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ABSTRACT

We address the issue of extracting automaticallghfievel
musical descriptors out of their raw audio signd@his work
focuses on the extraction of the perceived intgnsitmusic titles,
that evaluates how energic the music is perceivelisteners.

We present here first the perceptive tests thahesxe conducted,
in order to evaluate the relevance and the unilitysaf the
perceived intensity descriptor. Then we preseness methods
used to extract relevant features used to buildatic intensity
extractors: usual Mpeg7 low level features, empirimethod, and
features automatically found using our Extractors@ivery
System (EDS), and compare the final performancestheir
extractors.

1. INTRODUCTION

The exploding field of Music Information Retrievabs recently
created extra pressure to the community of audignai
processing, for extracting automatically high-levehusic
descriptors. Indeed, current systems propose usighsmillions
of music titles (e.g. the peer-to-peer systems saglkazaa) and
guery functions limited usually to string matching title names.
The natural extension of these systems is contasedl access,
i.e. the possibility to access music titles basedtbeir actual
content, rather than on file names. Existing systeloday are
mostly based on editorial information (e.g. Kazaai),metadata
which is entered manually, either by pools of expefe.g. All
Music Guide) or in a collaborative manner (e.g. MeodLogic).
Because these methods are costly and do not akalesup, the
issue of extracting automatically high-level feasirfrom the
acoustic signals is key to the success of onlinesimwaccess
systems.

Extracting automatically content from music titlés a long
story. Many attempts have been made to identifyatigions of
music that are perceptually relevant and can beraeied
automatically. One of the most known is tempo oabhehat is a
very important dimension of music that makes semseany
listener. However, there are many other dimenswinsiusic that
are perceptually relevant, and that could be extthdrom the
signal. For instance, the presence of voice in &imtitle, i.e. the
distinction between instrumentals and songs is @portant
characteristic of a title. We focus here on anotbgample: the

perceived intensitylt makes sense to extract the subjective

impression of energy that music titles convey, ipeedently of
the RMS volume level: with the same volume, a Handk music

title conveys more energy than, says, an acoustitag ballad
with a soft voice.

Extracting a perceptive descriptor raises two nissues:

- First, we have to prove the relevance and thevensiality of
the descriptor, by conducting perceptive tests eetof listeners.

- Second, once the descriptor is proven relevahie t
information has to be extracted automatically; thsk is difficult
because polyphonic music signals are usually higiagnplex in
nature. We experiment here several methods to teedevant
characteristics of the audio signal, enabling uset@luate the
intensity of music titles.

2. PERCEPTIVE TESTS ON PERCEIVED INTENSITY

Musical intensity is a subjective descriptor, tteatery listener
perceives differently. In order to build a globalodel of this

descriptor, we have to find a consensual basishi diverse
perceptions of intensity, and prove that it is kelat to generalize
our model. We conducted 2 series of perceptivestese present
here the first tests that were evaluated on a detatrontaining
204 musical signals of duration 10s, with a priorarious

intensities. These signal are then used as a legqutiatabase to
build intensity extractors. The second tests weegfggmed on
another 200 signals database, used as a test datdba our

extractors.

2.1. Presentation of the tests

The tests were done on people from our lab, andewaiso
accessible on the web. They consisted in listenmgne of the
204 musical extracts, and evaluating its intensigyvel, by
choosing a category among Low - Medium - High -Vétigh.
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Fig. 1: Web Page of the Perceived Intensity Tests
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2.2. Results

We obtained more than 2600 answers, that correspadod
approximately 12-13 answers for each title of tlatadbase.

Then a general perceived intensity value is compdite each
title of the database, by removing the extreme ltssassigning a
numeric value for each energy level (normalizedwsssn O for
‘Low' and 1 for 'Very High'), and taking the meaalve on all
listeners. To evaluate the relevance of this intgngalue, we
compute the standard deviation of the results fbthe listeners:
for 200 titles (98%), the standard deviation is dethan the
distance between two successive categories (0s28jhe mean
value is assumed to be a correct evaluation of timé@nsity. The
other titles are removed from the database, as omsider that
their intensity is too subjective to be evaluated.

These final intensity values are then used as lagrn
references to compute our model, and built autoenexiractors.
We proceed the same on the second series of péredpsts, in
order to build a 200 titles database, used to tiesse models and
extractors.

3. EXTRACTING FEATURES FOR INTENSITY USING
TRADITIONAL METHOD

We present here the different methods that weréeteso find

relevant extractors for the intensity of musice#l combination of
low-level features, empirical method, and EDS, system using
a genetic algorithm to build relevant features fiiven problems.
The features are evaluated by computing the cdicgldbetween
the function values and the perceptive values, fmss-validation
on the 200 remaining titles of the learning databas

As a comparison, note that the correlation of ad@m function is

0.18.

3.1. Usual Mpeg7 Audio Features

We first used a traditional approach to build highel music

descriptors, that consists in combining selecteatufees out of a
set of lower-level ones (for example [1]).Sinceriés no signal
processing state of the art in evaluating the peszk intensity,

we filled the set with audio descriptors that areolun to be
relevant for audio description problems, such asséhdescribed
in Mpeg7 (see [2]). We tested 30 Mpeg7-like featyrbased on
temporal and spectral features among which am@iuénergies,
high-frequency content, spectral flatness, speceatroid, and so
on...

The most correlated feature is thepectral skewnesswith a

correlation of 0.56, which provided an model ermofr 16.9%

compared to the results of the perceptive teste Most relevant
combination of these features has a correlatiord &7, with a
model error of 12.1%.

3.2. Empirical Method

We had different intuitions on the origin of thetémsity of music.
The two main intuitions were that the intensitysisnply linked to
the tempo, or more complexly to the variations oeggy of the
signal. Several new features were built out of theguitions: for
instance, we used Scheirer's tempo extractor [8H atudied
different signal processing functions describing #ignal energy

variations. We evaluated the correlation of allsbdeatures with
the perceptive tests. The most correlated functi@at we found
is:

Log (Variance (Derivation (Energy (Audio Signal))))
with a correlation of 0.57. This function is linkedith the
amplitude and the frequency of the variations & gignal's raw
energy. The tempo, automatically extracted withcEBicheirer's
method, had a correlation of 0.55.

4. EXTRACTING FEATURES FOR INTENSITY WITH
THE EDS SYSTEM

EDS (Extractor Discovery System), developed at SGSL, is a
heuristic-based generic approach for extractingoruatically
high-level music descriptors from acoustic sign&@b.S approach
is based on Genetic Programming (see [4]), usedbtild
extraction functions as compositions of basic mathtcal and
signal processing operators.

4.1. Presentation of EDS

4.1.1. Global architecture

Considering:

- A given description problem: classification orgression (here
the evaluation of the global intensity),

- A database of audio signals with the associatedceptive
values (normalized intensity here).

EDS consists in 2 steps: (1) genetic search algaritbuilds

relevant signal processing features for the desioripproblem,

and (2) machine learning algorithms build the assted

extractors from these features. The global archirec of the

system is presented in Fig. 2:

Features
Genetic Search
Algorithm
FEATURES ¢
LEARNING
DATABASE EDS
FEATURES
Machine
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EXTRACTOR
CROSS ¢
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DATABASE DESCRIPTOR
EXTRACTOR

Fig. 2:EDS Global Architecture

In the features genetic search phase, the searguided by
specialized heuristics that embody knowledge altbet signal
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processing functions built by the system. Signabgassing
patterns are used in order to control the generaiction
extraction methods. Rewriting rules are introdudedsimplify
overly complex expressions. In addition, a cachiggtem further
reduces the computing cost of each cycle.

4.1.2. EDS functions

EDS builds functions as compositions of signal mssing and
mathematical operators, such as '"MEAN (X)', th&kesthe mean
value of the set X, or 'HPFILTER (X, Fc)', thattéks the signal X
with a cut-off frequency Fc. For instance:

MEAN (MAX (FTT (SPLIT (HPFILER (Signal, 1000Hz) ms$)))

- high-pass filters the audio signal at 1000Hz,

- then splits the resulting signal into 10ms frames

- then takes MAX of the FFT of each frame,

- and finally provides the MEAN value (on all theafmes)

4.1.3. EDS data types

Typing rules allow to control the input and outptypes for
each operator, and consequently the syntax of kbiead) function.
The need for typing is well-known in Genetic Progmaing, to
ensure that the functions generated are at leastastically
correct. Different type systems have been propdee@P, such
as strong typing ([5), that mainly differentiate theen the
“programming” types of the inputs and outputs ofiétions.

In EDS, we distinguish data at the level of thephysical
dimension”: For instance, audio signals and spectare both
vectors of floats, but are different in their dingons: a signal is a
time to amplitude representation, while a spectrassociates
frequency to amplitude. Thus, we have 3 "physicatomics
types: time “t", frequency "f', and amplitudes “athat allows to
build more complex types, such as functions (repnéstions
from one dimension to another, for example the tgb@n audio
signal [time to amplitude representation] is "t;agnd vectors
(special cases of functions associating an index tealue, for
example, a list of time onsets in an audio sigsatotated "Vt").

4.1.4. EDS patterns

This typing system allows to build "generic openstothat
stand for one or several random operator(s) whagput type
and possible arguments are forced. 3 different genaeperator
(notated "**, "I", and "?") stand for 1 or severaperator of given
output types, with 1 or several given arguments.

These generic operators allow to write functionttgas, that
stand for any function satisfying a given signalopessing
method. For instance, the pattern:

?_a('_Va (Split (*_t:a (SIGNAL))))
stands for:
« Apply signal transformations in the temporal doma (*_t:a)
« Split the resulting signal into frames » (Split)
« Find 1 characteristic value for each frame » &)V
« Find 1 relevant characteristic value for the ensignal » (?_a)
This general extraction scheme can be instantiaged
Sum(Square (MealfSplit (HpFilter (SIGNAL, 1000H2, 100))))
These patterns can be specified in EDS to guidestdach.

4.1.5. EDS heuristics

Heuristics are vital ingredients to guide the séaend a
central point in the design of EDS. They represiet know-how
of signal processing experts, about functions saepriori, i.e.
before their evaluation. The interest of heurisigshat they both
favor a priori interesting functions, and rule ooibviously non-
interesting ones.

A heuristic in EDS associates a score between 0Jdnhtb a
potential composition of operators, used to setectdidates at all
the function creation stages during the search.abidition,
heuristics are useful to control the structureta# functions (such
as the size of functions), avoid useless combimatiof operators
(such as redundancies), range constant values, etc.

4.1.6. EDS genetic search of functions

The system uses a genetic algorithm to build rehva
features, that works as follows:
- EDS starts with building a random population ofttions out
of a set of operators. This creation is done irpexs with the data
types and the heuristics.
- computes the instantiations of the created fumdiwith all the
signals in the genetic search database
- evaluates the correlation of the values of theated functions
with the values of the perceptive tests,
- selects the most correlated functions in the patian,
- applies some genetic transformations on thesetioins, such as
constants variations, mutations, replacements, caosk-over.
- creates a new population out of the transformackcfions and
new random functions.
- evaluates the new population is evaluated, andrso
Theoretically, the system stops when a perfect tioncis
found (correlation=1); practically we use the imtediate results
(the best functions found since the beginning) etdres to build
models of intensity.

4.1.7. Genetic transformations of functions

Genetic transformations of functions in EDS areddferent
types: constants variations, mutations, replacespecitoss-over.

Constants variation keeps the structure of the tioncbut
applies some slight variations on the constantesldror instance
"Mean (HpFilter (Signal,1500H2)" can be transformed into
"Mean (HpFilter (Signal1400H2)".

Replacements replace 1 operator of the functiorabgther
operator that handles the same data types. For glearfMean
(HpFilter (Signal, 1500Hz))" can be transformed into "Mean
(LpFilter (Signal, 1500Hz))".

Mutations replace 1 sequence of operators in timetfan by
another sequence that handles the same data tiypegxample,
"Mean (HpFilter (Signal, 1500Hz))" can be transformedoin
"Max (Autocorrelation (HpFilter (Signal, 1500Hz))))".

Cross-over replace 1 sequence of operators in etifum by
another sequence taken from another function, kizatdles the
same data types. For example, a cross-over of "Méekutilter
(Signal, 1500Hz)" and '"Max (Autocorrelation (Signal)))" can
be "Max (Autocorrelation (HpFilter (Signal, 1500Hz))".
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4.1.8. EDS optimization

2 optimizations speed-up EDS process: rewritingsuland a
system of caching of the most useful results.

Rewriting rules are applied to simplify functiongfore their
evaluation, using a fixed point mechanism untibiatain a normal
form. Unlike heuristics, they are not used by tlengtic algorithm
to favor combinations, but avoid computing sevetiates the
same function with different but equivalent fornas)d reduce the
computation cost (for example using Perseval eguakoids to
compute the "Fourier transform” of a signal).

Finally, a caching mechanism is introduced, so trat costly
function is computed once, and reused when posdihlery time
a new function is computed, all the intermediatsulés are stored
on separate files, and the caching technique ctmsikeeping in
memory the most useful results, depending on themputation
time, their utility, and their size.

4.2. Results of EDS

4.2.1. Features

We ran EDS on the perceived intensity problem. Bearch
has provided automatically different types of redat/features.

First, EDS has found features close to Mpeg7 lovele
descriptors, but improved with different pre-prosiegs. For
example, the most correlated function of this typend by the
system is Mean (SpectralSkewness (Split (Signal, 0.1s}hat
has a correlation of 0.60. This shows that EDShiked@o improve
automatically usual features by adding specifimaigorocessing,
which is usually done by hand by researchers.

Second, EDS has found features close to empiridaliynd
descriptors, but improved with additional operatohe most
correlated of these functions isMean (Log (Variance (Split
(Derivation (Square (Signal)), 1s)))vith a correlation of 0.64.

Finally, EDS has found new features, such &grt (Min
(Sum (Fft (Split (Signal, 1s))))) that reaches a correlation of
0.69.

4.2.2. Extractor

Finally, we solve the regression problem of builglie most
efficient intensity extractor as possible, by coripg the optimal
combination of the most relevant functions foundthg system.
We obtain efficient extractors for audio signals difration 10s,
that is the length of audio signals in the databd$e model error
of our best extractor is 11.3%, compared to thecpptive results
by cross-validation on our test database. It combiboth Mpeg7
and the best features found by EDS.

To obtain a extractor for the global intensity ofvdnole song,
whose duration is several minutes, we need to letsignal into
10s frames, extract the local intensity on thesenis, and then
aggregate the local intensity values into one gloksue. For
music browsing applications, we chose to provide timean
intensity" of a song, by taking the mean value dirtfse frames. It
is also interesting to draw a "song intensity plefirepresenting
the successive intensity values along a song, @ieioto determine
which parts of the song are more or less intense.

5. SUMMARY

Here is a table that summarizes the results of ithensity
extractor for the different methods used:

METHOD CORRELATION | MODEL
ERROR
RANDOM 0.18 21%
(mean value for all titles)

BEST MP7 Feature 0.56 16.9%
[Spectral Skewness (SIG)] +-1.5%
MP7 Features Combinatior 0.87 12.1%

21 Selected Featur +-1.9%

BEST EDS Feature

[Sqrt(Min(Sum(Fft(Split 0.68 o
(SIG,19)))))]

EDS+MP7 Combination 0.89 11.3%

18 Selected Features: +-1.8%

Fig. 3: Performances of Intensity Extractors

6. CONCLUSIONS

We presented several methods to extract relevaatufes
concerning the problem of modelling the perceivatergy of
music titles out of their raw audio signal. We faad on the
presentation of our EDS system. EDS is able to bothrove
usual low-level descriptors by adding pre- and parstcessing
operations, and to build automatically new relevdeatures,
thanks to a genetic search algorithm guided by mieed
heuristics. EDS is a general system that can bed usefind
relevant features for any description problem.
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