistical study of the mean ratio between the time to find
a cost-2 approximate solution and the time to find an cost-0 exact

Figure 1: Convergence time vs the size of the database

Figure 2: A typical profile of convergence, showing the costs of
the best playlist vs the number of iterations so far

solution can be seen in Figure 3. It shows that regardless of the
size of the database, we can improve the performance shown
earlier by more than 75% by returning the first ”best” approximate
solution.

The following playlist shows such an approximate solution to
the problem stated above, in a 150,000 title database. It can be
compared with the exact solution in 3.2. The playlist is found in 3
seconds, whereas the normal convergence time as shown in Figure
1 is about 12 seconds.
1) Free Ride - Nick Drake - tempo 64 - genre
Folk

0
Pop

2) Shadowboxer - Fiona Apple - tempo 71 - genre
Rock

0
Folk

0
Alternatif

3) The Future - Leonard Cohen - tempo 72 - genre
Folk

0
Pop

4) To your love - Fiona Apple - tempo 80 - genre
Rock

0
Folk

0
Alternatif

5) Carrion - Fiona Apple - tempo 88 - genre
Rock

0
Folk

0
Alternatif



Figure 3: Ratio between the convergence times to the first ”best”
approximate solution and to the exact solution, plotted versus the
database size. The median value is 26%

6) Last Night of the World - Bruce Cockburn -
tempo 119 - Genre Folk
7) Heal the world - Michael Jackson - tempo 128 -
genre Rock

0
Funk

8) City of New Orleans - Arlo Guthrie - tempo 85
- genre Folk

0
Rock

9) The Sound of crying - Prefab Sprout - tempo
118 - genre Rock
10) It’s all in the game - Art Garfunkel - tempo
150 - genre Folk

0
Pop

One can see that the approximate solution has fallen in some
local minima: the tempo does not increase globally, but increases
on two intervals (from item 1 to 7, and again from 8 to 10). Genre
distribution fails between items 3 and 4, and genre continuity fails
between items 6 and 7. However, in many applications, such ap-
proximate solutions are sufficient. If more computing time is avail-
able, the system can continue to run in a separate thread, and pro-
gressively refine the solution.

3.4. A word about qualitative evaluation

The works on playlist generation based on music similarity [5, 6, 7,
8, 9] mentioned in section 1 often try to evaluate the user satisfac-
tion with the playlists they generate (e.g. how many songs in the
playlists are judged similar to the seed songs by the average user).
This is in fact a qualitative evaluation of a similarity measure, not
of the playlist generation process (which in itself is trivial). Since
our system works with any, arbitrarily complex set of constraints
(which subsumes any kind of similarity measure), we cannot eval-
uate any intrinsic user satisfaction. More precisely, the quality of
the playlists generated with regards to some user preferences (i.e.
a given set of constraints) depends on the quality of the musical
metadata (descriptors and similarity measures) involved in these
preferences.

3.5. Further Work

Current work focuses on the design of simple interfaces that al-
lows the specification of complex constraints graphically. More-

over, the good performance obtained (especially the very fast con-
vergence to an approximate solution) makes possible interactive
playlist generation, through relevance feedback techniques. In this
context, the user may incrementally build playlists by refining the
constraint set, add or remove some songs at each step.

4. CONCLUSION

We have introduced a technique for generating playlists from large
music catalogues that satisfy arbitrarily complex constraints. Our
approach is based on the use of adaptive search techniques, and the
design of generic constraint classes such as cardinality and distri-
bution. We have illustrated our system with a non-optimized Java
prototype on a realistic music catalogue, with automatically ex-
tracted metadata. This playlist generation facility is a key feature
of the content-based music browser developed in the context of
the Cuidado European Project [10]. The optimized version of our
system should allow almost real time solutions on realistic music
catalogues.

5. REFERENCES

[1] F. Pachet, P. Roy, and D. Cazaly, “A combinatorial approach
to content-based music selection,” in Proc. of IEEE Interna-
tional Conference on Multimedia Computing and Systems,
Firenze (It), Vol. 1 pp. 457-462, 1999.

[2] M. Alghoniemy and A.H. Tewfik, “Personalized music dis-
tribution,” in Proc. IEEE International Conference on Acous-
tic, Speech and Signal Processing, ICASSP’00, Turkey, June
2000.

[3] M. Alghoniemy and A.H. Tewfik, “User-defined music se-
quence retrieval,” in Proc. the eighth ACM International
Multimedia Conference, Part II, Los Angeles, November
2000.

[4] M. Alghoniemy and A.H. Tewfik, “A network flow model for
playlist generation,” in Proc. IEEE International Conference
Multimedia and Expo 2001 Japan, August 2001.

[5] B. Logan and A. Salomon, “A music similarity function
based on signal analysis,” in Proceedings of of IEEE Inter-
national Conference on Multimedia and Expo (ICME), 2001.

[6] J.-J. Aucouturier and Pachet F., “Finding songs that sound
the same,” in submitted to ACM Multimedia, 2002.

[7] J. C. French and D. B. Hauver, “Flycasting: On the fly broad-
casting,” in Proc. WedelMusic Conference, Firenze, Italy,
November 2001.

[8] F. Pestoni, J. Wolf, A. Habib, and A. Mueller, “Karc: Radio
research,” in Proc. WedelMusic Conference, Firenze, Italy,
November 2001.

[9] J. Platt, C. Burges, S. Swenson, C. Weare, and A. Zheng,
“Learning a gaussian process prior for automatically gener-
ating music playlists,” Advances in Neural Information Pro-
cessing, to appear.

[10] F. Pachet, “Metadata for music and sounds: The cuidado
project,” in Proceedings of the CBMI Workshop, University
of Brescia, September 2001.

[11] P. Codognet and D. Diaz, “Yet another local search method
for constraint solving,” in Proceedings of the AAAI Fall 2001
Symposium, Cape Cod, MA, November 2001.


