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ABSTRACT 

High-Level music descriptors are key ingredients for 

music information retrieval systems. Although there is a 

long tradition in extracting information from acoustic 

signals, the field of music information extraction is 

largely heuristic in nature. We present here a heuristic-

based generic approach for extracting automatically 

high-level music descriptors from acoustic signals. This 

approach is based on Genetic Programming, used to 

build relevant features as functions of mathematical and 

signal processing operators. The search of relevant 

features is guided by specialized heuristics that embody 

knowledge about the signal processing functions built by 

the system. Signal processing patterns are used in order 

to control the general processing methods. In addition, 

rewriting rules are introduced to simplify overly complex 

expressions, and a caching system further reduces the 

computing cost of each cycle. Finally, the features build 

by the system are combined into an optimized machine 

learning descriptor model, and an executable program is 

generated to compute the model on any audio signal. In 

this paper, we describe the overall system and compare 

its results against traditional approaches in musical 

feature extraction à la Mpeg7. 

1. INTRODUCTION 

The exploding field of Music Information Retrieval has 
recently created extra pressure to the community of audio 
signal processing, for extracting automatically high level 
music descriptors. Indeed, current systems propose users 
with millions of music titles (e.g. the peer-to-peer systems 
such as Kazaa) and query functions limited usually to 
string matching on title names. The natural extension 
of these systems is content-based access, i.e. the 
possibility to access music titles based on their actual 
content, rather than on file names. Existing systems 
today are mostly based on editorial information (e.g. 
Kazaa), or metadata which is entered manually, either 
by pools of experts (e.g. All Music Guide) or in a 
collaborative manner (e.g. MoodLogic).  
 
Because these methods are costly and do not allow 

scale up, the issue of extracting automatically high-
level features from acoustic signals is key to the 
success of online music access systems.  
 
Extracting automatically content from music titles is a 
long story. Many attempts have been made to identify 
dimensions of music that are perceptually relevant and 
can be extracted automatically. One of the most known 
is tempo or beat. Beat is a very important dimension of 
music that makes sense to any listener. [1] introduced a 
beat tracking system that successfully computes the 
beat of music signals with good accuracy. 

There are, however, many other dimensions of music 

that are perceptually relevant, and that could be extracted 

from the signal. For instance, the presence of voice in a 

music title, i.e. the distinction between instrumentals and 

songs is an important characteristic of a title. Another 

example is the perceived intensity. It makes sense to 

extract the subjective impression of energy that music 

titles convey, independently of the RMS volume level: 

with the same volume, a Hard-rock music title conveys 

more energy than, says, an acoustic guitar ballad with a 

soft voice. There are many such dimensions of music 

that are within reach of signal processing: differentiate 

between “live” and studio recording, recognize typical 

musical genres such as military music, infer the 

danceability of a song, etc. Yet this information is 

difficult to extract automatically, because music signals 

are usually highly complex, polyphonic in nature, and 

incorporate characteristics that are still poorly 

understood and modeled, such as transients, 

inharmonicity, percussive sounds, or effects such as 

reverberation. 

2. THE TRADITIONAL METHOD 

2.1. Combination of Low-Level Descriptors 

Typically, the design of a descriptor extractor consists in 

combining Low-Level Descriptors (LLDs) as relevant 

characteristics of acoustic signals (features) using 

machine learning algorithms. More precisely, the 

traditional approach in descriptor design is the following 

(see, e.g. [2], [3], [4]): 
Firstly, the signals of a reference database are labeled 
with the descriptor’s values. These values can be 
obvious to get (e.g. Presence of singing voice), or can 
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require the use of perceptive tests (e.g. the global 
energy of musical extracts). In this latter case humans 
are asked to enter a value for the descriptor, and then 
statistical analysis is used to find the average values 
considered thereafter as grounded truth. 
Secondly, several features of the associated audio 
signals are computed. A typical reference for audio 
signal features is the Mpeg7 standardization process 
[5], that proposes a battery of LLDs for describing 
basic characteristics of audio signals. The purpose of 
Mpeg7 is not to solve the problem of extracting high 
level descriptors, but rather to propose a basis to design 
such descriptors. 
Eventually, the most relevant features, i.e. that best 
map with the labels or values of the signals, are 
selected and combined into machine learning processes, 
to provide an optimal model for the descriptor. 

2.2. Limitation of the traditional method 

The traditional method sketched above works well only 

for relatively easy problems; problems for which generic 

low level features are adapted. However, generic features 

can only extract information which is “predominant” in 

the signal, and are, by definition, unable to focus on 

specific, problem-dependent properties. The core 

assumption of this paper is precisely that in order to solve 

more difficult problems one needs specific features 

adapted to the problem at hand. The following problem 

illustrates this claim. 

2.2.1. A simple example: Sinus + Colored Noise 

 

Let us consider the problem of detecting a sinus wave in a 

given frequency range (say 0-1000Hz) mixed with a 

powerful colored noise in another frequency range (1000-

2000Hz). As the colored noise is the most predominant 

characteristic of the signal, generic features such as 

Mpeg7’s are unable to detect the hidden sinus. For 

instance, when we look at the spectrum of a 650Hz sinus 

mixed with a 1000-2000Hz colored noise (fig.1), the peak 

of the sinus is visible but not predominant, and is thus 

impossible to extract automatically using a generic 

feature. Of course, this problem is easy to solve by hand, 

for instance by applying a pre-filtering to the signal that 

cuts off the frequencies of the colored noise, so that the 

sinus emerges from the spectrum, and becomes a 

predominant property (see Fig. 2). 

This basic example illustrates the fact that combinations 

of basic LLDs cannot cover a function space wide enough 

to find specialized extractors. Indeed, we claim that high-

level descriptor can be obtained by some linear 

combination of basic LLDs. An automatic system that 

produces extractors has to be able to search in a larger 

function space, as experts in signal processing normally 

do. Such a search space has to include not only actual 

operators but also compositions thereof as well as all the 

possible “in-between” processes such as filters or peak 

extractions inserted to improve the efficiency of an 

extractor. 
 

 
Fig 1: Spectrum of a 650Hz sinus  mixed with 

1000-2000Hz colored noise 

 

 
Fig 2: Spectrum of a 650Hz sinus  mixed with 
1000-2000Hz colored noise, pre-filtered by a 

1000Hz Low-Pass Filter 

3. IMPROVING TRADITIONAL LLD 

COMBINATION USING AUTOMATIC 

OPERATORS COMPOSITION 

The design of specific features that are relevant for a 

given description problem is usually done by hand by 

signal processing experts. This section introduces the 

idea of generating automatically such specific features 

adapted to a particular problem. 

3.1. Motivation for an automatic system for descriptors 

extraction 

Although there is no known general paradigm for 
designing domain-specific features, their design usually 
follows some sort of patterns. One of them consists in 
filtering the signal, splitting it into frames, applying 
specific treatments to each segment, then aggregating 
all these results back to produce a single value.  
This is typically the case of the beat tracking system 
described in ([1]), that can schematically be described 
as an expansion of the input signal into several 
frequency bands, followed by a processing of each 
band, and completed by an aggregation of the resulting 
coefficients using various aggregation operators, to 
yield eventually a float representing (or strongly 
correlated to) the tempo. The same applies to timbre 
descriptors proposed in the music information retrieval 
literature ([6], [7]) an more generally to most audio 
descriptors described in the literature.  
Of course, this global scheme of expansion/reduction is 
under specified, and an infinite number of such 



ISMIR 04, Barcelona.  

 

 

schemes could be envisaged. Our goal is therefore to 
design a system that is able to 1) search automatically 
relevant signal processing features, seen as 
compositions of functions and build a model of the 
descriptor and 2) reduce the search space significantly 
using generic knowledge on signal processing 
operators. 

3.2. Definition of a description problem 

In the context of an automatic modeling of descriptors 

from numeric signals, the definition of the description 

problems handled by the system has to remain simple to 

preserve the generality of the approach. One simple way 

to define a description problem is to use the supervised 

learning approach: a set of labeled signals, also called 

learning database, defines the description problem. 

These labels are either numeric values, such as an 

evaluation of their “musical energy” (between 0 and 1), 

or a class label, such as the “presence of a singing voice” 

or not, or the genre chosen in a given taxonomy. The 

system will then finds the rules of the labeling of the 

signals, i.e. the model of the descriptor, by designing a 

function which produces outputs as close as possible to 

the learning database. 

3.3. General Principle of the “Extractor Discovery 

System” (EDS) 

The key idea of our approach is to substitute the 
combination of basic LLDs by the composition of 
signal processing operators: our system EDS composes 
automatically operators to discover features as signal 
processing functions that are optimal for a given 
descriptor extraction task. 
The global architecture of EDS consists in two parts: 
modeling of the descriptor and synthesis of the 
extractor. Both parts are fully automatic and lead 
eventually to an extractor for the descriptor. 
The modeling of the descriptor is the main part of EDS. 
It consists in searching automatically for a set of 
relevant features using the genetic search algorithm, 
and then to search automatically for the optimal model 
for the descriptor, that combines these features. 
The search for specific features is based on genetic 
programming, a well-known technique for exploring 
search spaces of function compositions (see [8]). The 
genetic programming engine composes automatically 
signal processing operators to build arbitrarily complex 
functions.  
Each built function is given a fitness value which 
represents how well the function performs to extract a 
given descriptor on a given learning database. 
The evaluation of a function is very costly, as it 
involves complex signal processing on whole audio 
databases. Therefore, to limit the search, a set of 
heuristics are introduced to improve the a priori 
relevance of the created functions, as well as rewriting 
rules to simplify functions before their evaluation. 
Once the system has found relevant features, it 
combines them to feed them into various machine 

learning models, and then optimizes the model 
parameters. 
The synthesis part consists in generating an executable 
file to compute the best model on any audio signal. 
This program allows computing this model on arbitrary 
audio signals, to predict their value for the modeled 
descriptor. 

4. EDS TECHNICAL DESCRIPTION 

We describe here the three main ingredients of the EDS 

system: the automatic construction of signal processing 

functions, the adaptation of these functions for a given 

descriptor, and the combination of those into a general 

descriptor model. 

4.1. Automatic construction of features 

Functions are represented in EDS as compositions of 
basic operations applied on an arbitrary input audio 
signal. The automatic construction of correct functions 
relies on the control of the types of data handled by the 
functions, and on the introduction of signal processing 
expertise as heuristics. 

4.1.1. Representation of functions as signal processing 

operators trees 

The basic operators used by EDS can be mathematical, 
such as taking the mean values of a set, or can process 
a signal, temporally (such as correlation), or spectrally 
(such as a low-pass filtering). In addition, some 
operations are parameterized using constant values 
(like cut-off frequencies), or external signals (for 
example a correlation with another, fixed, reference 
signal). 
To account for the specificity of audio extraction, we 
also introduced operators to implement the global 
extraction schemes, such as described in 3.1. For 
instance, the Split operator splits a signal into frames, 
an operation that is routinely performed when a given 
treatment has to be made on successive portions of the 
signal. 
 

 

Fft(Derivation(InSignal), Max(Correlation  

(InSignal, Constant_Signal)) 

 

<==> 

F f t

D e r i v M a x

I n p u t S i g n a l C o r r e l a t i o n

I n S i g n a l C o n s t a n t _ S i g n a l
 

Fig. 4: The syntactic tree of a function in EDS 
 

The functions built by composing these operators 

have to contain at least one argument labeled 

InSignal, which is instantiated with a real audio signal 
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before the evaluation of the function. Figure 4 shows 

an example of the syntactic representation for a 

function that is a composition of basic operators 

(FFT, Derivation, Correlation, Max). 

4.1.2. Data Types 

The need for typing is well-known in Genetic 
Programming, to ensure that the functions generated 
are at least syntactically correct. Different type systems 
have been proposed for GP, such as strong typing ([9]) 
that mainly differentiate between the “programming” 
types of the inputs and outputs of functions. 
In our context, the difference between the programming 
types floats, vectors, or matrix, is superficial. For 
example, the operator "Abs" (absolute value) can be 
applied on a float, a vector, etc. This homogenous view 
of values yields simplicity in the programming code, 
which we need to retain.  
However, to control the physical processes in EDS, we 
need to distinguish how the functions built by the 
system handle the data, at the level of their “physical 
dimension”. For instance, audio signals and spectrum 
can be seen both as vectors of floats from the usual 
typing perspective, but they are different in their 
dimensions: a signal is a time to amplitude 
representation, while a spectrum associates frequency 
to amplitude. Thus, these data have to be processed 
differently. Our typing system, based on the following 
constructs, represents this difference, to ensure that our 
resulting functions make sense. 
Using only three physical dimensions (time “t”, 
frequency "f", and amplitudes or non-dimensional data 
“a”), we are able to represent most of the data types 
handled by the system, by building atomic, vector, and 
functional types. 
• “Atomic” types describe the physical dimension of 

a single value. For instance: 
- Position of a drum onset in a signal: “t”, 
- Cut-off frequency of a filter: “f”,  
- Amplitude peak in a spectrum: “a”. 

• “Functional” types represent data of a given type, 
which are evolving in a dimension of another type. 
The evolution type is separated from the data type 
using the ":" notation. For instance: 
- Audio signal (amplitude in time): "t:a",  
- Spectrum (amplitude in frequency): "f:a". 

• “Vector” types, notated “V”, are special cases of 
functions, used to specify the types of 
homogeneous sets of values without dimensional 
evolution. For instance: 
- Temporal positions of the autocorrelation 

peaks of an audio signal: “Vt” 
- Amplitudes of autocorrelation peaks: “Va”. 

• In the case of functional data with multiple 
evolving or vector dimensions, all the evolving 
types are written before the “:”. For instance: 
- A signal split into frames: "Vt:a", 
- Autocorrelation peaks on each frame: “VVa” 

4.1.3. Operators typing rules 

The operations in EDS transform physically the data, 
and can therefore be specified using the typing system. 
For each operator, we define typing rules that provide 
the type of its output data, depending on the types of its 
input data. The typing rules are usually reduced into a 
dimensionality rule and a transformation rule. 
 
Example 1: Spectrum 
The “Spectrum” operation transforms a signal of type 
“t:a” into a frequency spectrum of type “f:a”, and 
transforms a frequency spectrum “f:a” into a data of 
type “t:a”, homogeneous with a signal. More generally, 
the “Spectrum” operation inverses the physical type of 
an evolving dimension. Its typing rules are: 

- at least 1 evolving dimension 
- input evolving type “T” à  output evol type “T-1”, 
with a-1=a, t-1=f, f-1=t. 

For instance, “Spectrum”: 
- transforms a set of signals (“Vt:a”) into a set of 
spectrums (“Vf:a”) 
- cannot handle temporal onsets (“Vt”) 

 
Example 2: Split 
The “Split” operation allow observing a data on regular 
observation windows. Thus “Split” adds a new 
evolving dimension, and its typing rules are: 

- at least 1 evolving dimension 
- input evolving type “T” à  output evolving type 
“TT”: addition of an evolving dimension. 

For instance, “Split” transforms: 
- a signal (“t:a”) into a set of signals (“tt:a”) 
- a set of time values (“Vt”) into multiple sets of time 
values (“VVt”) 

 
This typing system is more complex than the usual 
typing systems used routinely in Genetic Programming, 
but has the interest of being able to retain the 
respective physical dimensions of the inputs and 
outputs values of all the operations in a function. For 
instance, the following complex but realistic function 
handles the following data types: 
Mina (Maxt:a (Sqrttf:a (FFTtf:a (Splittt:a (InSignalt:a))))), 
and thus provides as final output one amplitude value 
“a” from a given input signal InSignal “t:a”. 

4.1.4. Controlling general processing methods using 

generic operators and patterns 

The types of data handled by a function are a signature 
of the general processing methods used in the function. 
For instance, if an operation in the function provides 
data of type “f:a” (homogeneous to a spectrum), this 
means that the following operations are computed in 
the spectral domain. 
In order to control globally the processing methods 
through the successive types of data handled by the 
functions, we have introduced "generic operators" that 
stand for one or several random real operator(s) whose 
output types are forced.  
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EDS can deal with three different generic operators 
(notated "*", "!", and "?") that have different 
functionalities: 
• "?_T" stands for one operation providing an output 

type "T". For instance, “?_a(Signal)” can be 
implemented as Maxa(Signalt:a)”, or 
“Variancea(Signalt:a)”. 

• "*_T" stands for a composition of several 
operations that all provide an output type “T”. For 
instance, “*_a(Signal)” can be implemented as 
“Squarea (Maxa (Signalt:a))”, or “Loga (Squarea 

(Variancea (Signalt:a)))”. 
• "!_T" stands for a composition of several operators 

that provide a final output type "T". For instance, 
“!_a(Signal)” can be implemented as “Variancea 
(Autocorrelationt:a (Signalt:a))” or “Mina (Maxt:a 

(Ffttf:a (Splittt:a (Signalt:a))))”. 
 
These generic operators allow specifying locally the 
processes to use in a function. By composing them to 
write functions patterns, we describe a global set of 
processes to apply on an audio signal to obtain a final 
value. For instance, the simple pattern  

"?_a (!_Va (Split (*_t:a (Signal))))" 
is a translation of the general extraction scheme 
presented in 3.1, standing for the following processes: 
- « Apply some transformations on the input signal in 
the temporal domain » (*_t:a) 
- « Split the resulting signal into frames » (Split) 
- « Find a vector of characteristic values - 1 for each 
frame » (!_Va) 
- « Find one operation to find one relevant 
characteristic value for the entire signal » (?_a) 
There are various ways to instantiate this pattern, 
among which: 
- Suma (SquareVa (MeanVa (SplitVt:a (HpFiltert:a (Signalt:a, 
1000Hz))))), or 
- Log10a (Variancea (NPeaksVa (SplitVt:a 
(Autocorrelationt:a (Signalt:a))))) 
 
Patterns are specified in the EDS algorithm in order to 

guide the search of functions. The simplest pattern to 

specify is “!_a”, that means “a function made of any 

composition of operators providing one non-dimensional 

or amplitude value as final output”. 

4.1.5. Heuristics 

The system is able to build physically correct functions 
by specifying signal processing patterns. However, the 
physical correctness is not sufficient to build relevant 
functions, by choosing the optimal operations to solve a 
given description problem. 
In order to guide the instantiation of the patterns, we 
need to introduce knowledge in the system, as signal 
processing heuristics. Indeed, heuristics are a central 
point in the design of EDS. They represent the know-
how of signal processing experts, about functions seen 
a priori, i.e. before their evaluation. The interest of 
heuristics is that they both favor a priori interesting 
functions, and rule out obviously non-interesting ones. 
A heuristic in EDS associates a score to a potential 
composition of operators, between 0 (forbidden 

composition) and 10 (very recommended composition). 
These scores are used when EDS builds a new 
function, to select the candidates between all the 
possible operations. Basically, the heuristics allow to: 
• Control the structure of the functions 
For instance the number of operations done to compute 
the cut-off frequency argument for a high-pass filter  
“HpFilter (InSignal, CutOffFreq)” can be controlled 
using the heuristic “HpFilter (Signal, Branch) => 
SCORE = Max (0, 5 - Size(Branch))" 
The filtering operation will be scored 5 if the cut-off 
frequency is a constant value, 4 if it is the result of one 
operation, and so on. 
• Avoid bad combination of operations 
For instance, multiple high-pass filters are avoided 
using the heuristic "HpFilter (HpFilter =>SCORE=1", 
labeling two consecutive high-pass filtering as a very 
bad composition of operations. Similarly, filter 
combination rules can be translated to the following 
heuristics"MpFilter(HpFilter=>3","LpFilter(HpFilter=>
5", etc. 
• Range constant parameters values 
For instance, the following heuristic "Envelope (x, <50 
frames) => SCORE = 1" rules the size of the window 
when computing an envelope, and "HpFilter (x, 
<100Hz) => 1" rules the cut-off frequency value of a 
filter. 
• Avoid usually useless operations 
For instance the heuristic "X (X (X => SCORE = 2" 
avoids too many repetitions of operators:, etc. 

4.1.6. Automatic construction of functions using patterns, 

typing rules, and heuristics 

Using all the previous rules, EDS is able to build 
automatically various physically correct functions from 
a given signal processing pattern. 
The pattern is composed of one input signal, and 
several generic operators, real operators, several 
numeric values, and constant signals. 
The automatic synthesis of functions is performed in 
bottom-up fashion, starting from the input signal, and 
grafting sequentially the operators one after the other 
up to the top of the tree, all the generic operators being 
instantiated, i.e. replaced by real operators (as 
presented in 4.1.4.). 

4.2. Search for optimized features 

Once the system has built functions with a correct type, it 

evaluates them and tries to improve their fitness to solve 

the description problem. 

4.2.1. Evaluation of function fitness 

To evaluate if a function is relevant, the system computes 

this function on the whole learning database that defines 

the description problem, and then compares the values 

obtained with the labels of the signals, to check if the 

former can explain the latter. Different fitness functions 

can be computed, depending on the nature of the 

descriptor. In our experiments with regression problems, 
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we compute fitness as the Pearson correlation coefficient 

between the function values and the perceptive values 

([14]). For classification problems, we use the Fisher’s 

criterion ([14]) for the function values on the different 

class labels, which evaluates how well the function 

discriminates between the different classes. The system 

uses then the fitness of the functions as a criterion in the 

search algorithm, to find relevant functions for the 

problem to solve. 

4.2.2. Genetic Search Algorithm 

The function search part in EDS consists in building 
signal processing functions that are increasingly 
relevant, using an algorithm based on genetic 
programming, i.e. the application of genetic search to 
the world of functions, as introduced by [10].  
Given a description problem for which we seek an 
extractor, defined by a database DB containing labeled 
audio signals (numeric values or class labels), the 
algorithm builds a population of functions from a 
pattern P, and tries to improve them by applying 
various genetic transformations on them. 
More precisely, the algorithm works as follows: 

1. Build the first population P0, of random 
functions based on the pattern P 

2. Compute the fitness of each function in the 
population 

3. If (Stop Condition): STOP the algorithm, and 
RETURN the best function 

4. Else: select the functions with the highest 
fitness, and create of a new population Pi+1, by 
applying transformations on them 

5. Iteration to (2) 
The “Stop Condition” is specified using various 
combined criteria:  
• Maximum number of iteration reached: the search 

stops automatically after population number 1000. 
• A relevant function is found: fitness >= threshold; 

typically threshold=1, the function itself is a 
perfect model of the descriptor. 

• The population does not improve anymore: fitness 
of the best function of population Pi = fitness of 
the best function of population Pi-N; typically N=5 
unimproved populations. 

Running this algorithm once provides one optimal 
function to be used in the final model. Therefore, this 
algorithm is run N times to build N optimized functions 
constituting the final feature set used in the final model 
of the descriptor. 

4.2.3. Creation of populations by genetic transformations 

During the genetic search, each new population is 
created by applying various genetic transformations on 
the most relevant functions of the current population. 
These transformations aim at reusing local operations 
found in relevant functions, in order to build even more 
relevant functions. Three main transformations are used 
in EDS: constants variation, mutation, and crossover: 
• Constants variations consists in keeping the tree 

structure a function and applying variations on its 

constant parameters, such as the cut-off 
frequencies of filters or the computation window 
sizes. For example: "Sum (Square (FFT (LpFilter 
(Signal, 1000Hz))))" can be cloned as "Sum 
(Square (FFT (LpFilter (Signal, 800Hz))))". 

• Mutation consists in cutting a branch of a function, 
and replacing it by another composition of 
operators providing a data of the same type. For 
example "Sum (Square (FFT (LpFilter (Signal, 
1000Hz))))" can be mutated into "Sum (Square 
(FFT (MpFilter (Signal, 1100Hz, 2200Hz))))". 

• Finally, crossover consists in cutting a branch from 
a function and replacing it by a branch cut from 
another function. For example "Sum (Square (FFT 
(LpFilter (Signal, 1000Hz))))" and "Sum 
(Autocorrelation (Signal))" can produce the 
crossover function "Sum (Square (FFT 
(Autocorrelation (Signal))))". 

In addition to the genetically transformed functions, the 
new population is completed with a set of new random 
functions to ensure its diversity and introduce new 
operations. 

4.2.4. Improvement of the search 

Eventually, in order to search for function more 

efficiently, rewriting rules and a caching mechanism 

have been included in the system. 
Rewriting rules are applied to simplify functions before 
their evaluation, using a fixed point mechanism until to 
obtain a normal form. Unlike heuristics, they are not 
used by the genetic algorithm to favor combinations, 
but they: 

- Avoid computing several times the same function 
with different but equivalent forms. For example 
"Correlation (x,x) ==> Autocorrelation (x)", or 
"HpFilter (HpFilter (x, a), b) ==> HpFilter (x, max 
(a, b))" 

- Reduce the computation cost. For example, 
Perseval equality "Mean(Fft(Square(x))) => 
Sum(Square (x))" avoids computing the "Fft" of 
a signal. 

 
Finally, a caching mechanism is introduced to speed up 
the computation of functions, so that any costly 
function is computed once, and reused when possible.  
Every time a new function is computed, all the 
intermediate results are stored on separate files. Finally, 
the most useful results are kept in memory, depending 
on: 

- their computation time: results that require a long 
computation time are kept in memory, 

- their utility: results that are used frequently are 
kept, 

- their size: the allowable memory being limited, 
priority is given to small size results. 

For instance: the computation of "Max (Envelope (Fft 
(x), 100)" will store "x", "100", "Fft(x)", "Envelope (Fft 
(x), 100)", and "Max (Envelope (Fft (x), 100)" for each 
tested title. 
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4.3. Final model of the descriptor 

After running the genetic search, EDS finds relevant 
features well adapted to the description problem at 
hand.  
These features have now to be combined into an 
optimized model of the descriptor, using generic 
machine learning techniques (k-Nearest Neighbours,  
Neural Networks); the techniques can also be specific 
to regression (Linear Regression, Model Tree, Locally 
Weighted Regression) or to classification (Decision 
Tree, Rule Learner, Naïve Bayes, Holte’s one-R, 
Kernel Density Classifier, Support Vector Machine, 
Logistic Regression, Gaussian Mixture Models). Each 
of these models carries with it a certain number of 
parameters such as the number of neighbours in the k-
NN method, or the number of layers for the Neural 
Networks. 
The processes of 1) selecting the right model and 2) 
finding the right parameters for this model are entirely 
automated in EDS. 
The optimization of the model consists in a complete 
automatic search on all the available models for all the 
available parameters values. The system evaluates the 
performance of the models by cross-validation on the 
learning database, using various evaluation criteria 
such as the rate of good classifications, the correlation 
coefficient, or the kappa statistic ([14]). 
The final descriptor model is the best model found, 
defined by: - a set of relevant features 

- a modelling technique 
- optimized parameters for this technique 

For instance it can be: “DescriptorModel = KNN 
(“Max (Fft (InSignal))”, “Variance (Autocorrelation 
(LpFilter (InSignal, 1000Hz)))”, 6 neighbours)”. 
The performance of this model is evaluated on a test 
database (different from the learning database) for 
assessing definitively its performance. 

4.4. Self-executable extractor for the modelled descriptor 

To compute the descriptor’s value on a new audio 
signal, a executable program that computes the final 
model on a .wav signal is generated automatically. This 
program computes the values of the features, then 
computes the model with these values as inputs, and 
finally saves the result (the value of the descriptor) in 
an output file. 

5. PERFORMANCE OF THE SYSTEM 

We present here the performance on the two steps of 
EDS: 1) Automatic synthesis of relevant features: the 
fitness of the best functions found indicates the 
capacity of the genetic search algorithm to build 
relevant functions regarding a given dataset, and 
2) Descriptor modeling: the quality of the model is 
evaluated on a test database (see 4.3). 
We compare here the results obtained by the traditional 
method using the Mpeg7 LLDs dataset (called 
“LLDs”), and by the EDS method. 

5.1. Regression problem: Musical energy 

The problem consists in providing a model of the 
subjective energy of musical extracts, based on the 
results of perceptive tests (see [11]). This descriptor 
addresses the intuitive difference there is, for example, 
between a punchy punk-rock song with loud saturated 
guitars and screaming voice conveys and an acoustic 
guitar ballad with a soft voice, at a constant volume 
level. The tests conducted consisted in asking users to 
label musical extracts of various genres with the energy 
they “felt” while listening to the extract, independently 
of the listening volume. The statistical analysis of the 
results of these perceptive tests has shown that the 
musical energy is a consensual concept, and that most 
users feel the same energy while listening to the same 
songs, with a of 10 % statistical variance. We then built 
a model of this “musical energy”, using two labeled 
databases of 200 signals of length 5s at 11025Hz, one 
for learning, and the other for testing the performance 
of the model. 

5.1.1. LLDs 

The best LLD found was “Mean (SpectralSkewness 
(Split (Signal, 250.0)))”, with correlation=0,548 on 
learn and 0,658 on test. 
After running a forward features selection ([14]) on the 
LLDs, we kept 25 features to build the final LLD 
model of musical energy.  
The best method found was a Model Tree, that 
provided a correlation=0.698 on learn and 0.810 on 
test, which corresponds to an average model error of 
12.80% (13,26%). 

5.1.2. EDS 

After running EDS feature genetic search algorithm 22 
times, 100% of the functions created by EDS perform 
better than the best LLD on the learning database, and 
91% on the test database.  
The best function found by EDS is 
“BestEDS(Signal)=Square (Log10 (Mean (Min (Fft 
(Split (Testwav, 4009))))))”, with correlation=0,744 on 
learn, and 0,812 on test. 
After running a forward selection on the EDS 
functions, we kept 4 features to build the final EDS 
model of musical energy. The best method found was a 
Linear Regression that provided a correlation=0.780 on 
learn, and 0.836 on test, which corresponds to an 
average model error of 11.52% (13,06%). Considering 
the 10% variance on the perceptive tests, it can be said 
that EDS has provided an almost optimal model of this 
descriptor. 

5.2. Objective classification problem: Presence of singing 

voice 

The problem consists in providing a model that allows 
detecting the presence of singing voice in polyphonic 
audio signals, which is known as being a difficult 
description issue (see [12], [13]). 
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To compute this model, we have built two databases of 
200 audio signals of length 5s at 11025Hz (for learning 
and testing), labeled with the 2 classes “Voice” and 
“No Voice”. 

5.2.1. LLDs 

The best LLD found was “SpectralSpread (Testwav)”: 
- Fisher = 0,282 with the learning database labels,  
- Fisher = 0,215 with the test database. 
After running a forward selection on the LLDs, we kept 
8 features to build the final LLD model of musical 
energy. The best method found was a Naïve Bayes 
classifier that provided a 72% of good classification on 
learn and 69.5% on test. 

5.2.2. EDS 

After running EDS feature genetic search algorithm 
107 times, 100% of the functions created by EDS are 
better than the best LLD function on the learning 
database, and more than 90% on the test database. The 
best function found by EDS is “Log10 (Range 
(Derivation (Sqrt (Blackman (MelBands (Testwav, 
24.0))))))”, with fisher=1,209 on learn, and 0,831 on 
test. 
After running a forward selection on the EDS 
functions, we kept 12 features to build the final EDS 
model of musical energy. The best method found was a 
kNN classifier that provided 86.5% of good 
classifications on learn, and only 78.5% on test. 

6. CONCLUSION 

We have introduced a new approach for designing 
automatically efficient extractors for high-level audio 
descriptors. Although the proposed system, EDS, uses 
for the moment a limited palette of signal processing 
functions, it already produces results that are better 
than results obtained using standard manual approaches 
in high level descriptor extraction, in particular using 
the Mpg7 palette of generic features.  
The generality of the approach allows EDS to address 
the whole class of extraction problems in the large, 
including the distinction between “live” and studio 
recording, the discrimination between simple and 
generic genres, the modeling of music danceability or 
percussivity, etc. The application of the system to non 
high-level extraction audio problems is also under way. 
Substantial increase in performance is expected by 
extending the palette of signal operators to more 
refined operators, as well as in adding more refined 
heuristics and rewriting rules to prune the search space. 
Finally, a programming language based on EDS 
constructs is under way to allow users more flexibility 
in the definition and exploitation of the descriptors 
obtained. 
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