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Abstract. High-Level music descriptors are key ingredients for music 
information retrieval systems. Although there is a long tradition in extracting 
information from acoustic signals, the field of music information extraction is 
largely heuristic in nature. We present here a heuristic-based generic approach 
for extracting automatically high-level music descriptors from acoustic signals. 
This approach is based on Genetic Programming, that is used to build extraction 
functions as compositions of basic mathematical and signal processing 
operators. The search is guided by specialized heuristics that embody 
knowledge about the signal processing functions built by the system. Signal 
processing patterns are used in order to control the general function extraction 
methods. Rewriting rules are introduced to simplify overly complex 
expressions. In addition, a caching system further reduces the computing cost of 
each cycle. In this paper, we describe the overall system and compare its results 
against traditional approaches in musical feature extraction à la Mpeg7. 

1 Introduction and Motivations 

The exploding field of Music Information Retrieval has recently created extra 
pressure to the community of audio signal processing, for extracting automatically 
high level music descriptors. Indeed, current systems propose users with millions of 
music titles (e.g. the peer-to-peer systems such as Kazaa) and query functions limited 
usually to string matching on title names. The natural extension of these systems is 
content-based access, i.e. the possibility to access music titles based on their actual 
content, rather than on file names. Existing systems today are mostly based on 
editorial information (e.g. Kazaa), or metadata which is entered manually, either by 
pools of experts (e.g. All Music Guide) or in a collaborative manner (e.g. the 
MoodLogic). Because these methods are costly and do not allow scale up, the issue of 
extracting automatically high-level features from the acoustic signals is key to the 
success of online music access systems. 

Extracting automatically content from music titles is a long story. Many attempts 
have been made to identify dimensions of music that are perceptually relevant and can 
be extracted automatically. One of the most known is tempo or beat. Beat is a very 
important dimension of music that makes sense to any listener. Scheirer introduced a 
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beat tracking system that successfully computes the beat of music signals with good 
accuracy ([1]). 

There are, however, many other dimensions of music that are perceptually relevant, 
and that could be extracted from the signal. For instance, the presence of voice in a 
music title, i.e. the distinction between instrumentals and songs is an important 
characteristic of a title. Another example is the perceived intensity. It makes sense to 
extract the subjective impression of energy that music titles convey, independently of 
the RMS volume level: with the same volume, a Hard-rock music title conveys more 
energy than, says, an acoustic guitar ballad with a soft voice. There are many such 
dimensions of music that are within reach of signal processing: differentiate between 
“live” and studio recording, recognize typical musical genres such as military music, 
infer the danceability of a song, etc... Yet these information are difficult to extract 
automatically, because music signals are usually highly complex, polyphonic in 
nature, and incorporate characteristics that are still poorly understood and modeled, 
such as transients, inharmonicity, percussive sounds, or effects such as reverberation. 

1.1 Combining Low-Level Descriptors (LLD) 

Feature extraction consists in finding characteristics of acoustic signals that map 
correctly with values obtained from perceptive tests. In this context, the traditional 
approach in designing an extractor for a given descriptor is the following (see, e.g. 
[2], [3], [4]): 

Firstly, perceptive values are associated to a set signal of from a reference 
database. These values can be obvious (Presence of singing voice), or can require to 
conduct perceptive tests (Evaluation of the global energy of music titles): humans are 
asked to enter a value for a given descriptor, and then statistical analysis is applied, to 
find the average values, considered thereafter as a grounded truth. 

Secondly, several characteristics of the associated audio signals are computed. A 
typical reference for audio characteristics is the Mpeg7 standardization process ([5]), 
that proposes a battery of LLD for describing basic characteristics of audio signals. 
The purpose of Mpeg7 is not to solve the problem of extracting high level descriptors, 
but rather to propose a basis and a format to design such descriptors. 

Eventually, the most relevant LLDs are combined in order to provide an optimal 
extractor for the descriptor. 

1.2 Two Illustrative Examples 

We illustrate here descriptor extraction, using the standard approach on two music 
description problems, that are relevant for music information retrieval, objective, and 
difficult to extract automatically. 

The first problem consists in assessing the perception of energy in music titles. 
This descriptor yields from the intuitive need for differentiating between energetic 
music, for instance Hard Rock music with screaming voices and saturated guitar, 
from quiet music, such as Folk ballads with acoustic guitar, independently of the 
actual volume of the music. We have conducted a series of perceptive tests on two 
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databases of 200 titles each. For each title, we asked the listeners to rate the “energy 
conveyed” from "Very Low" to "Very High". We got 4500 results, corresponding to 
10 - 12 answers for each title. The analysis showed that for 98% of the titles, the 
standard deviation of the answers was less than the distance between 2 energy 
categories, so the perception of subjective energy is relatively consensual, and it 
makes sense to extract this information from the signal. The energy is a float number 
normalized between 0 (no energy) and 1(maximum energy). 

The second problem consists in discriminating between instrumental music and 
songs, i.e. to detect singing voice. The technical problem of discriminating singing 
voice with speech in from a complex signal is known to be difficult ([6], [7]) and 
remains largely open. No experiment were performed for this descriptor as the values 
are obvious to assess. The presence of voice is a Boolean value 0 (instrumental) or 
1(song). 

1.3 Results Using Basic LLD 

We present here the results obtained on our two problems, using the standard 
approach sketched above. More precisely, the palette of LLD used for our 
experiments consisted of 30 LLD, obtained as Mean and Variance of: 

Amplitude Signal, Amplitude Fft, High freq content, Max spectral freq, Ratio high 
freq, RMS, Spectral Centroid, Spectral Decrease, Spectral Flatness, Spectral Kurtosis, 
Spectral Roll Off, Spectral Skewness, Spectral Spread, Total Energy, Zero Crossing 
Rate. The method consisted in finding the linear combination of LLD that best 
matches the perceptive results. 

First, the optimal combination is computed on each learning database: for the 
Global Energy problem, the regression consists in minimizing the average model 
error compared to the perceptive results; for the Instrumental/Song problem, the 
classification consists in maximizing the discrimination and finding a threshold to 
separate the 2 classes. 

Then the combination is tested on each test database: for the Global Energy 
problem, the evaluation consists in computing the average model error compared to 
the perceptive results; for the Instrumental/Song problem, the evaluation consists in 
computing the recognition rate. 

A cross-validation ensures the consistency of the method. The final results 
presented here are the mean results of the cross-validations with their uncertainty: 
 
Table 1. Results obtained using basic Mpeg7 LLD combination on two high-level 
description problems 

 

 SUBJECTIVE ENERGY  
(Model Error) 

PRESENCE OF VOICE  
(Recognition Rate) 

BEST FEATURE 16.87%    +- 1.48% 61.0%    +-10.21% 
BEST COMBINATION 12.13%    +-1.97% 63.0%    +-11.35% 
The success of the standard approach is dependent on the nature and quality of the 

basic signal extractors in the original palette. Mpeg7 provides some interesting 
descriptors, in particular in the field of spectral audio, but to extract complex, high-
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level musical features, the features have to be improved with additional operations, as 
shown in the basic example below. 

1.4 Limitations of the traditional method 

Example: Sinus + Colored Noise. 
Let us consider the simple problem of detecting a sinus wav in a given frequency 
range (say 0-1000Hz) mixed with a powerful colored noise in another frequency 
range (1000-2000Hz). As the colored noise is the most predominant characteristic of 
the signal, traditional features focus on it and are unable to detect the sinus. For 
instance, when we look at the spectrum of a 650Hz sinus mixed with a 1000-2000Hz 
colored noise (Fig.1), the peak of the sinus is visible but not predominant, and is thus 
very hard to extract automatically. 

However this problem is very easy to solve by hand, by applying a pre-filtering 
that cuts off the frequencies of the colored noise, so that the sinus emerges from the 
spectrum. As seen on Fig.2, the sinus peak emerges when the signal is low-pass 
filtered, and is thus very easy to extract automatically. 

 
 

 
 
Fig. 1. Spectrum of a 650Hz sinus  mixed with 1000-2000Hz colored noise 

 

 
 

Fig. 2. Spectrum of a 650Hz sinus  mixed with 1000-2000Hz colored noise, pre- 
filtered by a 1000Hz Low-Pass Filter 

Motivations for EDS 
This basic example shows that the combination of basic LLD does not cover a 
function space wide enough to find specialized extractors. It is not the case that any 
high-level descriptor can be obtained by some linear combination of basic LLD. So an 
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automatic system that produces extractors should be able to search in a larger and 
more complex function space, as experts in signal processing normally do. The 
variations concern not only the actual operators used in the whole process, but also 
their parameters, and the possible “in-between” process such as filters, peak 
extractors, etc... that can be inserted to improve the efficiency of the extractor. 

Although there is no known general paradigm for extracting relevant descriptors, 
the design of high-level extractors usually follow regular patterns. One of them 
consists in filtering the signal, splitting it into frames, applying specific treatments to 
each segments, then aggregating all these results back to produce a single value. This 
is typically the case of the beat tracking system described in [1], that can 
schematically be described as an expansion of the input signal into several frequency 
bands, followed by a treatment of each band, and completed by an aggregation of the 
resulting coefficients using various aggregation operators, to yield eventually a float 
representing (or strongly correlated to) the tempo. The same applies to timbral 
descriptors proposed in the music information retrieval literature ([8], [9]). Of course, 
this global scheme of expansion/reduction is under specified, and a virtually infinite 
number of such schemes can be searched. Our motivation is to design a system that is 
able to use a given signal-processing knowledge, such as patterns or heuristics, in 
order to searches automatically signal processing functions specialized in feature 
extraction. The next Section presents the design of the system. 

2 EDS: From Low-Level Descriptors Combination to Signal 
Processing Operators Composition 

The key idea of our approach is to substitute the combination of basic LLD by the 
composition of operators. Our Extraction Discovery System (called EDS) aims at 
composing automatically operators to discover signal processing functions that are 
optimal for a given descriptor extraction task. 

The core search engine of EDS is based on genetic programming, a well-known 
technique for exploring functions spaces [10]. The genetic programming engine 
automatically composes operators to build functions. Each function is given a fitness 
value which represents how well the function performs to extract a given descriptor; 
this is typically the correlation between the function values and the perceptive values. 
The evaluation of a function is therefore very costly, as it involves complex signal 
processing on whole audio databases. To guide the search, a set of heuristics are 
introduced, to control the creation of functions, as well as rewriting rules that simplify 
functions before their evaluation. This section presents EDS design principles. 

2.1 Representation of Basic Signal Processing Operators 

Each operator is defined by its name, its output type, and an executable program, 
which evaluate the function once it is instantiated. In EDS, these programs are written 
and compiled in Matlab. EDS functions include constants, mathematical operators 
such as mean or variance, signal processing operators, temporal such as correlation, or 
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spectral such as FFT or filters. To account for the specificity of audio extraction, we 
introduced operators to implement the global extraction schemes. For instance, the 
Split operator splits a signal into frames, an operation that is routinely performed 
when a given treatment has to be made on successive portions of the signal. 

Functions are built by composing these operators, each function containing at least 
one argument labeled InSignal, which is instantiated with a real audio signal before 
evaluation. Fig.3 shows an example of tree representation for a function that is a 
composition of basic operators (FFT, Derivation, Correlation, Max): 

 
Fft(Derivation(InSignal), Max(Correlation (InSignal, 

Constant_Signal) 
<==> 

                        
F f t

D e r i v M a x

I n p u t S i g n a l C o r r e l a t i o n

I n S i g n a l C o n s t a n t _ S i g n a l  
 

Fig. 3. Tree representation of a signal processing function 

2.2 Data and Operators Types 

The need for typing is well-known in Genetic Programming, to ensure that the 
functions generated are at least syntactically correct. Different type systems have been 
proposed for GP, such as strong typing ([11]), that mainly differentiate between the 
“programming” types of the inputs and outputs of functions. 

In our context, the difference between programming types floats, vectors, or 
matrix, is superficial. For example, the operator "Abs" (absolute value) can be applied 
on a float, a vector, etc... This homogenous view of values yields simplicity in the 
programming code, that we need to retain. However, we need to distinguish functions, 
at the level of their “physical dimension”. Audio signals and spectrum can be seen 
both as vectors of floats from the usual typing perspective, but they are different in 
their dimensions: a signal is a time to amplitude representation, while a spectrum 
associates frequency to amplitude. Our typing system, based on the following 
constructs, has to represent this difference, to ensure that our resulting functions make 
sense. 

Atomic types, functions, vectors 
Types can be either atomic dimensions, which are of 3 sorts: time, notated “t”, 
frequency "f", and amplitudes “a”. These 3 types allow to build more complex types: 
functions and vectors. 

Functions are representations from one dimension to another. Their type is 
represented using the ":" notation, which differentiates between the x and y-axis of the 
representation. For example, the type of an audio signal (time to amplitude 
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representation) is "t:a", whereas the type of a spectrum (frequency to amplitude) is 
"f:a". 

Vectors are special cases of functions, associating an index to a value. Because 
vectors are very frequent, we introduce the shortcut symbol "V + data type" to denote 
a vector. For instance, a list of time onsets in an audio signal is notated "Vt", or the 
type of a signal split into frames is "Vt:a". 

Typing rules 
The output types of the operators are computed dynamically in a bottom-up fashion 
and recursively according to specific typing rules depending on the type of the input 
data. For instance, in the case of vectors, the transfer rule is: "Type (F(Vx)) = V 
Type(F(x))". 

For non-vector arguments, each operator defines a specific typing rule. For 
instance: 

- the output type of Abs is the type of its input: Type (Abs(arg)) = Type(arg) 
- the FFT operator multiplies the x-axis dimension of its input by -1: Type ( FFT ( 
a:b )) = a-1:b, thus transforms "t:a" into "f:a", and reversely "f:a" into "t:a" 
- spliting the data introduces a vector of the same type: Type (Split (x)) = V 
Type(x),  
- and so forth... 
This typing system is more complex than the usual typing systems used routinely 

in GP, but has the interest of being able to retain the respective physical dimensions 
of the inputs and outputs values of functions. For instance, given an input signal S, the 
following complex (but realistic) function gets the following type: 

Type (Min(Max(Sqrt(Split(FFT(Split (SIGNAL, 3, 100)), 2, 100)))) = "a" 

Generic Operators & Patterns 
This typing system allows to build "generic operators" that stand for one or several 
random operator(s) whose output type (and also possible arguments) are forced. 3 
different generic operator (notated "*", "!", and "?") have different functionalities: 

- "?_T" stands for 1 operator whose output type is "T" 
- "*_T" stands for several operators whose output type are all "T" 
- "!_T" stands for several operators whose only final output type is "T" 
These generic operators allow to write functions patterns, that stand for any 

function satisfying a given signal processing method. For instance, the pattern  
"?_a (!_Va (Split (*_t:a (SIGNAL))))" stands for: 

- « Apply some signal transformations in the temporal domain » (*_t:a) 
- « Split the resulting signal into frames » (Split) 
- « Find a vector of characteristic values - 1 for each frame » (!_Va) 
- « Find one operation to find one relevant characteristic value for the entire 
signal » (?_a) 

This is the general extraction scheme presented in 1.4, it can be instantiated as: 
- Sum_a (Square_Va (Mean_Va (Split_Vt:a (HpFilter_t:a (SIGNAL_t:a, 1000Hz), 
100)))), or 
- Log10_a (Variance_a (NPeaks_Va (Split_Vt:a (Autocorrelation_t:a 
(SIGNAL_t:a), 100), 10))) 
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Patterns can be specified in the EDS algorithm to guide the search of functions. 

2.3 EDS Algorithm 

The global architecture of the system consists in 2 steps (see Fig.4): 
- Learning of relevant features using a genetic search algorithm, 
- Validation of features and synthesis of a descriptor extractor using features 

combination. 
 

 

 
FEATURES 
LEARNING  
DATABASE  
(200 Titles) 

Features 
Genetic 
Search 

Algorithm 

Features  
Combination 

DESCRIPTOR 
EXTRACTOR 

EDS 
FEATURES

EXTRACTOR 
CROSS 

VALIDATION 
DATABASE 

(200 Titles) 

Fig.4. EDS Global Architecture 
 
EDS features search algorithm is based on genetic programming, i.e. the application 
of genetic search to the world of functions, as introduced by Goldberg ([12]). More 
precisely, the algorithm works as follows, given: 

- A descriptor D for which we seek an extractor, and its type (currently either 
“Boolean” or “Float”) 
- A database DB containing audio signals 
- A result database containing the result of the perceptive test for the descriptor D 
for each signal in DB 

Global algorithm 
The algorithm proceeds as follows: 

- Build the first Population P0, by computing N random signal processing 
functions (compositions of  operators), whose output type is compatible with the 
type of D. 
- Begin Loop: 

- Computation of the functions for each audio signal in DB, 
- Computation of the fitness of each function, for instance the correlation 
between its values on DB and the associated perceptive values 
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- if the (fitness >= threshold) or (max number of iterations reached), STOP 
and RETURN the best functions 
- Selection of the most correlated functions, crossover and mutation, to 
produce a new population Pi+1 
- Simplification of the population Pi+1 with rewriting rules 
- Return to Begin Loop 

Creation of populations 
To create initial populations, a random function generator creates functions according 
to a given pattern (see 2.2). The generator works bottom-up, starting with the audio 
Signal, and finding successively operators that accept the current operator as input. 
New populations are then computed by applying genetic operations to the most 
relevant functions of the current population, that are structural cloning (constants 
variations), mutation, and crossover. 

Structural cloning consists in keeping the tree structure a function and applying 
variations on the constant parameters, such as the cut-off frequencies of filters. For 
example, "Sum (Square (FFT (LpFilter (Signal, 1000Hz))))" can be cloned as "Sum 
(Square (FFT (LpFilter (Signal, 800Hz))))". 

Mutation consists in cutting the branch of a function, and replacing it by a 
composition of operators providing the same output type. For example, in the function 
"Sum (Square (FFT (LpFilter (Signal, 1000Hz))))", "LpFilter (Signal, 1000Hz)" can 
be mutated into "MpFilter (Signal, 1100Hz, 2200Hz)", to provide the mutated 
function "Sum (Square (FFT (MpFilter (Signal, 1100Hz, 2200Hz))))". 

Crossover consists in cutting a branch in a function and replacing it by a branch cut 
from another function. For example, "Sum (Square (FFT (LpFilter (Signal, 
1000Hz))))" and "Sum (Autocorrelation (Signal))" can produce the crossover function 
"Sum (Square (FFT (Autocorrelation (Signal))))". 

Eventually, to ensure diversity , new populations are completed with a set of new 
random functions. 

2.4 Heuristics 

Heuristics are vital ingredients to guide the search and a central point in the design of 
EDS. They represent the know-how of signal processing experts, about functions seen 
a priori, i.e. before their evaluation. The interest of heuristics is that they both favor a 
priori interesting functions, and rule out obviously non-interesting ones. 

A heuristic in EDS associates a score between 0 and 10 to a potential composition 
of operators. These scores are used by EDS to select candidates at all the function 
creation stages (random, mutation, cloning and crossover). Here are some examples 
of important heuristics: 

- To control the structure of the functions: "HpFilter (Signal, Branch) => SCORE = 
Max (0, 5 - Size(Branch))". This heuristic limits the complexity of computation of 
arguments such as filters cut-off frequencies. 
- To avoid bad combination of filters: "HpFilter (HpFitler => SCORE = 1", "Mp 
(Hp=> 3",  "Lp (Hp => 5". 
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- To range constant values: "Enveloppe (x, <50 frames) => SCORE = 1" ;   
"HpFilter (x, <100Hz) => 1", etc... 
- To avoid usually useless operations: "X (X (X => SCORE = 2" (too many 
repetitions of operators), etc... 

2.5 Rewriting rules 

Rewriting rules are applied to simplify functions before their evaluation, using a fixed 
point mechanism until to obtain a normal form. Unlike heuristics, they are not used by 
the genetic algorithm to favor combinations, but: 

- Avoid computing several times the same function with different but equivalent 
forms. For example: "Correlation (x, x) ==> Autocorrelation (x)", or 
"HpFilter(HpFilter (x,a), b) ==> HpFilter (x, max(a, b))". 
- Reduce the computation cost. For Example: Perseval equality 
"Mean(Fft(Square(x))) => Sum(Square (x))" avoids to compute the "Fft" of a 
signal. 

2.6 Caching 

Finally, to speed up the computation of functions, a caching mechanism is introduced, 
so that any costly function is computed once, and reused when possible. Every time a 
new function is computed, all the intermediate results are stored on separate files. For 
instance: "Max (Envelope (Fft (x), 100)" will store "x", "100", "Fft(x)", "Envelope 
(Fft (x), 100)", and "Max (Envelope (Fft (x), 100)" for each tested title. 

The caching technique consists in keeping in memory the most useful results, 
depending on: 

- their computation time: results that require a long computation time are kept in 
memory, 

- their utility: results that are used frequently are kept, 
- their size: the allowable memory being limited, priority is given to small size 

results. 

3 Results 

We present here the results of the 2 steps of EDS: 
- Features computation (learning results): the correlation of the best functions 
found by the system evaluates how our genetic search algorithm is able to build 
relevant functions regarding a given data set. Correlations are computed on the 
whole features learning database. 
- Descriptor extraction (test results): final model error (regression) or final 
recognition rate (classification) for 1 or a combination of the N most relevant 
functions. Performances and errors are evaluated using cross-validation on an 
independent test database, so the results are given with an uncertainty that 
corresponds to the cross-validation variations. For each of these descriptor, we 
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compare the results obtained by the traditional LLD method, the EDS method, and 
a combination of both. 

3.1 Sinus + Colored noise (Basic problem) 

The problem consists in detecting a sinus between 10 and 1000Hz mixed with a 
strong colored noise between 1000-2000Hz (see 1.4). 

Best Features and Extractors 
As they focus on the most predominant characteristic of the signal (the noise), the 
LLDs have poor results in detecting the sinus. The best LLD, Spectral Flatness, has a 
correlation of 0.63 with the sinus frequencies. 

EDS focuses after 10 populations around the function "MaxPos (FFT (LpFilter 
(Signal, fc Hz)))", with different values of fc. Values between 50 and 700 Hz, that 
most efficiently remove the colored noise (with a Butterworth filter), provide a 
correlation of 0.99. The correlation does not reach 1 because of the uncertainty near 
1000Hz. For the Spectral Flatness, the mean prediction error is 226Hz, whereas it is 
10Hz for the best EDS function. 

3.2 Perceived Intensity (Regression problem) 

The problem consists in providing a model of the subjective energy of musical 
extracts, based on the results of perceptive tests (see 1.3). For comparison, note that a 
random feature has typically a correlation of 0.03, and its best combination provides a 
model error of 21% (the extraction function is a constant value, that is the mean value 
of the energies of all the titles in the database). 

Best Features and Extractors 
The best LLD has a correlation of 0.53 with the perceptive values, and provides a 
model error 16.9%+-1.5%. The best EDS feature has a correlation of 0.68 and 
provides a model error 14.5%+-1.8%. The best combination of LLD provides a mean 
model error of 12.1%+-1.9%. Adding the best EDS features decreases the mean 
model error to 11.4%+-1.9%. 
 
Table 2. Model Errors for the Subjective Energy Problem 

 
METHOD RANDOM BEST 

LLD 
BEST LLDs 

COMBINATION 
BEST 
EDS 

COMBINATION  
LLDs + EDSs 

PERCEIVED 
ENERGY 
(MODEL 
ERROR) 

21% 16.9% 12.1% 14.5% 11.3% 
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3.3 Presence of Voice (Classification problem) 

The problem consists in providing an extractor that detects the presence of singing 
voice (see 1.3). Note that a random feature has typically a correlation of 0.05, and its 
best combination provides a recognition rate of 50% (the extraction function is a 
constant value, that assigns the same result to all the titles in the database). 

Best Features and Extractors 
The best LLD has a correlation of 0.28 with the perceptive values, and has a 
recognition rate of 61.0%+-10.2%. The best EDS feature has a correlation of 0.54, 
and provides a recognition rate of 73.5%+-9.4%. The best combination of LLD 
provides a recognition rate of 63.0%+-11.4%. Adding the best EDS features increases 
the recognition rate to 84.0%+-7.7%. 
 
Table 3. Recognition Rates for the Presence of Singin Voice Problem 

 
METHOD RAND BEST 

LLD 
BEST LLDs 

COMBINATION 
BEST 
EDS 

COMBINATION  
LLDs + EDSs 

PRESENCE OF 
SINGING VOICE 
(RECOGNITION 

RATE) 

50% 61% 63% 73.5% 84.5% 

4 Conclusion 

We have introduced a new approach for designing high level audio feature extractors, 
based on genetic programming. The proposed system, EDS, uses for the moment a 
limited palette of signal processing functions. However, EDS produces results that are 
comparable (as good or best) to standard manual approaches in high level descriptor 
extraction. Substantial increase in performance should be obtained by extending the 
palette of signal operators to more refined operators. New heuristics will also be 
found by analyzing the application of EDS to other high level descriptor problems, 
such as the distinction between “live” and studio recording), the discrimination 
between simple and generic genres (such as military music, music for children, etc.), 
or the danceability. Finally better fitness method can be used, including in particular a 
fully-fledged learning mechanism to match optimally the outputs of the functions to 
perceptive tests. 
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