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Abstract

This paper presents algorithms that allow a robot to express its emotions by modulating the

intonation of its voice. They are very simple and efficiently provide life-like speech thanks to

the use of concatenative speech synthesis. We describe a technique which allows to

continuously control both the age of a synthetic voice and the quantity of emotions that

are expressed. Also, we present the first large-scale data mining experiment about the

automatic recognition of basic emotions in informal everyday short utterances. We focus on

the speaker-dependent problem. We compare a large set of machine learning algorithms,

ranging from neural networks, Support Vector Machines or decision trees, together with 200

features, using a large database of several thousands examples. We show that the difference of

performance among learning schemes can be substantial, and that some features which were

previously unexplored are of crucial importance. An optimal feature set is derived through the

use of a genetic algorithm. Finally, we explain how this study can be applied to real world

situations in which very few examples are available. Furthermore, we describe a game to play

with a personal robot which facilitates teaching of examples of emotional utterances in a

natural and rather unconstrained manner.

r 2002 Elsevier Science Ltd. All rights reserved.

Keywords: Emotions; Speech; Robots; Emotion production; Emotion recognition

1. Introduction

Recent years have been marked by the increasing development of personal robots,
either used as new educational technologies (Druin and Hendler, 2000) or for pure
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entertainment (Fujita and Kitano, 1998; Kusahara, 2000). Typically, these robots
look like familiar pets such as dogs or cats (e.g. the Sony AIBO robot), or sometimes
they take the shape of young children such as the humanoids SDR3-X (Sony). The
interactions with these machines are radically different from the way we interact with
traditional computers. So far humans have been learning to use very unnatural
conventions and devices such as keyboards or dialog windows, and need to know
how computers work to be able to use them. In contrast, personal robots should try
themselves to learn the natural conventions (such as natural language or social rules
like politeness) with the appropriate modalities (such as speech or touch) that
humans have been using for thousands of years.
Among the capabilities these personal robots need, the most basic is the ability to

grasp human emotions (Picard, 1997), and in particular, they should be able to
recognize human emotions as well as to express their own emotions. Indeed,
emotions are not only crucial to human reasoning, but they are central to social
regulation (Halliday, 1975) and in particular to control dialog flows. Emotional
communication is both primitive and efficient enough so that we use it a lot when we
interact with pets, in particular when we tame them. This is also certainly what
allows children to bootstrap language learning (Halliday, 1975) and it should be
inspiring to teach robots natural language.
Apart from the words that we use, we express our emotions in two main ways: the

modulation of facial expression (Ekman, 1982) and the modulation of the intonation
of the voice (Banse and Sherer, 1996). Whereas research about automated
recognition of emotions in facial expressions is now very rich (Samal and Iyengar,
1992), research dealing with the speech modality, both for automated production
and recognition by machines, has only been active for very few years (Bosh, 2000). In
this paper, we present the results of our research which provides robots with the
means to express emotions vocally and to enable them to recognize basic emotional
information in its caretaker’s voice. Both of these research aspects are original.
Unlike most existing work in production, we work with cartoon-like meaningless
speech which has different needs and constraints than trying to produce naturally
sounding adult-like normal emotional speech. For example we would like the
emotions to be recognized by subjects of different cultural or linguistic background.
Our work has similarities to Breazeal (2001), but we use concatenative speech
synthesis and our algorithm is simpler and totally specified. As far as the recognition
of emotions is concerned, we present here a large-scale data mining experiment in
which we compare most of the standard machine learning algorithms and explore the
value of 200 different features. As shown below, we found some new features which
seem to be more efficient than the ones traditionally used in the literature. All the
work presented here is based on the use of freely available software and thus can be
reproduced with minor difficulties. A web site1 containing some accompanying
material such as sounds and graphs is also available.
The next section presents general information about the acoustic correlates of

emotion in speech, which form the basis of our work. Section 3 presents our

1www.csl.sony.fr/py
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algorithm for the production of emotion as well as its validation with human
subjects. Section 4 presents the results of our data mining experiment concerning
learning algorithms and useful features in the recognition of emotions in the human
voice.

2. The acoustic correlates of emotions in human speech

It is possible to achieve our goal only if there are some reliable acoustic correlates
of emotion/affect in the acoustic characteristics of the signal. A number of
researchers have already investigated this question (Banse and Sherer, 1996;
Burkhardt and Sendlmeier, 2000). Their results agree on the speech correlates that
come from physiological constraints and correspond to broad classes of basic
emotions, but disagree and are unclear when one looks at the differences between the
acoustic correlates of fear and surprise or boredom and sadness. Indeed, certain
emotional states are often correlated with particular physiological states (Picard,
1997) which in turn have quite mechanical and thus predictable effects on speech,
especially on pitch, (fundamental frequency F0) timing and voice quality. For
instance, when one is in a state of anger, fear or joy, the sympathetic nervous system
is aroused, the heart rate and blood pressure increase, the mouth becomes dry and
there are occasional muscle tremors. Speech is then loud, fast and enunciated with
strong high frequency energy. When one is bored or sad, the parasympathetic
nervous system is aroused, the heart rate and blood pressure decrease and salivation
increases, which results in slow, low-pitched speech with little high-frequency energy
(Breazeal, 2001).
Furthermore, the fact that these physiological effects are rather universal means

that there are common tendencies in the acoustical correlates of basic emotions
across different cultures. This has been precisely investigated in studies like Abelin
and Allwood (2000) or Tickle (2000) who made experiments in which American
people had to recognize the emotion of either another American or a Japanese
person only using the acoustic information (the utterances were meaningless, so
there were no semantic information). Reversely, Japanese listeners were asked to
decide which emotions other Japanese or American people were trying to convey.
Two results were produced: (1) there was only little difference between the
performance in detecting the emotions conveyed by someone speaking the same
language or the other language, and this is true for Japanese as well as for American
subjects; (2) subjects were far from being perfect in the recognition in the absolute:
the best recognition score was 60 percent. (This result could be partly explained by
the fact that subjects were asked to pronounce nonsense utterances, which is quite
unnatural, but is confirmed by studies asking people to utter semantically neutral but
meaningful sentences (Burkhardt and Sendlmeier, 2000).) The first result indicates
that our goal to build a machine that can express affect, both with meaningless
speech and in a way recognizable by people from different cultures with the accuracy
of a human speaker, is attainable in theory. The second result shows that we should
not expect perfect recognition, and compare the performance of the machine in

O. Pierre-Yves / Int. J. Human-Computer Studies 59 (2003) 157–183 159



relation to human performance. The fact that humans are not so good is mainly
because several emotional states have very similar physiological correlates and thus
acoustic correlates. In actual situations, we solve the ambiguities by using the
context and/or other modalities. Indeed, some experiments have shown that the
multi-modal nature of the expression of affect can lead to a McGurk effect for
emotions (see Massaro, 2000): a face showing emotion A and speaking with
emotion B is perceived as expressing either only one of the two emotions or
sometimes even a third one. Also, different contexts may lead people to interpret the
same intonation as expressing different emotions for each context (see Cauldwell,
2000). These findings indicate that we shall not try to have our machine generate
utterances that make fine distinctions ; only the most basic affect categories should
be investigated.
A number of experiments using computer-based techniques of sound manipula-

tion have been conducted to explore which particular aspects of speech reflect
emotions with most saliency (Williams and Stevens, 1972; Murray and Arnott, 1993;
Banse and Sherer, 1996; Burkhardt and Sendlmeier, 2000). Basically they all agree
that the most crucial aspects are those related to prosody: the pitch (or f0) contour,
the intensity contour and the timing of utterances. Some more recent studies have
shown that voice quality (Gobl and Chasaide, 2000) and certain co-articulatory
phenomena (Kienast and Sendlmeier, 2000) are also reasonably correlated with
certain emotions.

3. The generation of cartoon emotional speech

3.1. Goal

The goal of this research is quite different from most of the existing work in
synthetic emotional speech. Whereas traditionally (see Cahn, 1990; Iriondo and
Gauss, 2000; Edgington, 1997; IIda et al., 2000) the aim is to produce adult-like
naturally occurring emotional speech, here the target is to provide a young creature
with the ability to express its emotions in an exaggerated/cartoon manner, while
using nonsense words (this is necessary because we use this in experiments with
robots to which we try to teach language: the use of intonation as a pre-linguistic
ability to express basic emotions serves to bootstrap learning. Yet, we will not give
more details about this point since it falls far beyond the scope of this paper). The
speech should sound lively, not repetitive, and similar to infants’ babbling. Finally,
subjects from very different linguistic and cultural background should be able to
recognize easily the creature’s emotions.
Additionally, we want to have algorithms as simple as possible and to control as

few parameters as possible: what is the simplest manner to transmit emotions with
prosodic variations ? Also, the speech had to be both of high quality and
computationally cheap to generate (robotic creatures have usually only very
scarce resources). For these reasons, we chose to use a concatenative speech
synthesizer (Dutoit and Leich, 1993), the MBROLA software freely available on
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the web,2 which is an enhancement of more traditional PSOLA techniques (it
produces less distortions when pitch is manipulated). The price of quality is that
minimal control over the signal is possible, but this is compatible with our need of
simplicity.
Because of all these constraints, we have chosen to investigate only five emotional

states so far, corresponding to calm and one for each of the four regions defined by
the two dimensions of arousal and valence: anger, sadness, happiness and comfort.

3.2. Existing work

As said above, previously existing work has concentrated on adult-like naturally
sounding emotional speech, and most projects have tackled only one language.
Many of them (see Cahn, 1990; Murray and Arnott, 1995; Burkhardt and
Sendlmeier, 2000) have used formant synthesis as a basis, mainly because it allows
detailed and rich control of the speech signal: one can control voice quality, pitch,
intensity, spectral energy distributions, harmonics-to-noise ratio or articulatory
precision which allows modeling many co-articulation effects occurring in emotional
speech. The drawbacks of formant synthesis are that quality of the produced speech
remains unsatisfying (voices are still quite unnatural). Furthermore, the algorithms
developed in this case are complicated and necessitate the control of many
parameters, which renders their fine tuning quite impractical (see Cahn, 1990 for a
discussion). Unlike these works, (Breazeal, 2001) has described a system which is
very similar to ours: based on (Cahn, 1990), she made a system for her robot Kismet
that allows it to produce meaningless emotional speech. Like the work of Cahn, it
relies heavily on the use of a commercial speech synthesizer of which many
parameters are often high level (e.g. specification of the pitch baseline of a sentence)
and implemented in an undocumented manner. As a consequence, this is hardly
reproducible if one wants to use another speech synthesis system. On the contrary,
the algorithm we will describe here is completely specified, and can be used directly
with any PSOLA-based system (besides, the one we used here can be freely
downloaded, see above). Also, Breazeal’s work used formant synthesis, which does
not correspond to our constraints (we cannot control as many parameters as she
could, due to the use of concatenative speech synthesis).
Because of their very superior quality, concatenative speech synthesizers (Dutoit

and Leich, 1993) have gained popularity in recent years, and have been used in some
cases. This is a challenge significantly more difficult than with formant synthesis
since only the pitch contour, the intensity contour and the duration of phonemes can
be controlled (and yet, there are narrow constraints over this control). To our
knowledge, two approaches have been presented in the literature. The first one, as
described in IIda et al. (2000), uses one speech database for each emotion as the basis
of the pre-recorded segments to be concatenated in the synthesis. This gives
satisfying results but is not practical if one wants to change the voice or add new
emotions or even control the degree of emotions. The second approach consists of

2MBROLA web page: http://tcts.fpms.ac.be/synthesis/mbrola.html
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(see for example Edgington, 1997) making databases of human produced emotional
speech, then compute the pitch and intensity contours and then apply them to
sentences to be generated. This brings some problems of alignments, partially solved
using syntactic similarities between sentences. Edgington (1997) showed that this
method gave quite unsatisfying results (speech sounds unnatural and emotions are
not very well recognized by human listeners). Finally, these two methods are
unapplicable to our work since there would be great difficulties to make speech
databases of exaggerated/cartoon baby voices.
The approach presented here is completely generative (it does not rely on the

recording of human speech that would serve as input), and it uses concatenative
speech synthesis as a basis. We will show that it allows to express emotions as
efficiently as with formant synthesis, but with more simple controls and the liveliness
of concatenative speech synthesis.

3.3. A simple and complete algorithm

Our algorithm consists in generating a meaningless sentence and specifying the
pitch contour and the duration of phonemes (the rhythm of the sentence). For the
sake of simplicity, for the pitch we specify only one target per phoneme. We could
have fine control over the intensity contour, but as we will show, this is not
necessary, since manipulating the pitch can create the auditory illusion of intensity
variations. We only control the overall volume of sentences. Our program generates
a file which is fed into the MBROLA speech synthesizer. This file format looks like:

l 448 80 150 ;; means: phoneme ‘‘l’’ duration 448 ms,
;; try to reach 180 Hz at 80 percent of the phoneme duration

9B 557 80 208

b 131 80 179

@ 77 80 200

b 405 80 169

o 537 80 219

v 574 80 183.0

a 142 80 208.0

n 131 80 221.0

i 15 80 271.0

H 117 80 278.0

E 323 80 200

The first step of the algorithm is to generate a sentence composed of random words,
each word being composed of random syllables (of type CV or CCV). Initially, the
duration of all phonemes is constant and the pitch of each phoneme is constant equal
to a pre-determined value (noise is added, which is crucial if one wants the speech to
sound natural; we tried many different kinds of noise, and this does not make
significant differences; for the perceptual experiment reported below, gaussian noise
was used). Then the pitch and duration information of this sentence are altered so as
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to yield a particular affect. Deformations consist of deciding that a number of
syllables become stressed and in applying a certain stress contour on these syllables
as well as some duration modifications. Also, all syllables are applied a certain
default pitch contour and duration deformation. For each phoneme, we give only
one pitch target fixed at 80 percent of the duration of the phoneme. Let us now state
more precisely the different steps of the algorithm (words in capital letters denote
parameters of the algorithm that need to be set for each emotion):

1 Choose the number of words of the sentence

(random number between 2 and MAXWORDS);
2 Create the words:

3 For each word, choose the number of syllables

4 (random number between 2 and MAXSYLL), and
5 decides with probability PROBACCENT whether

the word is accented or not;
6 If the word is accented then choose randomly one

7 of its syllables and mark it as accented;
8 Create the syllables :
9 For each syllable

10 choose whether this is a CV or a CCV syllable

11 (CV syllable have probability 0.8);
12 instantiate the C’s and V by picking randomly a

13 consonnant or vowel in the phoneme database;
14 set the duration of each phoneme to MEANDUR + random(DURVAR);
15 let e ¼ MEANPITCH + random(PITCHVAR)
16 set the pitch of consonnants to e - PITCHVAR

17 set the pitch of vowels to e + PITCHVAR

18 if the syllable is accented then

19 add DURVAR to the duration of its phonemes;
20 if DEFAULTCONTOUR ¼ rising

21 set the pitch of consonants to MAXPITCH - PITCHVAR

22 set the pitch of the vowel to MAXPITCH + PITCHVAR

23 if DEFAULTCONTOUR ¼ falling

24 set the pitch of consonants to MAXPITCH + PITCHVAR

25 set the pitch of the vowel to MAXPITCH - PITCHVAR

26 if DEFAULTCONTOUR ¼ stable

27 set the pitch of phonemes to MAXPITCH

28

29 Change the contour of the last word:
30 if not LASTWORDACCENTED

31 let e ¼ PITCHVAR/2

32 if CONTOURLASTWORD ¼ FALLING

33 for each syllable in word

34 add -(i+1)*e pitch of phonemes to their value

(i ¼ index of phoneme in syllable)
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35 e ¼ e + e

36 if CONTOURLASTWORD ¼ RISING

37 for each syllable in word

38 add +(i+1)*e pitch of phonemes to their value

39 (i ¼ index of phoneme in syllable)
40 e ¼ e + e

41 else

42 if CONTOURLASTWORD ¼ FALLING

43 for each syllable in word

44 add DURVAR to the duration of its phonemes;
45 set the pitch of consonants to MAXPITCH + PITCHVAR

46 set the pitch of the vowel to MAXPITCH - PITCHVAR

47 if CONTOURLASTWORD ¼ RISING

48 for each syllable in word

49 add DURVAR to the duration of its phonemes;
50 set the pitch of consonants to MAXPITCH - PITCHVAR

51 set the pitch of the vowel to MAXPITCH + PITCHVAR

52

53 Set the loudness volume of the complete sentence to VOLUME.

A few remarks can be made concerning this algorithm. First, it is useful to have
words instead of just dealing with random sequences of syllables because it avoids to
put accents on adjacent syllables too often. Also it allows easier expression of the
operations done on the last word. Typically, the maximum number of words in a
sentence (MAXWORDS) does not depend on the particular affect, but is rather a
parameter than can be freely varied. The stochastic parts are crucial in the algorithm:
on the one hand, it produces, for a given set of parameters, a different utterance each
time (mainly because of the random number of words, the random constituents of
phonemes of syllables or the probabilistic attribution of accents); on the other hand,
details like adding noise to the duration and pitch of phonemes (see lines 14 and 15
where random(n) means ‘‘random number between 0 and n’’) are fundamental to the
naturalness of the vocalizations (if it remains fixed, then one perceives clearly that
this is a machine talking). Finally, let us remark that here accents are implemented
only by changing the pitch and not the loudness. Nevertheless, it gives satisfying
results since in human speech an increase in loudness is correlated to an increase in
pitch. Of course here we had to exaggerate the pitch modulation, but this is fine since
as we explained earlier, our goal is not to reproduce faithfully the way humans
express emotions, but to produce a lively and natural caricature of the way they
express emotions (cartoon-like). Finally, a last step is added to the algorithm in order
to get a voice typical of a young creature: the sound file sampling rate is overriden by
setting it to 30 000 or 35 000 Hz as compared to the 16 000 Hz produced by
MBROLA (this is equivalent to playing the file quicker). Of course, so that the
speech rate remains normal, it is initially made slower in the program sent to
MBROLA. Only the voice quality and pitch are modified. This last step is necessary
since no child voice database exists for MBROLA. So a female adult voice was chosen.
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Now that we have described in details the algorithm, let us give (see Table 1)
examples of the parameters’ values obtained for five affects: calm, anger, sadness,
happiness, comfort. We obtained these parameters first by looking at studies
describing the acoustic correlates of each emotion (e.g. Murray and Arnott, 1993;
Burkhardt and Sendlmeier, 2000), then we deduced some initial value for the
parameters and modified them by hand,by trial and error until it gave a satisfying
result. Theses results give us a model of intonation contours for the different
emotions:

* Happiness: The mean pitch of the utterance is high, has a high variance, the
rhythm is rather fast, few syllables are accented, the last word is accented, and the
contours of all syllables are rising.

* Anger: The mean pitch is high, has a high variance, the rhythm is fast, with little
variance of phoneme durations, a lot of syllables are accented, the last word is not
accented, the pitch contours of all syllables are falling.

* Sadness: The mean pitch is low, has a low variance, the rhythm is slow, with high
variance of phoneme durations, very few syllables are accented, the last word is
not accented, the contours of all syllables are falling.

* Comfort: The mean pitch is high but less than happiness, the rhythm is slow, with
a high variance of phoneme durations, very few syllables are accented, the last
syllable is accented, and the contours of syllables are rising.

Table 1

Parameter values for different emotions

Calm Anger Sadness

LASTWORDACCENTED NIL NIL NIL

MEANPITCH 280 450 270

PITCHVAR 10 100 30

MAXPITCH 370 100 250

MEANDUR 200 150 300

DURVAR 100 20 100

PROBACCENT 0.4 0.4 0

DEFAULTCONTOUR RISING FALLING FALLING

CONTOURLASTWORD RISING FALLING FALLING

VOLUME 1 2 1

Comfort Happiness

LASTWORDACCENTED TRUE TRUE

MEANPITCH 300 400

PITCHVAR 50 100

MAXPITCH 350 600

MEANDUR 300 170

DURVAR 150 50

PROBACCENT 0.2 0.3

DEFAULTCONTOUR RISING RISING

CONTOURLASTWORD RISING RISING

VOLUME 2 2
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One has to keep in mind that these models that we built certainly do not correspond
to any existing human system of prosody variation to express emotion. This is
because our goal was to build cartoon stylized emotional speech that can be
recognized by subjects speaking different languages. These models predict the human
response to this kind of speech, but not how humans express themselves emotionally.
We think that if the goal is to build a system which makes human react emotionally,
then one should not try to exactly copy humans but rather invent speech that we
know is spoken by a nonhuman creature. Indeed, trying to copy humans explicitly
provokes some expectations from users. These expectations are a drawback since
they will not be matched quite often (because the task is just to hard for the
machine), and lead to user frustration. The consequence of this approach is that
solving the problem of cartoon emotional speech generation will not necessarily help
us to solve the problem of recognition of emotions in human speech. As we will see in
the second part of this paper, data mining techniques use features quite different to
recognize emotions in human speech than the one we control to generate cartoon
emotional speech.

3.4. Validation with human subjects

In order to evaluate the algorithm described in Section 3.3, an experiment was
conducted in which human subjects were asked to describe the emotion they felt
when hearing a vocalization produced by the system.3 More precisely, each subject
first listened to 10 examples of vocalizations, with emotion randomly chosen for each
example, so that they got used to the voice of the system. Then they were presented a
sequence of 30 vocalizations (unsupervised serie), each time corresponding to an
emotion randomly chosen, and they were asked to make a choice between ‘‘Calm’’,
‘‘Anger’’, ‘‘Sadness’’, ‘‘Comfort’’ and ‘‘Happiness’’. They could hear each example
only once. In a second experiment with different subjects, they were initially given
four supervised examples of each emotion, which means they were presented
vocalization together with a label of the intended emotion. Again they were
presented 30 vocalizations that they had to describe with one of the words cited
above. Eight naive adult subjects were present in each experiment: three French
subjects, one English subject, one German subject, one Brazilian subject, and two
Japanese subjects (none of them was familiar with the research or had special
knowledge about the acoustic correlates of emotion in speech). Table 2 shows the
results for the unsupervised serie experiment. The number in the (rowEm,
columnEm) means the percentage of times a vocalization intended to represent
rowEm emotion was perceived as columnEm emotion. For instance in Table 2, we
see that 76 percent of vocalizations intended to represent sadness were effectively
perceived as sadness (Table 3).
The results of the unsupervised serie experiment have to be compared with

experiments done with human speech instead of machine speech. They show that for
similar setups, like in Tickle (2000) in which humans were asked to produce nonsense

3Some sample sounds are available on the associated web page www.csl.sony.fr/py
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emotional speech, at best humans have 60 percent success, and most often less. Here
we see that the mean rate of correct classification is 57 percent, which compares well
to human performance. The errors are of two types: the most frequent one is related
to a confusion with the neutral/calm emotion. This is the less annoying error since it
does not involve a confusion between aroused/not aroused and negative/positive.
There are also (but much less) confusion between anger and happiness, but not
between comfort and sadness, which means that confusions about valence appear
only for aroused speech. Finally, there are minimal confusion between aroused and
not aroused speech.
A second unsupervised experiment was performed, similar to the one reported

here except that the calm affect was removed. A mean success of 75 percent was
obtained, which is a great increase and is much better than human performance. This
can be explained in part by the fact that here the acoustical correlates of emotions
are exaggerated. The results presented here are similar to those reported in Breazeal
(2001), which strongly suggests that using a concatenative synthesizer with a lot less
parameters still allows conveyance of emotions (and in general provides more life-
like sounds).
Examination of the supervised serie shows that with only a few vocalizations for

their intended emotion, results improve very much: a 77 percent success rate is
achieved. We see that confusions involving the neutral emotion and confusions
between anger and happiness have nearly disappeared. Similarly, we made an
experiment where the calm affect was removed, which gave a mean success of 89
percent. This supervision is something that can be implemented quite easily with
digital pets: many of them use combinations of color LED lights to express their
‘‘emotions’’. The present experiment shows that it would be enough to see visually

Table 3

Confusion matrix for the supervised series

Calm Anger Sadness Comfort Happiness

Calm 76 3 4 14 3

Anger 0 92 0 0 8

Sadness 8 0 76 16 0

Comfort 15 0 5 77 3

Happiness 4 20 0 8 68

Table 2

Confusion matrix for the unsupervised series

Calm Anger Sadness Comfort Happiness

Calm 38 1 1 30 30

Anger 0 65 0 0 35

Sadness 20 0 76 4 0

Comfort 45 0 16 39 0

Happiness 5 30 0 5 60
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the robot express emotions a few times while it is uttering emotional sentences, and
then be able to recognize its intended emotion later just by listening to it.

3.5. Varying continuously the age of the voice and the degree of emotion

Typically, robotic pets are initially ‘‘babies’’. They grow up and develop along
with time and interactions with humans (or other pets). It seems natural that their
voice evolves accordingly and in a continuous manner. To our knowledge, this
problem has not previously been addressed in the literature. Generally, one has
several voice databases to choose from (for the segments used by the speech
concatenizer), and corresponding to different ages. Yet, on one hand each database
is made with a different person (having a voice of the desired age), which means that
it is clear to the human ear that the voice is also from a different person. This is not
acceptable in our case. On the other hand, only a limited number of databases are
available (because it is not practical to make a lot of them and requires a lot of
memory), which means that age cannot vary smoothly.
We found a solution to this problem (see the associated web page for samples).

When one has a vocalization signal, in order to change only the age of the voice, it is
enough to override the sample rate and then use the PSOLA algorithm to modify the
length of the new sound so that it remains the same as in the original sound. In our
case, the ‘‘default’’ age is a signal sampled at 32 000 Hz (used in the validation
experiment in the next section): if we want to make the signal sound ‘‘older’’, then we
can override the sample rate (e.g. 28 000 Hz). We then use PSOLA to shorten the
signal back to its original time length.
Furthermore, it would be useful if robotic pets could vary the degrees of emotion

that they express: for instance, they could make a difference between happy and very
happy. Again, we did not find this question addressed anywhere in the literature. We
propose to add to each set of parameters corresponding to the ‘‘normal’’ degree of
emotion (those described in the previous section), an associated set of similar
parameters corresponding to the highest degree of emotion for a given emotion (e.g.
very very happy). For example, to the parameter MEANPITCH ð¼ 400Þ of (normal)
happiness, we add a parameter MEANPITCH2 ð¼ 50Þ; then we define a variable
delta taking values in ½�1; 1� which determines the degree of one emotion: 0 is
normal, 1 maximum and �1 minimum. When a vocalization is to be generated, delta

has to be set and the actual mean pitch of the utterance becomes: MEANPITCH +
delta*MEANPITCH2. In fact, we are making a local linear models of emotion
degrees. This experimentally gives satisfying results, and requires the specification of
only one additional set of parameters, while allowing an infinite range of nuances.

4. Validation of age and emotion degree control

In order to validate the techniques presented in the precedent part, we made some
tests with the eight human subjects used above. As far as age control is concerned,
each subject was presented pairs of utterances with a random emotion and asked
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which one is older than the other. The re-sampling frequencies were taken in the
range ½25 000; 35 000� Hz: Each subject was presented 50 pairs of utterances (the
difference of re-sampling frequency was always superior to 1000 Hz and random).
The mean rate of correct age ranking was 92.4 percent, which is satisfying.
To evaluate the recognition of the degree of emotion, the same test was repeated

except that the age was fixed ð32 000 HzÞ; and pairs consisted of two utterances of the
same emotion (but each time random), with a different random degree. Human
subjects had to evaluate which utterance expressed a higher degree the emotion. Fifty
pairs were presented to each subject. The mean rate of correct ranking was 85.1
percent, which is again satisfying.

5. The recognition of emotions in human speech

5.1. Goal

It is necessary that robotic pets can also recognize the emotions expressed by the
humans who are interacting with them. Human beings generally use all the context
and modalities, from lexic to facial expression and intonation. Unfortunately, this is
not an easy thing for a machine in an uncontrolled environment: for instance robust
speech recognition in such situations is out of reach for current systems. Facial
expression recognition needs both computational resources and video devices that
robotic creatures most often do not have. For this reason, we investigated how far
we could go by using only prosodic information in the voice. Furthermore, the
speech we are interested in is the kind that occurs in everyday conversations, which
means short informal utterances, as opposed to the speech produced when one is
asked to read a paragraph with emotions from a newspaper. Four broad classes of
emotional content were studied: joy/pleasure, sorrow/sadness/grief, anger and calm/
neutral.

5.2. Existing work

As opposed to the automatic recognition of emotions with facial expression
(Samal and Iyengar, 1992), research using the speech modality is still very young
(Bosh, 2000). The first studies (e.g. Murray and Arnott, 1993; Williams and Stevens,
1972) did not try to get an efficient machine recognition device, but rather were
searching for general qualitative acoustic correlates of emotion in speech (for
example: happiness tends to make the mean pitch of utterances higher than in calm
sentences). More recently, the increasing awareness that affective computing has an
important industrial potential (Picard, 1997) pushed research towards the quest for
performance in automatic recognition of emotions in speech (Bosh, 2000). Yet, to
our knowledge, no large-scale study using the modern tools developed in the data
mining and machine learning community has been conducted. Indeed, most often,
either only one or two learning schemes are tested (e.g. Polzin and Waibel, 2000;
Slaney and McRoberts, 1998; Breazeal, 2001) or very few and simple features are

O. Pierre-Yves / Int. J. Human-Computer Studies 59 (2003) 157–183 169



used (Polzin and Waibel, 2000; Slaney and McRoberts, 1998; Breazeal, 2001; Whiteside,
1998), or only small databases are used—less than 100 examples per speaker (as in
Breazeal, 2001; McGilloway et al., 2000; Slaney and McRoberts, 1998) which means
that the power of some statistical learning schemes may have been overlooked.
Only (McGilloway et al., 2000), using more than the traditional/standard set of

features from the rest of the literature (mean, max, min, max–min, variance of the
pitch and intensity distributions, lengths of phonemic or syllabic segments, or pitch
rising segments), have tried using data mining. This work has some drawbacks: (1)
only three kinds of learning schemes were used—support vector machines, gaussian
mixtures and linear discriminants—which are far from being the best to deal with
data in which there are possibly many irrelevant features. In particular this does not
allow automatic derivation smaller set of features with optimal efficiency; (2) the
feature set was explored by choosing one learning scheme and by iteratively
removing less useful features for classification: on one hand, this is rather ad hoc
since it is linked to a very particular learning scheme and selection procedure; on the
other hand, it does not allow detection of the fitness of groups of features. Finally,
their work is based on speech databases made by asking human subjects to read
newspaper texts in an emotional manner. This does not correspond to our
constraints. To our knowledge, only two research groups have tried to build
automatic recognition machines of everyday speech (Breazeal, 2001; Slaney and
McRoberts, 1998). Yet, they only used very small databases, very few features and
two different learning algorithms. Finally, a general conclusion of this already
existing corpus of research is that recognition rates above 60 percent, even with only
four basic emotions, seem impossible if there are several speakers. The great speaker
variability has been described in (Slaney and McRoberts, 1998). As a conclusion, we
chose to focus only on speaker-dependent emotion recognition. This is not
necessarily a bad point from an industrial point of view since it is targeted to
robotic pets that may interact only with their caretakers (the fact that robots only
manage to recognize their owner could even be a positive feature, because it is a
source of complicity between a robot and its caretaker).
Our methodology is an extension of the work of (McGilloway et al., 2000) wherein

we use more features (including new and crucial ones), more learning schemes, and
more powerful feature space exploration tools. A very large database of six speakers
containing informal short emotional utterances is used. All experiments were
conducted using the freely available data mining software Weka,4 which implements
most of the standard data mining techniques.

5.3. The database

In order to have sufficiently large databases, we had to make some compromises
(the recording conditions as described in Slaney and McRoberts (1998) or Breazeal
(2001) were too impractical for us to make several thousands samples). So we used
six Japanese professional speakers (men and women), who are both voice actor/

4Weka web page: http://www.cs.waikato.ac.nz/~ml/
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actress and worked on many radio/TV commercials, Japanese dubbing of movies
and animations. They were asked to imitate everyday speech by pronouncing short
sentences or phrase like ‘‘Great !’’, ‘‘Exactly!’’, ‘‘See’’, ‘‘Hello’’, ‘‘I see’’, ‘‘How are
you?’’, ‘‘What kind of food do you like?’’, ‘‘Wonderful!’’, ‘‘What is your name ?’’
(these are of course the English translation of the Japanese utterances). They had to
imagine themselves uttering these sentences to a pet robot. Before each utterance,
they had to imagine themselves in a situation where they could pronounce it, and
which would correspond to one of the four emotional classes: joy/pleasure, sorrow/
sadness/grief, anger, normal/neutral. If several emotions were compatible with the
sentence meaning, then they were allowed to utter each of them. Each example in the
database was evaluated by human subjects who had to decide if they were
appropriate or not (whether the utterance’s intonation compatible with the emotion
or not). We ended up with a database of 200 examples per speaker and per emotion,
which makes 4800 samples in total. We know that having only six speakers restrains
the generality of the results, but to our knowldege no one has had the opportunity to
have so many examples, even for one speaker, and to use the power of modern
statistical learning algorithms. Another potential drawback of the database is that
there might be a self-entertainment of the speakers: as they are asked to perform a
particular task with their voice intonation, they might produce less variable speech
than in natural situations.

5.4. Using data mining techniques

5.4.1. Features

As per the work reported above, we collected two main measures related to
intonation—pitch and intensity. For each signal, we also measured the intensity of
its low- and high-passed version, the cutting frequency being chosen at 250 Hz (the
particular value does not appear to be crucial). Finally, for the sake of exhaustivity,
we made a spectral measure consisting of computing the norm of the absolute vector
derivative of the first 10 MFCC components (mel-frequency ceptral components).
All these measures were performed at each 0:01 s time frame, using the Praat
software, which is a signal processing toolkit freely available.5 In particular, the pitch
was computed using the algorithm described in Boersma (1993), which is known to
be very accurate.
Each of these measures provides a time series of values that we had to transform to

produce different points of view upon the data. So each serie of values was
transformed into four series: the series of its minima, the series of its maxima, the
series of the durations between local extrema of the 10 Hz smoothed curve (which
models rythmic aspects of the signal), and the series itself. Finally, to get features out
of these series, we computed for each one: the mean, the maximum, the minimum,
the difference between the maximum and the minimum, the variance, the median, the
first quartile, the third quartile and the interquartile range, and the mean of the
absolute value of the local derivative. In total we used 5� 4� 10 ¼ 200 features.

5Praat web page: http://www.praat.org
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5.4.2. Learning algorithms

There are many learning schemes that have been developed in the last 20 years (see
Witten and Frank, 2000), and they are not often equivalent: some are more efficient
with certain types of class distributions than others, some are better at dealing with
many irrelevant features (which is the case here, as seen a posteriori) or with
structured feature sets (in which it is the ‘‘syntactic’’ combination of the values of
features which is crucial). As by definition we do not know the structure of our data
and/or the (ir-)relevance of features, it would be a mistake to investigate our problem
with only very few learning schemes. As a consequence, we chose to use a set of the
most representative learning schemes, ranging from neural networks to rule
induction or classification by regression. Also, we used one of the best meta-
learning schemes, i.e. AdaBoostM1 (Witten and Frank, 2000), which allows
generally significant improvement on generalization performance for unstable
learning schemes like decision trees (an unstable learning algorithm is one
that can sometimes produce very different recognition machines when only a
slight change in the learning database has been performed). We chose to use the
Weka software, of which code and executable are freely available so that the
experiment, though being large scale, can be easily reproduced. This software
provides means like automatic cross-validation, or the search of feature spaces (e.g.
with genetic algorithms as we will see later). The list of all learning algorithms is
given in Table 4. More details about these algorithms can be found in Witten and
Frank (2000).

Table 4

Learning schemes

Name Description

1-NN 1 Nearest neighbor

5-NN Voted 2 nearest neighbors

10-NN Voted 10 nearest neighbors

Decision Tree/C4.5 C4.5 decision trees

Decision Rules/PART PART decision rules

Kernel density Radial Basis Function Neural Net

KStar KStar

Linear regression Classification via linear regression

LWR Classification via locally weighted regression

Voted perceptrons Commitee of perceptrons

SVM 1 Polynomial (deg. 1) Support Vector Machine

SVM 2 Polynomial (deg. 2) Support Vector Machine

SVM 3 Polynomial (deg. 3) Support Vector Machine

SVM 4 Gaussian kernel Support Vector Machine

VFI Voted features interval

M5Prime Classification via M5PRime regression method

Naive Bayes Naive Bayes classification algorithm

AdaBoostM1/C4.5 Adaboosted version of C4.5

AdaboostM1/PART Adaboosted version of PART
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5.4.3. All features/all algorithms

For the first experiment, evaluation was conducted in which all algorithms were
given all the (normalized) features, and were trained on 90 percent of the database
and tested on the remaining 10 percent. This was repeated 10 times with each time a
different 90/10 percent split (we performed a 10-fold cross-validation). Table 5 gives
the average percentage of correct classification for the 10 folds.

We see from these results that very high success rates are obtained (95.7 percent).
These figures are higher than any other reported in the literature but one has to be
careful since the number of classes and the types of classes are most of the time
unique to each paper. For example, Slaney and McRoberts (1998) report rates
around 80 percent for the speaker-dependent recognition, with only three classes
(but they were different than ours: approval, prohibition, attention). The best way to
compare the different techniques is in fact to look at the results of individual learning
schemes and features in our paper, since all the learning schemes and features used in
the papers that we quote are included here. The difference among algorithms is
striking: whereas the best results are obtained with adaboosted decision trees and
rules, some others perform 10 percent below (like nearest neighbors, RBF neural
nets or Support Vector Machines, which are the ones typically used in other studies),
or even 20 percent below (commitees of perceptrons). This illustrates our initial claim
that one must be careful to try many different learning schemes when solving a
problem about which we have few prior or intuitive knowledge. It is not surprising
that the best results are obtained with decision trees and rules since these kinds of

Table 5

Using all features

Name Mean correct generalization rate across six speakers

1-NN 84.5

5-NN 85.2

10-NN 84.4

Decision Trees/C4.5 94.1

Decision Rules/PART 94

Kernel density 85.2

Kstar 81

Linear regression 89.7

LWR 88.3

Voted perceptrons 75.9

SVM degree 1 92.1

SVM degree 2 91.2

SVM degree 3 90.9

SVM 4 91.5

VFI 88.2

M5Prime 90.4

Naive Bayes 89.8

AdaBoost M1/C4.5 95.7

AdaBoost M1/PART 94.8

O. Pierre-Yves / Int. J. Human-Computer Studies 59 (2003) 157–183 173



algorithms are known to be very good at dealing with many unrelevant features,
which seems to be the case here (if not, there would be less disparity between results).

5.5. Feature selection

After this first experiment, one would like to naturally see how the feature set
could be reduced for three reasons: (1) small features set provide better
generalization performance in general (see Witten and Frank, 2000); (2) obviously,
it is computationally cheaper to compute fewer features; (3) it is interesting to see if
the most useful features for the machine learning algorithms are the ones that are
traditionally put forward in the psychoacoustic literature.
A first way of exploring the feature set is to look at the results of learning schemes

like decision rules (PART), which are often used mainly as knowledge discovery
devices:

If MEDIANINTENSITYLOW > 0.48 and

THIRDQUARTMINIMASPITCH o ¼ 0.07 and

THIRDQUARTINTENSITY > 0.42 ¼¼> CALM

ELSE If MEANINTENSITYLOW o ¼ 0.58 and

MEDIANINTENSITYLOW o ¼ 0.29 and

THIRDQUARTMAXIMASPITCH > 0.1 ¼¼> ANGRY

ELSE If THIRDQUARTINTENSITYLOW > 0.48 ¼¼> SAD

ELSE ¼¼> HAPPY

These four and surprisingly simple rules allow a percentage of correct classification
in generalization of 94.4 percent for the speaker number 4 in the database. The
striking fact is the repeated use of features related to the intensity of the low-pass
signal.
To get another view of the feature set, one can also simply try to visualize it. Just

to confirm the precedent intuition that low-passed intensity is crucial in the
distinction of emotions, Fig. 1 plots the database with axis being the 1st quartile and
the 3rd quartile of the intensity distribution, and Fig. 2 being the same but for the
intensity of the low-passed signal. This is for speaker 2. The same very striking effect
happens also for the other speakers, but what is interesting is that the clusters are not
situated at the same places (anger and happiness are 901 rotated), which is an
illustration of the great speaker variability that we presented earlier. The difference is
not a scaling difference, but a qualitative difference that no learning schemes could
learn with these features. Yet, it seems that the use of some well-chosen features is
very stable for each speaker.
In order to quantify the individual relevance of features or attributes, there is a

measure often used in the data mining literature, which is the expected information
gain, or mutual information between class and attribute. It corresponds to the
difference between the entropies H(class) and H(class—attribute) (see Witten and
Frank, 2000, for details about how it is computed). Table 6 gives the 20 best
attributes according to the information gain they provide.
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This table confirms the great value of the features concerning the quartiles of the
distribution of intensity values in the low-passed signals. It also shows something
rather surprising: among the 20 most individually informative features, only 3 (the
12, 16 and 20) are part of the standard set put forward in psychoacoustic studies
(Murray and Arnott, 1995; Burkhardt and Sendlmeier, 2000; Williams and Stevens,
1972) or used in most application oriented research (Slaney and McRoberts, 1998;
Breazeal, 2001).
Yet, one has to be aware that individual salience of a feature is only partially

interesting: it is not rare that success comes from the combination of features. So in a
first experiment, we tried to compare a feature set containing only the features 1–6
related to low-passed signal intensity (LPF), with a feature set composed of the
standard features (SF) used in (Breazeal, 2001) or (Slaney and McRoberts, 1998):
mean, min, max, max–min, and variance of pitch and intensity of unfiltetered signal,
plus mean length of syllabic segments (results are similar if we add jitter and tremor
as sometimes also used). Table 7 summarizes these experiments (each number
corresponds again to the mean percentage of correct classification in generalization
in 10-fold cross-validation).
This table shows that if one uses only the quartiles of the low-passed signal

intensity, one gets results extremely similar to when we use standard features, and the
best result is obtained with the low-passed intensity related features (85.9 percent).
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Because here we have only few speakers, this result has to be taken with caution, but
it seems to indicate that previous work missed something crucial. Finally, as we saw
in this table, using only low-passed intensity features yields substantially lower
results that when one used all features with decision rules. In order to attain our goal
of finding a very efficient small set of features, we used an automatic search method:
genetic algorithms. Populations of features (limited to 30) were generated and
evolved using as fitness the 10-fold cross-validation with two algorithms: Naive
Bayes and 5-nearest neighbors (we chose these mainly because they are fast to train).
The exact genetic algorithm is the simple one described in (Goldberg, 1989). The
outcome of this experiment was not obvious: within the selected feature set, it was no
surprise that there were features related to the quartiles of low-passed signal intensity
and features related to the quartiles of the minimas of the pitch contour, but also
features with relatively low individual information gain: those related to the quartiles
of the minimas of the unfiltered smoothed intensity curve. A final experiment using
these 15 features along with all learning algorithms was conducted (max, min,
median, 3rd quartile and 1st quartile of low-passed signal intensity, pitch and
minimas of unfiltered signal intensity). Results are summarized in Table 8.
We observe that we get very similar high results like the initial set but with more

than 10 times less features. Moreover, and interestingly, the variation between
learning schemes is less important and algorithms which performed badly like
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Table 6

Information gain of 20 best features

Feature Information gain (mean across six speakers)

1: MEDIANINTENSITYLOW 1.44

2: MEANINTENSITYLOW 1.40

3: THIRDQUARTINTENSITYLOW 1.35

4: ONEQUARTINTENSITYLOW 1.34

5: MAXINTENSITYLOW 1.23

6: MININTENSITYLOW 1.14

7: THIRDQUARTMINIMASPITCH 0.72

8: THIRQUARTMAXIMASPITCH 0.72

9: THIRDQUARTPITCH 0.69

10: MAXMINIMASPITCH 0.67

11: MAXMAXIMASPITCH 0.67

12: MAXPITCH 0.67

13: MINMINIMASPITCH 0.59

14: MEDIANMINIMASPITCH 0.57

15: MEDIANMAXIMASPITCH 0.57

16: MINPITCH 0.52

17: MEDIANPITCH 0.52

18: MEANMINIMASPITCH 0.48

19: MEANMAXIMASPITCH 0.48

20: MEANPITCH 0.48

Table 7

Comparing ‘‘standard’’ features and ‘‘low-passed signal intensity’’ features

Learning scheme LPF (mean across speakers) SF (mean across speakers)

1-NN 78.1 82.7

5-NN 84.1 81.9

10-NN 79.2 79.1

Decision Trees/C4.5 80.1 81.2

Decision Rules/PART 79.9 80.4

Kernel density 85.9 79.1

Kstar 80.4 81.2

Linear regression 63.1 64.1

LWR 75.6 72.9

Voted perceptrons 51.2 60.4

SVM degree 1 63.1 65.7

SVM degree 2 71.2 70.1

SVM degree 3 76.8 76.4

SVM 4 85.1 79.4

VFI 79.1 76.0

M5Prime 85.5 82.3

Naive Bayes 82.1 80.7

AdaBoost M1/C4.5 82.1 82.8

AdaBoost M1/PART 83.2 82.9
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nearest neighbors or Naive Bayes, behave now in a more satisfying manner (yet, for
these two, this is not surprising since the feature set was selected using these
algorithms as evaluators).

5.6. When only very few examples are provided

In last section, we used large training databases: this was crucial to explore feature
and algorithmic spaces, but as we are dealing with a speaker-dependent task, this is
not directly applicable to a real world robotic pet. Indeed, it is not conceivable that
the owner of such a robot would give hundreds of supervised examples to teach it
how to recognize its way of expressing basic emotions. Yet, this is probably what
happens with human babies and real pets, but humans tend to be more willing to
spend a lot of time with them than with robotic pets. Then it is natural to ask what
the results will become if only very few training examples are given.
We made an experiment using the ‘‘optimal’’ feature set found earlier. We gave to

each algorithm only 12 examples of each class, and tested them on the remaining
items of the database. This was repeated 30 times with different sets of 12 examples
and results were averaged (the standard deviation was rather low, typically around
1.1) Table 9 summarizes the experiment.
We see that some of the algorithms manage to keep a very reasonable level of

performance (90.1 percent of success in generalization for adaboosted PART),
among them, examples of very cheap algorithms like 1-nearest neighbors or Naive
Bayes. These results are rather comparable (and in fact slightly superior) to what is

Table 8

Using the ‘‘optimal’’ feature set

Name Correct generalization rate (mean for six speakers)

1-NN 92.1

5-NN 92.5

10-NN 91.4

Decision trees/C4.5 92.9

Decision rules/PART 94.1

Kernel density 90.1

Kstar 86

Linear regression 84.6

LWR 88.9

Voted perceptrons 75.4

SVM degree 1 90.1

SVM degree 2 95.9

SVM degree 3 94.2

SVM 4 92.1

VFI 84.1

M5Prime 92.5

Naive Bayes 90.8

AdaBoost M1/C4.5 96.1

AdaBoost M1/PART 95.4
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described in Breazeal (2001, except that in this case, learning was off-line with a
larger database of several female speakers). What is important is that Breazeal
conducted experiments and showed that this level of success is sufficient to develop
interesting interactions with a robotic pet. Also, she showed how these results could
be substantially improved when integrated into a larger cognitive architecture which
is working in the real world. For example, linking this recognition module to an
artificial lymbic/emotional system in which there is some kind of emotional inertia
(one very rarely switches from anger to happiness in half a second) might give some
additional information or tell the system there is uncertainty about the result. As a
consequence, the robot may take a posture showing it is not sure of what is
happening and the human will often repeat his utterance with an even more
exaggerated intonation. This provides two samples instead of one, one of them being
often very stylized.

5.7. Teaching a robot in the real world

In the previous paragraph, we saw that the use of adequate features and
algorithms allows a reasonable rate of correct recognitions in the speaker-dependent
case. There remains the problem of providing these examples to the robot in a user-
friendly manner: indeed, as stated at the beginning of the paper, we are to
communicate with robotic pets in a relatively natural manner. This implies that it is
not acceptable to ask the user to connect its robot to a computer and use a windows/
mouse based interface to record samples.

Table 9

When very few training examples are provided

Learning scheme Mean across six speakers

1-NN 85.1

5-NN 78.9

10-NN 69.4

Decision Trees/C4.5 79.1

Decision Rules/PART 80.1

Kernel density 84.2

Kstar 75.6

Linear regression 74.8

LWR 79.1

Voted perceptrons 50.2

SVM degree 1 83.2

SVM degree 2 85.4

SVM degree 3 84.9

SVM 4 85.1

VFI 77.1

M5Prime 80.9

Naive Bayes 85.1

AdaBoost M1/C4.5 84.2

AdaBoost M1/PART 90.1
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We have developed and experimented with a small game, in the spirit of language
games used in robotic models of language acquisition (Steels, 1997; Steels and
Oudeyer, 2000; Oudeyer, 2001a,b; Kirby, 1998). The idea is to regulate the
interactions with both the use of a few simple keywords by the human and the
robot’s ability to express emotions vocally (see Section 3). A continuous word-
spotting module is implemented in the robot, as available for instance in the Sony
AIBO robot or the NEC Papero robot. The robot is continuously listening to what
humans say, computing the intonation parameters of the sentences they hear,
classifying them, and reacting to the detected emotion. For instance, if the robot
detects a happy sentence, he utters a happy vocalization himself and modifies his
facial expression accordingly (here by changing the colors of the LEDS on its face),
or if it hears a sad sentence, it gets sad also (and for calm/neutral sentences, it does
nothing special of course). When the robot reacts in an unappropriate manner, then
the human has to say a sentence with a key-word (or equivalent key-word) which was
‘‘bad guess’’ in our experiments. Then he has to say a sentence containing a key-
word designating what was his intended emotion (e.g. ‘‘I was angry!’). Then the
robot stores the intonation parameters of the last sentence he heard before the
one containing the ‘‘bad guess’’, associated with the class corresponding to the
second key-word. This gives it an example to put in its database. It is possible to use
a key-word, like ‘‘well done’’ in our experiments, which means the robots
reacted well to the last sentence, and shall add the intonation parameters of the
last sentence to its database. Note that with robots like the Sony AIBO robot,
it is possible to replace the ‘‘bad guess’’ and ‘‘well done’’ key-words by the
information coming from the gentle/firm tap sensor which is on their head. Initially,
the robot has an empty database, and we pre-programmed it to think everything is
neutral initially. We used the 1-nearest neighbor algorithm learning scheme. In
practice, rather robust guesses were possible, typically after six or seven examples of
each class.

6. Conclusion

We have shown how one could generate life-like vocalizations with basic emotions
recognizable by people from very different linguistic and cultural backgrounds. The
algorithm presented has the advantage of being extremely simple (very few
parameters need to be controlled) and completely specified. We showed that
concatenative speech synthesis could be used as successfully as formant synthesis.
Further work will concentrate in extending the range of emotions used in this
paper. We also presented and validated techniques which allow the continuous
control over the degree of emotion as well as ways to control smoothly the age of the
voice.
As far as recognition is concerned, we showed that using large-scale modern data

mining techniques allowed to find nonobvious features which were missed by
precedent studies. In particular, it is interesting to see that the features put forward in
the psychoacoustic literature are not the ones preferred by the machine learning
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algorithms. As precedent studies seemed to show that multi-speaker emotion
recognition was a very difficult task in principle, the present work suggests that
speaker-dependent recognition can reach very high scores, if adequate features and
learning schemes are used. We also showed that with the right set of features,
reasonable performance can be reached when only few examples are given, which
might be the case in ‘‘real situation’’ robots. Yet, we have to remain prudent with
these results since they were obtained with professional speakers, and we used high-
quality microphones in a quiet environment. The use of microphones embedded in
real noisy robots might bring difficulties. The fact that speakers were professionals
might not be so misleading since the target of this research is to recognize the
emotional information of humans who talk to pet robots. Indeed, in this case they
over-emphasize their intonation as professional speakers do (see Breazeal, 2001).
Also, one has to note that results should be improved if the algorithms presented
here are embedded in a complete cognitive robot which can use other cues than
intonation (vision, linguistic cues, semantic cues) to decide what is the emotional
state of human beings.
This work should serve as a basis for necessary additional experiments with more

databases including speakers of very different languages in more realistic settings.
The use of only freely available softwares should allow other people who already
possess these databases to pursue this research.
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