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ABSTRACT

The systematic testing of the very many parameters and
algorithmic variants involved in the design of high-level
music descriptors at large, and similarity measure in par-
ticular, is a daunting task, which requires the building of a
general architecture which is nearly as complex as a full-
fledge Music Browsing system. In this paper, we report
on experiments done in an attempt to improve the perfor-
mance of the music similarity measure described in [2],
using the Cuidado Music Browser ([8]). We do not prin-
cipally report on the actual results of the evaluation, but
rather on the methodology and the various tools that were
built to support such a task. We show that many non-
technical browsing features are useful at various stages of
the evaluation process, and in turn that some of the tools
developed for the expert user can be reinjected into the
Music Browser, and benefit the non-technical user.

1. INTRODUCTION

The domain of Electronic Music Distribution has gained
worldwide attention recently with progress in middleware,
networking and compression. However, its success de-
pends largely on the existence of robust, perceptually rel-
evant music similarity relations. It is only with efficient
content management techniques that the millions of mu-
sic titles produced by our society can be made available to
its millions of users.

1.1. Case study : Timbre Similarity

In [2], we have proposed to compute automatically music
similarities between music titles based on their global tim-
bre quality. Typical examples of timbre similarity as we
define it are :

• a Schumann sonata (“Classical”) and a Bill Evans
piece (“Jazz”) are similar because they both are ro-
mantic piano pieces,
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• A Nick Drake tune (“Folk”), an acoustic tune by the
Smashing Pumpkins (“Rock”), a bossa nova piece
by Joao Gilberto (“World”) are similar because they
all consist of a simple acoustic guitar and a gentle
male voice, etc.

Timbre Similarity has seen a growing interest in the Music
Information Retrieval community lately (see [3, 4, 7, 11],
and [1] for a complete review). Each contribution often is
yet another instantiation of the same basic pattern recog-
nition architecture, only with different algorithm variants
and parameters. The signal is cut into short overlapping
frames (usually between 20 and 50ms and a 50% over-
lap), and for each frame, a feature vector is computed,
which usually consists of Mel Frequency cepstrum Co-
efficients (MFCC). The number of MFCCs is an impor-
tant parameter, and each author comes up with a different
number. Then a statistical model of the MFCCs’ distri-
bution is computed, e.g. K-means or Gaussian Mixture
Models (GMMs). Once again, the number of kmean or
GMM centres is a discussed parameter which has received
a vast number of answers in the litterature. Finally, mod-
els are compared with different techniques, e.g. Monte
Carlo sampling, Earth Mover’s distance or Asymptotic
Likelihood Approximation. All these contributions give
encouraging results with a little effort and imply that near-
perfect results would just extrapolate by fine-tuning the
algorithms’ parameters. However, such extensive testing
over large, dependent parameter spaces is both difficult
and costly.

1.2. Evaluation

The algorithm used for timbre similarity comes with very
many variants, and has very many parameters to select.
The parameter space for the original algorithm is at least
6-dimensional: sample rate, number of MFCCs (N), num-
ber of components (M), distance sample rate (for Monte
Carlo), alternative distance (EMD, etc.), window size.
Moreover, some of these parameters are not independent,
e.g. there is an optimal balance to be found between high
dimensionality (N) and high precision of the modeling
(M). Additionally, the original algorithm may be modified
by a number of classical pre/postprocessing, such as ap-
pending delta coefficients or 0th coefficient to the MFCC
set. Finally, one would also like to test a number of vari-



ants, such as LPC or Spectral Contrast instead of MFCCs,
HMMs or SVMs instead of GMMs, etc.

At the time of [2], the systematic evaluation of the al-
gorithm was so unpractical that the chosen parameters re-
sulted from hand-made parameter twitching. In more re-
cent contributions, such as [3, 11], our measure is com-
pared to other techniques, with similarly fixed parame-
ters that also result from little if any systematic evalu-
ation. More generally, attempts at evaluating different
measures in the literature tend to compare individual con-
tributions to one another, i.e. particular, discrete choices
of parameters, instead of directly testing the influence of
the actual parameters. For instance, [11, 3] compares the
settings in [7](19 MFCCs+16Kmeans) to those of [2](8
MFCCs+3GMM).

In [4], Berenzweig et al. describe their experiments at
a large-scale comparison of timbre and cultural similarity
measures, on a large database on songs (8772). The ex-
periments notably focus on the gathering of ground truth
data for such a large quantity of material. Several au-
thors have studied the problem of choosing an appropriate
ground truth : [7] considers as a good match a song which
is from the “same album”, “same artist”, “same genre”
as the seed song. [11] also proposes to use “styles” (e.g.
Third Wave ska revival) and “tones” (e.g. energetic) cate-
gories from the All Music Guide AMG1 . [4] pushes the
quest for ground truth one step further by mining the web
to collect human similarity ratings. On the other hand, the
actual number of algorithmic variants tested in [4] remains
small, mainly the dimension of the statistical model, with
fixed MFCC number, frame rate, etc.

One of the main obstacles to conducting such a system-
atic evaluation is that it requires to build a general archi-
tecture that is able to :

• access and manage the collection of music signals
the measures should be tested on

• store each result for each song (or rather each duplet
of songs as we are dealing with a binary operation
dist(a, b) = d and each set of parameters

• compare results to a ground truth, which should also
be stored

• build or import this ground truth on the collection
of songs according to some criteria

• easily specify the computation of different mea-
sures, and to specify different parameters for each
algorithm variant

• easily manipulate the resulting similarity matrices,
so they can be compared and analysed

In the context of the European project Cuidado, which
ended in January 2004, the music team at SONY CSL
Paris has built a fully-fledged EMD system, the Music
Browser ([8]), which is to our knowledge the first system
able to handle the whole chain of EMD from metadata ex-
traction to exploitation by queries, playlists, etc. Usingthe

1 www.allmusic.com

Music Browser (MB), we were able to easily specify and
launch a large number of experiments in an attempt to im-
prove the performance of the class of algorithms described
above. All the needed operations were done directly from
the GUI, without requiring any additional programming or
external program to bookkeep the computations and their
results.

This paper does not focus on the actual results of the
evaluation (although we report on a subset of these exper-
iments in section 3.2). A complete account of the results
of the evaluation can be found in [1]. Here, we rather fo-
cus on the methodology and the various tools that were
built to support such a task. Notably, we discuss how ad-
vanced evaluation features that proved useful for the ex-
pert user may be reinjected into the MB, and benefit the
non-technical user.

2. USING THE MUSIC BROWSER AS AN
EVALUATION TOOL

Following our experiments with building the MB and
other content-based music systems, we have started de-
veloping a general JAVA API, the so-called MCM (Mul-
timedia Content Management), on which the current im-
plementation of the MB relies.

2.1. Building a test database

Thanks to MCM, one can use all the browsing function-
alities of the MB (editorial metadata, signal descriptors,
automatic playlist generation, and even other similarity
functions) to select the items which will populate the test
database.

For this study, we have constructed a test database of
350 song items. In order to use the “same artist” ground
truth, we select clusters of songs by the same artist. How-
ever, we refine this ground truth by hand, using the MB
query panel to help us select sets of songs which satisfy 3
additional criteria.

First, clusters are chosen so they are as distant as pos-
sible from one another. This is realized e.g. by using the
MB to select artists which do not have the same genre and
instrumentation metadata. For instance, “Beethoven” and
“Ray Charles” were selected because although they both
have the same value for their “instrument” Field (i.e. “pi-
ano”), but they have distinct values for their “genre” Field
(“jazz” adn “classical”).

Second, artists and songs are chosen in order to have
clusters that are “timbrally” consistent (all songs in each
cluster sound the same). This is realized by selecting all
songs by the chosen artist, and filtering this result set by
the available signal descriptors in the MB (subjective en-
ergy, bpm, voice presence, etc.), and by the relevant edi-
torial metadata (e.g. year, album).

Finally, we only select songs that are timbrally homo-
geneous, i.e. there is no big texture change within each
song. This is to account for the fact that we only compute
and compare one timbre model per song, which “merges”



all the textures found in the sound. The homogeneity of
the songs can be assessed with the MB, which is able to
measure some statistics on the metadata of a set of songs.

Once the songs are selected, the MB offers administra-
tive functions to create a new database (e.g. a separated
test database) and add the current result set to this new
database. This also copies the associated metadata of the
items (i.e. the Fields and their values), which is needed to
automatically compute the “same artist” ground truth.

2.2. Generating algorithmic variants

As described in section 1.2, the algorithms evaluated here
have a vast number of parameters that need to be fine-
tuned. The default parameters used in [2] were based on
intuition, previous work and limited manual testing dur-
ing the algorithm design. No further tests had been made,
because it was difficult and very-time consuming to in-
sert new descriptors in a db, and parameterize these new
descriptors. Basically, the DB had to be edited manually
with a client SQL administrative tool.

The MCM API makes the whole process of creating
new descriptors (or Fields) a lot easier. Each Field comes
with a number of properties, stored in the db, which can
be edited to create any wished number of algorithmic vari-
ants. The Field properties describe the executables that
need to be called, as well as the arguments of these exe-
cutables.

Figure 1 shows the properties of the Fields available in
the Descriptor Manager panel of the MB. As an example,
the executable of the selected Field, mfccd 2, has 3 ar-
guments, 20 (the number of MFCC), 50 (the number of
Gaussian Components), and 2 (the size of the delta co-
efficient window). The associated distance function also
appears with its own parameters, here 2000 (the number
of sampled points for the monte-carlo distance).

2.3. Computing similarity matrices

The Fields and the corresponding distances can then
be computed on the test database using the Browser’s
Descriptor Manager (Figure 2). When the method
Field.compute() is called, MCM automatically cre-
ates the database structures and the similarity cache tables
to accommodate the new descriptors, as specified by their
properties, and launches the corresponding executable.

2.4. Generating a Ground Truth

A ground truth which we want to compare the measure to
is simply yet another similarity matrix. Several types of
ground truth can be seamlessly integrated in the MB :

• ground truths based on consensual, editorial meta-
data about songs and artists, such as artist name,
album, recording date, etc. Such similarity matrices
can be computed with the descriptor manager, us-
ing a simple euclidean distance for numerical data,
and either exact or approximate string matching for
strings.

Figure 1. The Field properties as shown in the Descriptor
Manager

• ground truths imported from other sources of simi-
larity, e.g. inference of cultural similarity by mining
of co-occurrences on the web ([4, 9]).

• ground truths based on user subjective judgments,
generated by experiments. We are currently work-
ing on a general framework to automatically gener-
ate such user tests (in the form of web pages), and
collect the results in the form of a MCM similarity
matrix ([10]).

For the present study, we generate the “same artist”
ground truth on the songs items by testing for equality of
the “artist” Field in each song. This ground truth is stored
in the form of a similarity matrix, which we will compare
successively to all the computed timbre similarity matri-
ces.

3. COMPARING MATRICES

3.1. Metrics

We have identified 2 cases in similarity matrix comparison

3.1.1. Comparing floating point matrices

The two matrices to compare contain floating-point sim-
ilarity or distances values. In [4], the authors propose to
use thetop-N ranking agreement score: the topN hits
from the reference matrix define the ground truth, with ex-
ponentially decaying weights so that the top hit has weight
= 1, the2nd hit has weightαr, the3rd has weightα2

r , etc.



Figure 2. The Descriptor Manager

The score for theith query is defined by :

Si =

N∑

r=1

αr
rα

kr

c (1)

wherekr is the ranking according to the candidate mea-
sure of therth-ranked hit under the ground truth. In [4],
the authors use the following valuesN = 10,αr = 0.51/3

andαc = α2

r .

3.1.2. Comparing to a class matrix

A class matrix is a binary similarity matrix (similarity is
either 0 or 1). This is the case in the evaluation reported
here where songs from the same artist are considered rel-
evant to one another, and songs from different artists are
non relevant. This framework is very close to traditional
IR, where we know the number of relevant documents for
each query. The evaluation process for such tasks has
been standardized within the Text REtrieval Conference
(TREC) [13]. Here are the official values printed for a
given retrieval task :

• total number of documents over all queries : Re-
trieved, Relevant, Relevant & Retrieved

• interpolated recall-precision averages, at 0.00, at
0.10, ..., at 1.00 : Measures precision (i.e. the per-
centage of retrieved documents that are relevant) at
various recall level (i.e. after a certain percentage
of all the relevant docs for that query has been re-
trieved).

• average precision (non interpolated) over all rele-
vant documents

• precision, at 5 docs, at 10 docs, ..., at 1000 docs

Figure 3. The evaluation tool computes R-precision for
each query, and average R-precision fro the whole matrix

• R-precision :Precision after R documents have been
retrieved, where R=number of relevant documents
for the given query.

Figure 3 shows a screenshot of our matrix evaluation
tool used to compute the evaluation values. The tool uses
the standard NIST evaluation package TRECEVAL.

3.2. Results

Here we report on a subset of the evaluation results ob-
tained with the methodology and tools examined in this
paper. A complete account and discussion of the results
can be found in [1].

3.2.1. (N,M) exhaustive search

As a first evaluation, we explore the space constituted by
the following 2 parameters :

• Number of MFCCs (N): The number of the MFCCs
extracted from each frame of data.

• Number of Components (M): The number of gaus-
sian components used in the GMM to model the
MFCCs.

Figure 4 shows the results of the complete exploration
of the (N,M) space, with N varying from 10 to 50 by steps
of 10 and M from 10 to 100 by steps of 10. We use the
R-precision measure as defined in section 3.1.2. We can
see that too many MFCCs (N ≥ 20) hurt the precision.
When N increases, we start to take greater account of the
spectrum’s fast variations, which are correlated with pitch.
This creates unwanted variability in the data, as we want
similar timbres with different pitch to be matched nev-
ertheless. We also notice that increasing the number of
components at fixed N, and increasing N at fixed M is
eventually detrimental to the precision as well. This illus-
trates the curse of dimensionality mentioned earlier. The
best precisionp = 0.63 is obtained for 20 MFCCs and 50
components. Compared to the original values used in [2]
(N=8, M=3), this corresponds to an improvement of over
15% (absolute)R-precision.



Figure 4. Influence of the number of MFCCs and the
number of components

3.2.2. Hidden Markov Models

In an attempt to model the short-term dynamics of the
data, we try replacing the GMMs by hidden Markov mod-
els (HMMs, see [12]). In figure 5, we report experiments
using a single HMM per song, with a varying number of
states in a left-right topology. The output distribution of
each state is a 4-component GMM (the number of com-
ponent is fixed) (see [1] for more details). From figure
5, we see that HMM modeling performs no better than
static GMM modeling. The maximumR-precision of
0.632 is obtained for 12 states. Interestingly, the precision
achieved with this dynamic model with 4*12=48 gaus-
sian components is comparable to the one obtained with a
static GMM with 50 states. This suggests that short-term
dynamics are not a useful addition to model polyphonic
mixtures.

Figure 5. Influence of the number of states in HMM mod-
eling

4. ADVANCED FEATURES

We have added a number of advanced features to the eval-
uation tool shown in Figure 3, in order to further discuss
and analyse evaluation results.

4.1. Hubs

Interestingly, in our test database, a small number of songs
seems to occur frequently as false positives. For instance
(see [1] for more details), the songMITCHELL, Joni
- Don Juan’s Reckless Daughter occur more

than 6 times more than it should, i.e. is very close to 1
song out of 6 in the database (57 out of 350). Among all
its occurrences, many are likely to be false positives. This
suggests that the errors (about 35%) are not uniformly dis-
tributed over the whole database, but are rather due to
a very small number of “hubs” (less than 10%) which
are close to all other songs. Using the evaluation tool,
we could redo the simulation without considering the 15
biggest hubs (i.e. comparing the similarity matrices only
on a subset of the items), which yield an absolute improve-
ment of 5.2% ofR-precision.

These hubs are reminiscent of a similar problem in
Speech Recognition, where a small fractions of speakers
(referred to as “goats”, as opposed to sheeps) are respon-
sible for the vast majority of errors ([6]). They are espe-
cially intriguing as they usually stand out of their clusters,
i.e. other songs of the same cluster as a hub are not usu-
ally hubs themselves. A further study should be done with
a larger test database, to see if this is only a boundary ef-
fect due to our small, specific database or a more general
property of the measure.

4.2. Meta similarity

Being MCM Objects, similarities can themselves be com-
pared and combined in a number of operations :

4.2.1. Clustering

The evaluation tool has the capacity to represent the var-
ious similarity functions as points in a 2-D space, using
multidimensional scaling (MDS, see [5]) based on their
mutual distances. Figure 6 compares similarities obtained
with hmm and delta coefficients (another variant exam-
ined in [1]), using the Top-10 ranking agreement dis-
tance measure. It appears that while both variants re-
main equally close from the ground truth as their order
increases, they become more and more distant to one an-
other. In other words, low order delta and hmm similari-
ties are fairly interchangeable, whereas higher order really
capture different aspects of the data, yielding quite distinct
similarity matrices.

Such similarity at the “meta” level (similarity between
similarity) may prove useful for a non expert user to
quickly have an idea of how various criteria available for
browsing differ.

4.2.2. Agreement on queries

Similarity measures can be further compared to find the
most or least agreeing queries, i.e. the line indexes in the
matrices which have the smallest distance to one another.
If we compare a test matrix to a ground truth, we can
therefore estimate the domains on which the test matrix
is the most accurate : a similarity may be good to com-
pare jazz music, while another more suitable for electro
music.



Figure 6. Multidimensional scaling of the delta-
coefficient and hmm similarity matrices

4.2.3. Agreement on duplets

Matrices can also be intersected with AND or NAND op-
erations. Combining similarities by only keeping the re-
sults on which they agree for each query (e.g. intersect-
ing the 10 nearest neighbors result sets) results in a more
consensual similarity, with a better precision but a worse
recall. 2 matrices can also be inspected to find duplets of
items which are close according to one similarity, but dis-
tant according to the other. We have shown in [2] how
such disagreement between similarities could mine rare,
interesting relations between items. For instance, acoustic
cover versions of songs have a distant timbre similarity to
the original version, however they are very close accord-
ing to editorial metadata.

5. CONCLUSION

In this paper, we have reported on tools built in an attempt
to improve the performance of the music similarity mea-
sure described in [2], using the Cuidado Music Browser
([8]). We have shown that many non-technical browsing
features are crucial at various stages of the evaluation pro-
cess, in order e.g. to build a test database or to generate a
ground truth. In turn, we have introduced evaluation tools
which can benefit the non-technical user while browsing
for music. Matrix distances may help her choose between
different available search criteria, while matrix intersec-
tion can help her find rare, interesting songs. We believe
that this case study shows the importance of designing
complete evaluation environments for MIR researchers.
Moreover, the convergence in needs and tools of the pro-
cess of browsing and the process of designing browsing
tools opens up the way for a unified language, toward
which the MCM API may be a first step.

6. REFERENCES

[1] J.-J. Aucouturier and F. Pachet. Improving timbre
similarity: How high’s the sky ?Journal of Negative
Results in Speech and Audio Sciences, 1(1), 2004.

[2] J.-J. Aucouturier and F. Pachet. Music similarity
measures: What’s the use ? InProceedings of the
3rd International Conference on Music Information
Retrieval (ISMIR), Paris (France), October 2002.

[3] S. Baumann and T. Pohle. A comparison of music
similarity measures for a p2p application. InPro-
ceedings of the Sixth International Conference on
Digital Audio Effects DAFX, London (UK), Septem-
ber 2003.

[4] A. Berenzweig, B. Logan, D. P. W. Ellis, and
B. Whitman. A large-scale evaluation of acoustic
and subjective music similarity measures. InPro-
ceedings of the Fourth International Conference on
Music Information Retrieval (ISMIR 2003), Balti-
more, Maryland (USA), October 2003.

[5] I. Borg and P. Groenen.Modern Multidimensional
Scaling.Springer-Verlag, New York., 1997.

[6] G. Doddington, W. Liggett, A. Martin, M. Przy-
bocki, and D. Reynolds. Sheep, goats, lambs and
wolves, a statistical analysis of speaker performance.
In Proceedings of the 5th International Conference
on Spoken Language Processing (ICSLP), Sydney,
Australia., December 1998.

[7] B. Logan and A. Salomon. A music similarity func-
tion based on signal analysis. Inin proceedings IEEE
International Conference on Multimedia and Expo
(ICME), Tokyo (Japan ), August 2001.

[8] F. Pachet, A. LaBurthe, A. Zils, and J.-J. Aucou-
turier. Popular music access: The sony music
browser.Journal of the American Society for Infor-
mation (JASIS), Special Issue on Music Information
Retrieval, 2004.

[9] F. Pachet, G. Westermann, and D. Laigre. Musical
datamining for emd. InProceedings Wedelmusic,
2001.

[10] F. Pachet and A. Zils. Evolving automatically high-
level music descriptors from acoustic signals. In
Springer Verlag LNCS, 2771, 2003.

[11] E. Pampalk, S. Dixon, and G. Widmer. On the eval-
uation of perceptual similarity measures for music.
In Proceedings of the Sixth International Confer-
ence on Digital Audio Effects DAFX, London (UK),
September 2003.

[12] L. Rabiner. A tutorial on hidden markov models
and selected applications in speech recognition.Pro-
ceedings of the IEEE, 77(2), 1989.

[13] E. Voorhes and D. Harman. Overview of the
eighth text retrieval conference. InProceedings
of the Eighth Text Retrieval Conference (TREC),
Gaithersburg, Maryland (USA), November 1999.
http://trec.nist.gov.


