
ISMIR 04, Barcelona.

AUTOMATIC EXTRACTION OF MUSIC DESCRIPTORS

FROM ACOUSTIC SIGNALS

Zils Aymeric, Pachet François

Sony CSL Paris

{zils, pachet}@csl.sony.fr

ABSTRACT

High-Level music descriptors are key ingredients for

music information retrieval systems. Although there is a

long tradition in extracting information from acoustic

signals, the field of music information extraction is

largely heuristic in nature. We present here a heuristic-

based generic approach for extracting automatically

high-level music descriptors from acoustic signals. This

approach is based on Genetic Programming, used to

build relevant features as functions of mathematical and

signal processing operators. The search of relevant

features is guided by specialized heuristics that embody

knowledge about the signal processing functions built by

the system. Signal processing patterns are used in order

to control the general processing methods. In addition,

rewriting rules are introduced to simplify overly complex

expressions, and a caching system further reduces the

computing cost of each cycle. Finally, the features build

by the system are combined into an optimized machine

learning descriptor model, and an executable program is

generated to compute the model on any audio signal. In

this paper, we describe the overall system and compare

its results against traditional approaches in musical

feature extraction à la Mpeg7.

1. INTRODUCTION

The exploding field of Music Information Retrieval has
recently created extra pressure to the community of audio
signal processing, for extracting automatically high level
music descriptors. Indeed, current systems propose users
with millions of music titles (e.g. the peer-to-peer systems
such as Kazaa) and query functions limited usually to
string matching on title names. The natural extension
of these systems is content-based access, i.e. the
possibility to access music titles based on their actual
content, rather than on file names. Existing systems
today are mostly based on editorial information (e.g.
Kazaa), or metadata which is entered manually, either
by pools of experts (e.g. All Music Guide) or in a
collaborative manner (e.g. MoodLogic).

Because these methods are costly and do not allow

scale up, the issue of extracting automatically high-
level features from acoustic signals is key to the
success of online music access systems.

Extracting automatically content from music titles is a
long story. Many attempts have been made to identify
dimensions of music that are perceptually relevant and
can be extracted automatically. One of the most known
is tempo or beat. Beat is a very important dimension of
music that makes sense to any listener. [1] introduced a
beat tracking system that successfully computes the
beat of music signals with good accuracy.

There are, however, many other dimensions of music

that are perceptually relevant, and that could be extracted

from the signal. For instance, the presence of voice in a

music title, i.e. the distinction between instrumentals and

songs is an important characteristic of a title. Another

example is the perceived intensity. It makes sense to

extract the subjective impression of energy that music

titles convey, independently of the RMS volume level:

with the same volume, a Hard-rock music title conveys

more energy than, says, an acoustic guitar ballad with a

soft voice. There are many such dimensions of music

that are within reach of signal processing: differentiate

between “live” and studio recording, recognize typical

musical genres such as military music, infer the

danceability of a song, etc. Yet this information is

difficult to extract automatically, because music signals

are usually highly complex, polyphonic in nature, and

incorporate characteristics that are still poorly

understood and modeled, such as transients,

inharmonicity, percussive sounds, or effects such as

reverberation.

2. THE TRADITIONAL METHOD

2.1. Combination of Low-Level Descriptors

Typically, the design of a descriptor extractor consists in

combining Low-Level Descriptors (LLDs) as relevant

characteristics of acoustic signals (features) using

machine learning algorithms. More precisely, the

traditional approach in descriptor design is the following

(see, e.g. [2], [3], [4]):
Firstly, the signals of a reference database are labeled
with the descriptor’s values. These values can be
obvious to get (e.g. Presence of singing voice), or can

Permission to make digital or hard copies of all or part of this work

for personal or classroom use is granted without fee provided that

copies are not made or distributed for profit or commercial

advantage and that copies bear this notice and the full citation on

the first page.

© 2004 Universitat Pompeu Fabra.

ISMIR 04, Barcelona.

require the use of perceptive tests (e.g. the global
energy of musical extracts). In this latter case humans
are asked to enter a value for the descriptor, and then
statistical analysis is used to find the average values
considered thereafter as grounded truth.
Secondly, several features of the associated audio
signals are computed. A typical reference for audio
signal features is the Mpeg7 standardization process
[5], that proposes a battery of LLDs for describing
basic characteristics of audio signals. The purpose of
Mpeg7 is not to solve the problem of extracting high
level descriptors, but rather to propose a basis to design
such descriptors.
Eventually, the most relevant features, i.e. that best
map with the labels or values of the signals, are
selected and combined into machine learning processes,
to provide an optimal model for the descriptor.

2.2. Limitation of the traditional method

The traditional method sketched above works well only

for relatively easy problems; problems for which generic

low level features are adapted. However, generic features

can only extract information which is “predominant” in

the signal, and are, by definition, unable to focus on

specific, problem-dependent properties. The core

assumption of this paper is precisely that in order to solve

more difficult problems one needs specific features

adapted to the problem at hand. The following problem

illustrates this claim.

2.2.1. A simple example: Sinus + Colored Noise

Let us consider the problem of detecting a sinus wave in a

given frequency range (say 0-1000Hz) mixed with a

powerful colored noise in another frequency range (1000-

2000Hz). As the colored noise is the most predominant

characteristic of the signal, generic features such as

Mpeg7’s are unable to detect the hidden sinus. For

instance, when we look at the spectrum of a 650Hz sinus

mixed with a 1000-2000Hz colored noise (fig.1), the peak

of the sinus is visible but not predominant, and is thus

impossible to extract automatically using a generic

feature. Of course, this problem is easy to solve by hand,

for instance by applying a pre-filtering to the signal that

cuts off the frequencies of the colored noise, so that the

sinus emerges from the spectrum, and becomes a

predominant property (see Fig. 2).

This basic example illustrates the fact that combinations

of basic LLDs cannot cover a function space wide enough

to find specialized extractors. Indeed, we claim that high-

level descriptor can be obtained by some linear

combination of basic LLDs. An automatic system that

produces extractors has to be able to search in a larger

function space, as experts in signal processing normally

do. Such a search space has to include not only actual

operators but also compositions thereof as well as all the

possible “in-between” processes such as filters or peak

extractions inserted to improve the efficiency of an

extractor.

Fig 1: Spectrum of a 650Hz sinus mixed with

1000-2000Hz colored noise

Fig 2: Spectrum of a 650Hz sinus mixed with
1000-2000Hz colored noise, pre-filtered by a

1000Hz Low-Pass Filter

3. IMPROVING TRADITIONAL LLD

COMBINATION USING AUTOMATIC

OPERATORS COMPOSITION

The design of specific features that are relevant for a

given description problem is usually done by hand by

signal processing experts. This section introduces the

idea of generating automatically such specific features

adapted to a particular problem.

3.1. Motivation for an automatic system for descriptors

extraction

Although there is no known general paradigm for
designing domain-specific features, their design usually
follows some sort of patterns. One of them consists in
filtering the signal, splitting it into frames, applying
specific treatments to each segment, then aggregating
all these results back to produce a single value.
This is typically the case of the beat tracking system
described in ([1]), that can schematically be described
as an expansion of the input signal into several
frequency bands, followed by a processing of each
band, and completed by an aggregation of the resulting
coefficients using various aggregation operators, to
yield eventually a float representing (or strongly
correlated to) the tempo. The same applies to timbre
descriptors proposed in the music information retrieval
literature ([6], [7]) an more generally to most audio
descriptors described in the literature.
Of course, this global scheme of expansion/reduction is
under specified, and an infinite number of such

ISMIR 04, Barcelona.

schemes could be envisaged. Our goal is therefore to
design a system that is able to 1) search automatically
relevant signal processing features, seen as
compositions of functions and build a model of the
descriptor and 2) reduce the search space significantly
using generic knowledge on signal processing
operators.

3.2. Definition of a description problem

In the context of an automatic modeling of descriptors

from numeric signals, the definition of the description

problems handled by the system has to remain simple to

preserve the generality of the approach. One simple way

to define a description problem is to use the supervised

learning approach: a set of labeled signals, also called

learning database, defines the description problem.

These labels are either numeric values, such as an

evaluation of their “musical energy” (between 0 and 1),

or a class label, such as the “presence of a singing voice”

or not, or the genre chosen in a given taxonomy. The

system will then finds the rules of the labeling of the

signals, i.e. the model of the descriptor, by designing a

function which produces outputs as close as possible to

the learning database.

3.3. General Principle of the “Extractor Discovery

System” (EDS)

The key idea of our approach is to substitute the
combination of basic LLDs by the composition of
signal processing operators: our system EDS composes
automatically operators to discover features as signal
processing functions that are optimal for a given
descriptor extraction task.
The global architecture of EDS consists in two parts:
modeling of the descriptor and synthesis of the
extractor. Both parts are fully automatic and lead
eventually to an extractor for the descriptor.
The modeling of the descriptor is the main part of EDS.
It consists in searching automatically for a set of
relevant features using the genetic search algorithm,
and then to search automatically for the optimal model
for the descriptor, that combines these features.
The search for specific features is based on genetic
programming, a well-known technique for exploring
search spaces of function compositions (see [8]). The
genetic programming engine composes automatically
signal processing operators to build arbitrarily complex
functions.
Each built function is given a fitness value which
represents how well the function performs to extract a
given descriptor on a given learning database.
The evaluation of a function is very costly, as it
involves complex signal processing on whole audio
databases. Therefore, to limit the search, a set of
heuristics are introduced to improve the a priori
relevance of the created functions, as well as rewriting
rules to simplify functions before their evaluation.
Once the system has found relevant features, it
combines them to feed them into various machine

learning models, and then optimizes the model
parameters.
The synthesis part consists in generating an executable
file to compute the best model on any audio signal.
This program allows computing this model on arbitrary
audio signals, to predict their value for the modeled
descriptor.

4. EDS TECHNICAL DESCRIPTION

We describe here the three main ingredients of the EDS

system: the automatic construction of signal processing

functions, the adaptation of these functions for a given

descriptor, and the combination of those into a general

descriptor model.

4.1. Automatic construction of features

Functions are represented in EDS as compositions of
basic operations applied on an arbitrary input audio
signal. The automatic construction of correct functions
relies on the control of the types of data handled by the
functions, and on the introduction of signal processing
expertise as heuristics.

4.1.1. Representation of functions as signal processing

operators trees

The basic operators used by EDS can be mathematical,
such as taking the mean values of a set, or can process
a signal, temporally (such as correlation), or spectrally
(such as a low-pass filtering). In addition, some
operations are parameterized using constant values
(like cut-off frequencies), or external signals (for
example a correlation with another, fixed, reference
signal).
To account for the specificity of audio extraction, we
also introduced operators to implement the global
extraction schemes, such as described in 3.1. For
instance, the Split operator splits a signal into frames,
an operation that is routinely performed when a given
treatment has to be made on successive portions of the
signal.

Fft(Derivation(InSignal), Max(Correlation

(InSignal, Constant_Signal))

<==>

F f t

D e r i v M a x

I n p u t S i g n a l C o r r e l a t i o n

I n S i g n a l C o n s t a n t _ S i g n a l

Fig. 4: The syntactic tree of a function in EDS

The functions built by composing these operators

have to contain at least one argument labeled

InSignal, which is instantiated with a real audio signal

ISMIR 04, Barcelona.

before the evaluation of the function. Figure 4 shows

an example of the syntactic representation for a

function that is a composition of basic operators

(FFT, Derivation, Correlation, Max).

4.1.2. Data Types

The need for typing is well-known in Genetic
Programming, to ensure that the functions generated
are at least syntactically correct. Different type systems
have been proposed for GP, such as strong typing ([9])
that mainly differentiate between the “programming”
types of the inputs and outputs of functions.
In our context, the difference between the programming
types floats, vectors, or matrix, is superficial. For
example, the operator "Abs" (absolute value) can be
applied on a float, a vector, etc. This homogenous view
of values yields simplicity in the programming code,
which we need to retain.
However, to control the physical processes in EDS, we
need to distinguish how the functions built by the
system handle the data, at the level of their “physical
dimension”. For instance, audio signals and spectrum
can be seen both as vectors of floats from the usual
typing perspective, but they are different in their
dimensions: a signal is a time to amplitude
representation, while a spectrum associates frequency
to amplitude. Thus, these data have to be processed
differently. Our typing system, based on the following
constructs, represents this difference, to ensure that our
resulting functions make sense.
Using only three physical dimensions (time “t”,
frequency "f", and amplitudes or non-dimensional data
“a”), we are able to represent most of the data types
handled by the system, by building atomic, vector, and
functional types.
• “Atomic” types describe the physical dimension of

a single value. For instance:
- Position of a drum onset in a signal: “t”,
- Cut-off frequency of a filter: “f”,
- Amplitude peak in a spectrum: “a”.

• “Functional” types represent data of a given type,
which are evolving in a dimension of another type.
The evolution type is separated from the data type
using the ":" notation. For instance:
- Audio signal (amplitude in time): "t:a",
- Spectrum (amplitude in frequency): "f:a".

• “Vector” types, notated “V”, are special cases of
functions, used to specify the types of
homogeneous sets of values without dimensional
evolution. For instance:
- Temporal positions of the autocorrelation

peaks of an audio signal: “Vt”
- Amplitudes of autocorrelation peaks: “Va”.

• In the case of functional data with multiple
evolving or vector dimensions, all the evolving
types are written before the “:”. For instance:
- A signal split into frames: "Vt:a",
- Autocorrelation peaks on each frame: “VVa”

4.1.3. Operators typing rules

The operations in EDS transform physically the data,
and can therefore be specified using the typing system.
For each operator, we define typing rules that provide
the type of its output data, depending on the types of its
input data. The typing rules are usually reduced into a
dimensionality rule and a transformation rule.

Example 1: Spectrum
The “Spectrum” operation transforms a signal of type
“t:a” into a frequency spectrum of type “f:a”, and
transforms a frequency spectrum “f:a” into a data of
type “t:a”, homogeneous with a signal. More generally,
the “Spectrum” operation inverses the physical type of
an evolving dimension. Its typing rules are:

- at least 1 evolving dimension
- input evolving type “T” à output evol type “T-1”,
with a-1=a, t-1=f, f-1=t.

For instance, “Spectrum”:
- transforms a set of signals (“Vt:a”) into a set of
spectrums (“Vf:a”)
- cannot handle temporal onsets (“Vt”)

Example 2: Split
The “Split” operation allow observing a data on regular
observation windows. Thus “Split” adds a new
evolving dimension, and its typing rules are:

- at least 1 evolving dimension
- input evolving type “T” à output evolving type
“TT”: addition of an evolving dimension.

For instance, “Split” transforms:
- a signal (“t:a”) into a set of signals (“tt:a”)
- a set of time values (“Vt”) into multiple sets of time
values (“VVt”)

This typing system is more complex than the usual
typing systems used routinely in Genetic Programming,
but has the interest of being able to retain the
respective physical dimensions of the inputs and
outputs values of all the operations in a function. For
instance, the following complex but realistic function
handles the following data types:
Mina (Maxt:a (Sqrttf:a (FFTtf:a (Splittt:a (InSignalt:a))))),
and thus provides as final output one amplitude value
“a” from a given input signal InSignal “t:a”.

4.1.4. Controlling general processing methods using

generic operators and patterns

The types of data handled by a function are a signature
of the general processing methods used in the function.
For instance, if an operation in the function provides
data of type “f:a” (homogeneous to a spectrum), this
means that the following operations are computed in
the spectral domain.
In order to control globally the processing methods
through the successive types of data handled by the
functions, we have introduced "generic operators" that
stand for one or several random real operator(s) whose
output types are forced.

ISMIR 04, Barcelona.

EDS can deal with three different generic operators
(notated "*", "!", and "?") that have different
functionalities:
• "?_T" stands for one operation providing an output

type "T". For instance, “?_a(Signal)” can be
implemented as Maxa(Signalt:a)”, or
“Variancea(Signalt:a)”.

• "*_T" stands for a composition of several
operations that all provide an output type “T”. For
instance, “*_a(Signal)” can be implemented as
“Squarea (Maxa (Signalt:a))”, or “Loga (Squarea

(Variancea (Signalt:a)))”.
• "!_T" stands for a composition of several operators

that provide a final output type "T". For instance,
“!_a(Signal)” can be implemented as “Variancea
(Autocorrelationt:a (Signalt:a))” or “Mina (Maxt:a

(Ffttf:a (Splittt:a (Signalt:a))))”.

These generic operators allow specifying locally the
processes to use in a function. By composing them to
write functions patterns, we describe a global set of
processes to apply on an audio signal to obtain a final
value. For instance, the simple pattern

"?_a (!_Va (Split (*_t:a (Signal))))"
is a translation of the general extraction scheme
presented in 3.1, standing for the following processes:
- « Apply some transformations on the input signal in
the temporal domain » (*_t:a)
- « Split the resulting signal into frames » (Split)
- « Find a vector of characteristic values - 1 for each
frame » (!_Va)
- « Find one operation to find one relevant
characteristic value for the entire signal » (?_a)
There are various ways to instantiate this pattern,
among which:
- Suma (SquareVa (MeanVa (SplitVt:a (HpFiltert:a (Signalt:a,
1000Hz))))), or
- Log10a (Variancea (NPeaksVa (SplitVt:a
(Autocorrelationt:a (Signalt:a)))))

Patterns are specified in the EDS algorithm in order to

guide the search of functions. The simplest pattern to

specify is “!_a”, that means “a function made of any

composition of operators providing one non-dimensional

or amplitude value as final output”.

4.1.5. Heuristics

The system is able to build physically correct functions
by specifying signal processing patterns. However, the
physical correctness is not sufficient to build relevant
functions, by choosing the optimal operations to solve a
given description problem.
In order to guide the instantiation of the patterns, we
need to introduce knowledge in the system, as signal
processing heuristics. Indeed, heuristics are a central
point in the design of EDS. They represent the know-
how of signal processing experts, about functions seen
a priori, i.e. before their evaluation. The interest of
heuristics is that they both favor a priori interesting
functions, and rule out obviously non-interesting ones.
A heuristic in EDS associates a score to a potential
composition of operators, between 0 (forbidden

composition) and 10 (very recommended composition).
These scores are used when EDS builds a new
function, to select the candidates between all the
possible operations. Basically, the heuristics allow to:
• Control the structure of the functions
For instance the number of operations done to compute
the cut-off frequency argument for a high-pass filter
“HpFilter (InSignal, CutOffFreq)” can be controlled
using the heuristic “HpFilter (Signal, Branch) =>
SCORE = Max (0, 5 - Size(Branch))"
The filtering operation will be scored 5 if the cut-off
frequency is a constant value, 4 if it is the result of one
operation, and so on.
• Avoid bad combination of operations
For instance, multiple high-pass filters are avoided
using the heuristic "HpFilter (HpFilter =>SCORE=1",
labeling two consecutive high-pass filtering as a very
bad composition of operations. Similarly, filter
combination rules can be translated to the following
heuristics"MpFilter(HpFilter=>3","LpFilter(HpFilter=>
5", etc.
• Range constant parameters values
For instance, the following heuristic "Envelope (x, <50
frames) => SCORE = 1" rules the size of the window
when computing an envelope, and "HpFilter (x,
<100Hz) => 1" rules the cut-off frequency value of a
filter.
• Avoid usually useless operations
For instance the heuristic "X (X (X => SCORE = 2"
avoids too many repetitions of operators:, etc.

4.1.6. Automatic construction of functions using patterns,

typing rules, and heuristics

Using all the previous rules, EDS is able to build
automatically various physically correct functions from
a given signal processing pattern.
The pattern is composed of one input signal, and
several generic operators, real operators, several
numeric values, and constant signals.
The automatic synthesis of functions is performed in
bottom-up fashion, starting from the input signal, and
grafting sequentially the operators one after the other
up to the top of the tree, all the generic operators being
instantiated, i.e. replaced by real operators (as
presented in 4.1.4.).

4.2. Search for optimized features

Once the system has built functions with a correct type, it

evaluates them and tries to improve their fitness to solve

the description problem.

4.2.1. Evaluation of function fitness

To evaluate if a function is relevant, the system computes

this function on the whole learning database that defines

the description problem, and then compares the values

obtained with the labels of the signals, to check if the

former can explain the latter. Different fitness functions

can be computed, depending on the nature of the

descriptor. In our experiments with regression problems,

ISMIR 04, Barcelona.

we compute fitness as the Pearson correlation coefficient

between the function values and the perceptive values

([14]). For classification problems, we use the Fisher’s

criterion ([14]) for the function values on the different

class labels, which evaluates how well the function

discriminates between the different classes. The system

uses then the fitness of the functions as a criterion in the

search algorithm, to find relevant functions for the

problem to solve.

4.2.2. Genetic Search Algorithm

The function search part in EDS consists in building
signal processing functions that are increasingly
relevant, using an algorithm based on genetic
programming, i.e. the application of genetic search to
the world of functions, as introduced by [10].
Given a description problem for which we seek an
extractor, defined by a database DB containing labeled
audio signals (numeric values or class labels), the
algorithm builds a population of functions from a
pattern P, and tries to improve them by applying
various genetic transformations on them.
More precisely, the algorithm works as follows:

1. Build the first population P0, of random
functions based on the pattern P

2. Compute the fitness of each function in the
population

3. If (Stop Condition): STOP the algorithm, and
RETURN the best function

4. Else: select the functions with the highest
fitness, and create of a new population Pi+1, by
applying transformations on them

5. Iteration to (2)
The “Stop Condition” is specified using various
combined criteria:
• Maximum number of iteration reached: the search

stops automatically after population number 1000.
• A relevant function is found: fitness >= threshold;

typically threshold=1, the function itself is a
perfect model of the descriptor.

• The population does not improve anymore: fitness
of the best function of population Pi = fitness of
the best function of population Pi-N; typically N=5
unimproved populations.

Running this algorithm once provides one optimal
function to be used in the final model. Therefore, this
algorithm is run N times to build N optimized functions
constituting the final feature set used in the final model
of the descriptor.

4.2.3. Creation of populations by genetic transformations

During the genetic search, each new population is
created by applying various genetic transformations on
the most relevant functions of the current population.
These transformations aim at reusing local operations
found in relevant functions, in order to build even more
relevant functions. Three main transformations are used
in EDS: constants variation, mutation, and crossover:
• Constants variations consists in keeping the tree

structure a function and applying variations on its

constant parameters, such as the cut-off
frequencies of filters or the computation window
sizes. For example: "Sum (Square (FFT (LpFilter
(Signal, 1000Hz))))" can be cloned as "Sum
(Square (FFT (LpFilter (Signal, 800Hz))))".

• Mutation consists in cutting a branch of a function,
and replacing it by another composition of
operators providing a data of the same type. For
example "Sum (Square (FFT (LpFilter (Signal,
1000Hz))))" can be mutated into "Sum (Square
(FFT (MpFilter (Signal, 1100Hz, 2200Hz))))".

• Finally, crossover consists in cutting a branch from
a function and replacing it by a branch cut from
another function. For example "Sum (Square (FFT
(LpFilter (Signal, 1000Hz))))" and "Sum
(Autocorrelation (Signal))" can produce the
crossover function "Sum (Square (FFT
(Autocorrelation (Signal))))".

In addition to the genetically transformed functions, the
new population is completed with a set of new random
functions to ensure its diversity and introduce new
operations.

4.2.4. Improvement of the search

Eventually, in order to search for function more

efficiently, rewriting rules and a caching mechanism

have been included in the system.
Rewriting rules are applied to simplify functions before
their evaluation, using a fixed point mechanism until to
obtain a normal form. Unlike heuristics, they are not
used by the genetic algorithm to favor combinations,
but they:

- Avoid computing several times the same function
with different but equivalent forms. For example
"Correlation (x,x) ==> Autocorrelation (x)", or
"HpFilter (HpFilter (x, a), b) ==> HpFilter (x, max
(a, b))"

- Reduce the computation cost. For example,
Perseval equality "Mean(Fft(Square(x))) =>
Sum(Square (x))" avoids computing the "Fft" of
a signal.

Finally, a caching mechanism is introduced to speed up
the computation of functions, so that any costly
function is computed once, and reused when possible.
Every time a new function is computed, all the
intermediate results are stored on separate files. Finally,
the most useful results are kept in memory, depending
on:

- their computation time: results that require a long
computation time are kept in memory,

- their utility: results that are used frequently are
kept,

- their size: the allowable memory being limited,
priority is given to small size results.

For instance: the computation of "Max (Envelope (Fft
(x), 100)" will store "x", "100", "Fft(x)", "Envelope (Fft
(x), 100)", and "Max (Envelope (Fft (x), 100)" for each
tested title.

ISMIR 04, Barcelona.

4.3. Final model of the descriptor

After running the genetic search, EDS finds relevant
features well adapted to the description problem at
hand.
These features have now to be combined into an
optimized model of the descriptor, using generic
machine learning techniques (k-Nearest Neighbours,
Neural Networks); the techniques can also be specific
to regression (Linear Regression, Model Tree, Locally
Weighted Regression) or to classification (Decision
Tree, Rule Learner, Naïve Bayes, Holte’s one-R,
Kernel Density Classifier, Support Vector Machine,
Logistic Regression, Gaussian Mixture Models). Each
of these models carries with it a certain number of
parameters such as the number of neighbours in the k-
NN method, or the number of layers for the Neural
Networks.
The processes of 1) selecting the right model and 2)
finding the right parameters for this model are entirely
automated in EDS.
The optimization of the model consists in a complete
automatic search on all the available models for all the
available parameters values. The system evaluates the
performance of the models by cross-validation on the
learning database, using various evaluation criteria
such as the rate of good classifications, the correlation
coefficient, or the kappa statistic ([14]).
The final descriptor model is the best model found,
defined by: - a set of relevant features

- a modelling technique
- optimized parameters for this technique

For instance it can be: “DescriptorModel = KNN
(“Max (Fft (InSignal))”, “Variance (Autocorrelation
(LpFilter (InSignal, 1000Hz)))”, 6 neighbours)”.
The performance of this model is evaluated on a test
database (different from the learning database) for
assessing definitively its performance.

4.4. Self-executable extractor for the modelled descriptor

To compute the descriptor’s value on a new audio
signal, a executable program that computes the final
model on a .wav signal is generated automatically. This
program computes the values of the features, then
computes the model with these values as inputs, and
finally saves the result (the value of the descriptor) in
an output file.

5. PERFORMANCE OF THE SYSTEM

We present here the performance on the two steps of
EDS: 1) Automatic synthesis of relevant features: the
fitness of the best functions found indicates the
capacity of the genetic search algorithm to build
relevant functions regarding a given dataset, and
2) Descriptor modeling: the quality of the model is
evaluated on a test database (see 4.3).
We compare here the results obtained by the traditional
method using the Mpeg7 LLDs dataset (called
“LLDs”), and by the EDS method.

5.1. Regression problem: Musical energy

The problem consists in providing a model of the
subjective energy of musical extracts, based on the
results of perceptive tests (see [11]). This descriptor
addresses the intuitive difference there is, for example,
between a punchy punk-rock song with loud saturated
guitars and screaming voice conveys and an acoustic
guitar ballad with a soft voice, at a constant volume
level. The tests conducted consisted in asking users to
label musical extracts of various genres with the energy
they “felt” while listening to the extract, independently
of the listening volume. The statistical analysis of the
results of these perceptive tests has shown that the
musical energy is a consensual concept, and that most
users feel the same energy while listening to the same
songs, with a of 10 % statistical variance. We then built
a model of this “musical energy”, using two labeled
databases of 200 signals of length 5s at 11025Hz, one
for learning, and the other for testing the performance
of the model.

5.1.1. LLDs

The best LLD found was “Mean (SpectralSkewness
(Split (Signal, 250.0)))”, with correlation=0,548 on
learn and 0,658 on test.
After running a forward features selection ([14]) on the
LLDs, we kept 25 features to build the final LLD
model of musical energy.
The best method found was a Model Tree, that
provided a correlation=0.698 on learn and 0.810 on
test, which corresponds to an average model error of
12.80% (13,26%).

5.1.2. EDS

After running EDS feature genetic search algorithm 22
times, 100% of the functions created by EDS perform
better than the best LLD on the learning database, and
91% on the test database.
The best function found by EDS is
“BestEDS(Signal)=Square (Log10 (Mean (Min (Fft
(Split (Testwav, 4009))))))”, with correlation=0,744 on
learn, and 0,812 on test.
After running a forward selection on the EDS
functions, we kept 4 features to build the final EDS
model of musical energy. The best method found was a
Linear Regression that provided a correlation=0.780 on
learn, and 0.836 on test, which corresponds to an
average model error of 11.52% (13,06%). Considering
the 10% variance on the perceptive tests, it can be said
that EDS has provided an almost optimal model of this
descriptor.

5.2. Objective classification problem: Presence of singing

voice

The problem consists in providing a model that allows
detecting the presence of singing voice in polyphonic
audio signals, which is known as being a difficult
description issue (see [12], [13]).

ISMIR 04, Barcelona.

To compute this model, we have built two databases of
200 audio signals of length 5s at 11025Hz (for learning
and testing), labeled with the 2 classes “Voice” and
“No Voice”.

5.2.1. LLDs

The best LLD found was “SpectralSpread (Testwav)”:
- Fisher = 0,282 with the learning database labels,
- Fisher = 0,215 with the test database.
After running a forward selection on the LLDs, we kept
8 features to build the final LLD model of musical
energy. The best method found was a Naïve Bayes
classifier that provided a 72% of good classification on
learn and 69.5% on test.

5.2.2. EDS

After running EDS feature genetic search algorithm
107 times, 100% of the functions created by EDS are
better than the best LLD function on the learning
database, and more than 90% on the test database. The
best function found by EDS is “Log10 (Range
(Derivation (Sqrt (Blackman (MelBands (Testwav,
24.0))))))”, with fisher=1,209 on learn, and 0,831 on
test.
After running a forward selection on the EDS
functions, we kept 12 features to build the final EDS
model of musical energy. The best method found was a
kNN classifier that provided 86.5% of good
classifications on learn, and only 78.5% on test.

6. CONCLUSION

We have introduced a new approach for designing
automatically efficient extractors for high-level audio
descriptors. Although the proposed system, EDS, uses
for the moment a limited palette of signal processing
functions, it already produces results that are better
than results obtained using standard manual approaches
in high level descriptor extraction, in particular using
the Mpg7 palette of generic features.
The generality of the approach allows EDS to address
the whole class of extraction problems in the large,
including the distinction between “live” and studio
recording, the discrimination between simple and
generic genres, the modeling of music danceability or
percussivity, etc. The application of the system to non
high-level extraction audio problems is also under way.
Substantial increase in performance is expected by
extending the palette of signal operators to more
refined operators, as well as in adding more refined
heuristics and rewriting rules to prune the search space.
Finally, a programming language based on EDS
constructs is under way to allow users more flexibility
in the definition and exploitation of the descriptors
obtained.

7. REFERENCES

[1] Eric D. Scheirer. Tempo and beat analysis of
acoustic musical signals. J. Acoust. Soc. Am. (JASA)
103:1 (Jan 1998), pp 588-601.
[2] Eric D. Scheirer, and Malcolm Slaney. Construction
and evaluation of a robust multifeature speech/music
discriminator. Proc. ICASSP ’97.
[3] P. Herrera, A. Yeterian, F. Gouyon. Automatic
classification of drum sounds: a comparison of feature
selection methods and classification techniques.
Proceedings of 2nd International Conference on Music
and Artificial Intelligence, Edinburgh, Scotland, 2002.
[4] Geoffroy Peeters, Xavier Rodet. Automatically
selecting signal descriptors for sound classification.
Proceedings of the 2002 ICMC, Goteborg (Sweden),
September 2002.
[5] Perfecto Herrera, Xavier Serra, Geoffroy Peeters.
Audio descriptors and descriptors schemes in the
context of MPEG-7. Proceedings of the 1999 ICMC,
Beijing, China, October 1999.
[6] JJ Aucouturier, François Pachet. Music similarity
measures: what's the use ? In proceedings of the 3rd
international symposium on music information retrieval
(ISMIR02), Paris, October 2002.
[7] George Tzanetakis, Georg Essl, Perry Cook.
Automatic musical genre classification of audio
signals. Proceedings of 2nd International Symposium
on Music Information Retrieval, pp 205--210,
Bloomington, IN, USA, October 2001.
[8] John R. Koza. Genetic Programming: on the
programming of computers by means of natural
selection. Cambridge, MA: The MIT Press.
[9] David J Montana. Strongly typed genetic
programming. In Evolutionary Computation 3-2, 1995,
pp 199-230.
[10] David E. Goldberg. Genetic algorithms in search,
optimization and machine learning. Addison-Wesley
Pub. Co. 1989. ISBN: 0201157675.
[11] Aymeric Zils, François Pachet. Extracting
automatically the perceived intensity of music titles.
Proceedings of 6th International Conference on Digital
Audio Effects (DAFX03), London, UK, September 8-
11, 2003.
[12] A.L. Berenzweig, Dan P. W. Ellis. Locating
singing voice segments within music signals. IEEE
workshop on applications of signal processing to
acoustics and audio (WASPAA01), Mohonk NY,
October 2001.
[13] Wu Chou and Liang Gu, "Robust Singing
Detection in Speech/Music Discriminator Design,"
International Conference on Acoustics, Speech, and
Signal Processing (ICASSP 2001), pp.865-868, Salt
Lake City, Utah, USA, May 2001
[14] Fukunaga, K., "Statistical pattern recognition",

Academic press, 1990.

