
in Musical Creativity: Current Research in Theory and Practice, Deliège, I. And Wiggins, G. Editors,

Psychology Press, 2004

Page 1

Chapter N+1:

Enhancing Individual Creativity with Interactive Musical

Reflective Systems

François Pachet

Sony Computer Science Laboratories - Paris

6, rue Amyot, 75005 Paris, France

pachet@csl.sony.fr

1 Introduction

Can we design interactive software that enhance individual creativity in music

improvisation ? This chapter attempts to answer positively to this question, and

further proposes a class of interactive systems to achieve this goal. The question of

enhancing creativity has been addressed by various researchers in creativity studies,

as sketched in (Pachet, 2004). An analysis of previous works in creativity studies and

in computer music generation position reveals the following important characteristics:

1 – Creativity studies involving the relationship between users and computers have

addressed only existing—and relatively old—music software. Consequently, the

conclusion of these studies cannot be used to design new software, in particular

interactive environments. So far, no study has been conducted that relates interactive

music system design with creativity enhancement.

2 – Existing approaches to computer-generated music are usually based on non-

interactive systems (e.g. EMI, see Cope, 2001). Although the techniques for computer

analysis and generation of musical style are relevant to our aim, the very notion of

style replication is usually not considered in relation to subjectivity.

3 – Existing approaches to interactive music are usually based on preprogrammed

interaction modes, which generate various types of musical transformations or effects.

Although more studies could be devoted to interactive music systems and their

relationship to creativity, it can be said that they are limited, by definition, because

they do not allow a scaffolding of complexity, and are therefore usually delimited to

the composition of a particular musical piece.

4 – The theory of Flow focuses on situations where there is a balance between

challenges and skills. Such a balance depends on the individual. A simple and

effective way to achieve it is to develop specific kinds of musical mirroring effects.

By construction, the level of challenge, represented by the behavior of the system,

always corresponds to the level of the user.

This chapter is an attempt to generalize from these remarks in the light of creativity

studies, and introduces the notion of Interactive Musical Reflective Systems as a way

of integrating and satisfying the various criteria listed above. In Section 2 we

introduce the notion of Interactive Reflective Musical Systems and motivate its

structure with the theory of Flow. We illustrate the architecture in Section 3 with three

interactive systems designed at the Sony Computer Science Laboratory, for which we

describe several past and on-going experiments performed with these systems.

in Musical Creativity: Current Research in Theory and Practice, Deliège, I. And Wiggins, G. Editors,

Psychology Press, 2004

Page 2

2 Interactive Reflexive Musical Systems

We are interested in a novel class of computer systems which introduces a feedback

loop in the music production process. This class of systems is referred to here as

Interactive Reflexive Musical Systems (IRMS). One important characteristic of these

systems is that the main point of interest lies not so much in the quality of the music

produced, which is largely dependent on the skill level of the user, but on the

difference between what is produced with the system and what the user would

produce without it. The experience of playing with an IRMS can lead to Flow (see

Pachet, 2004) states which eventually may trigger creative behaviors or creative

output. We first introduce the abstract principles of IRMS and then illustrate the

architecture in various incarnations and report on experiments performed with these

systems.

2.1 Definition

More precisely, we propose to consider the class of interactive systems in which users

can interact with virtual copies of themselves, or at least agents that have a mimetic

capacity and can evolve in an organic fashion. To make this imitation efficient, there

are a number of characteristics that we consider important to define reflexivity in

interactive systems. We propose the following list, by no means exhaustive, or even

prescriptive, to be taken as a starting point:

- Similarity or mirroring effect. What the system produces sounds like what the

user himself is able to produce. This similarity must be easily recognizable by

the user, who must experience the sensation of interacting with a copy of

himself. Similarity is not equivalent to mirroring. For instance, a systematic

echo or repetition of the phrases played by the user does not induce such a

sensation.

- Agnosticity. The system’s ability to reproduce the user’s personality is learned

automatically and agnostically i.e. without human intervention. In our case for

instance, no preprogrammed musical information is given to the system.

- Scaffolding of complexity. Interactive systems are not designed only for short

demos. Since the user is constantly interpreting the output of the system, and

altering his playing in response, it is important to consider the longer term

behavior of the system. Incremental learning ensures that the system keeps

evolving continuously and consequently that the user will interact with it for a

long time. Each interaction with the system contributes to changing its future

behavior. Incremental learning is a way to endow the system with an organic

feel, typical of open, natural systems (as opposed to preprogrammed, closed

world systems).

- Seamlessness. The system produces output which is virtually indistinguishable

from the user’s input. Note that this characteristic does not apply in the case of

“classic” hyper-instruments, where the sonic effects are entirely produced by

the system, and therefore do not directly match material directly produced by

the users.

One important consequence of reflective systems is that the center of attention in the

interaction process is not so much the end-product (the music), but the subject

engaged in the interaction. Engaging in an interaction with a reflective system is

in Musical Creativity: Current Research in Theory and Practice, Deliège, I. And Wiggins, G. Editors,

Psychology Press, 2004

Page 3

therefore a means of discovering oneself, or at least exploring one’s ability in the

domain at hand (in our case, musical improvisation). This natural, deep interest in

exploring oneself ― particularly during the early years of childhood ― is a key to

self-motivation. The success of IRMS is largely based on the fact that individuals are

naturally inclined to discover their own personalities. In some sense, these systems are

an extension of the “second self” (Turkle, 1984), where not only the machine seems to

“think,” but also thinks like the user. An interesting consequence of this is the reversal

of roles: the student becomes the teacher; the user teaches the machine about himself.

We will give concrete examples of IRMS below. Counterexamples abound also. For

instance, at first glance, a Vocoder may be seen as an IRMS. The carrier signal (e.g. a

voice) can be seen as a real time input, and the modulator (e.g. another audio input

played on a synthesizer) as the contextual input. The output is generated by triggering

a musical stream from the carrier, biased by the modulator. However, there is no

learning component in a Vocoder, and therefore no increase in complexity. The

Vocoder is a form of musical mirror.

2.2 Content analysis and production

The output of an IRMS is based on the analysis of the accumulated inputs of the user

in a session, and must satisfy these major criteria:

- Produce an impression of similarity

- Conform incrementally to the personality of the user

- Be intimately controllable

The scaffolding of complexity is ensured by an explicit feedback loop in the system

involving the user. Musical information given by the user is processed and

recombined to produce new material, with which the user may interact in turn, to

produce more material. The close relationship between the user and the system’s

production ensures that this feedback is both meaningful and effective.

Concretely, the musical output must typically lie in between two extreme forms of

musical production: repetition and randomness. Repetition is obtained by echoing

musical elements of the user, without any reorganization. Repetition creates a sense of

mirroring, but does not exhibit any increase in complexity. Randomness can exhibit

complexity but is not related to the user’s personality.

There is another balance to be obtained by the output, namely between a strong

personality (in principle as close as possible to the user’s) which is insensible to

context, and a strong contextualization (as exemplified e.g., by the Karma

workstation) which does not exhibit any personality. These balances can lead to the

introduction of various control parameters which are generically indicated as such in

Figure 1. Technically, it involves a balance between user inputs and contextual

information, which is described in 2.3.3.

2.3 Logical architecture

2.3.1 Inputs and output

The logical architecture of IRMS is relatively simple and stems from the analysis

above. It consists in dissociating three main input types, to produce only one output

(see Figure 1). The three main inputs correspond to the three basic sources of

information needed by the system:

in Musical Creativity: Current Research in Theory and Practice, Deliège, I. And Wiggins, G. Editors,

Psychology Press, 2004

Page 4

• Input for learning. This is where data—analyzed in order to build the

progressive model of the user—comes from.

• Real-time input. This is what triggers the output of the system.

• Contextual input. This is information provided to the system, also in real time,

to control its production. This information can be seen as an attractor to bias

the generation of the system towards a particular musical region.

These three inputs can be, in certain situations, the same. For instance, in the basic

version of the Continuator (see Section 3.1), the learning and real time input are the

same, and come from the main user. There is no contextual input. In the second

version, the learning input is used in a preliminary phase. During the interaction, the

real-time and contextual inputs are the same.

An IRMS system has only one output, its main production. However, several

instances of the system can be launched simultaneously, allowing multi-channel

outputs and more complex interactions in general. Additionally, control parameters

can be fed to the system, but their importance is marginal in this design.

Real time inputLearning input Contextual input

Real time output

Ctrl params Reflexive Interactive System

Figure 1. The global architecture of IRMS, with 3 inputs and one output.

2.3.2 Analysis and generation modules

The core system is itself decomposed into the following modules which are

instantiated in the final applications:

1. Segmentation of the various inputs into chunks

2. Gradual learning of input
3. Analysis of global parameters in the real-time input

4. Generation of the output based on the learned model, contextual input, control

parameters, and global parameters analyzed from the real-time input.

This specification is intentionally general, but its aim is to offer the most generic

framework for building IRMS systems, without being too arbitrary. We have

proposed a design and an implementation for these modules based on an extended

Markov model of musical sequences. We summarize here the most salient elements.

More details can be found in (Pachet, 2003). However, other learning techniques

could be used to achieve similar effects—either Markov-based techniques or

in Musical Creativity: Current Research in Theory and Practice, Deliège, I. And Wiggins, G. Editors,

Psychology Press, 2004

Page 5

techniques based on different learning models such as neural networks. The model we

present here is intended to lead to efficient implementations and was tried out in

various settings.

 (1) Segmentation. A phrase-end detector that is able to detect that a musical phrase

had “ended.” Detection is based on an adaptive temporal threshold mechanism. The

threshold is inferred from the analysis of inter-onset intervals in the input sequence.

As a result, if the input sequence is slow (or, rather, contains few notes per second)

then the threshold is increased, otherwise it is decreased. This simple mechanism

ensures that the continuation will be temporally seamless.

(2) Gradual Learning. A pattern analyzer. Once detected as complete, the input

sequences are sent to a pattern analyzer, which builds up a Markov model of the

sequence. The complete algorithm, described in (Pachet, 2002), consists of a left-to-

right parsing of the sequence to build a tree of all possible continuations for all

possible prefixes of the sequence. To speed up learning, the system also learns all

transpositions of the sequence.

(3) Analysis of global parameters. A global property analyzer. Various global

properties of the input sequence are also analyzed, such as the density (number of

notes per second), the tempo, and the meter (location of strong/weak beats), the

overall dynamics (loud or soft), and so on. These properties are used to produce a

continuation that is musically seamless with the input.

(4) Generation. The generator is responsible for producing the continuation of the

input sequence. The actual production of the musical material exploits the Markov

graph created by the analysis module (Pachet 2002). In essence, it consists of

producing the continuation on a note-by-note basis. Each note is generated using the

Markov probabilities inferred during the analysis stage. Technically, it uses a

variable-order Markov generation that optimizes the relevance of each single note

continuation by looking for the longest possible subsequence in the graph. Special

care has been taken to perform meaningful segmentations of the input phrases for the

learning phase. Indeed, real-world input phrases are never composed of perfectly

successive notes or chords. In order to “cut” input phrases into chunks, which are then

fed to the learning system, a segmentation process is able to detect note or chord

transitions and possibly cut across unfinished notes. The module also stores the

possible “residual” discrepancy, and restores it at generation phase so that the material

retains the rhythmical “naturalness” of the original style.

2.3.3 Taking the contextual input into account

An important point in the generation module is the way it takes into account the

contextual input. The basic idea here is that, contrary to usual Markov-based

generation systems, the output is not determined only by the input of the user (as a

continuation of this input according to the model learned previously), but can also be

biased by the contextual input. This contextual input can be seen as a dynamic

attractor which influences the generation further; for a given real time input, there can

be many possible continuations. A standard Markov model will be able to produce a

continuation based only on probabilities of occurrences as detected in the learning

corpus. However, in many cases, one would like to influence the generation using

in Musical Creativity: Current Research in Theory and Practice, Deliège, I. And Wiggins, G. Editors,

Psychology Press, 2004

Page 6

information which is not contained in the learning corpus, such as a novel harmony or

a melody, etc. (see Continuator-II for examples).

To accommodate this need, we simply extended the basic Markovian probability

scheme, as follows. We call Markov (s, x) the Markovian probability of drawing

musical element x, given in input sequence s (s is here given by the real time input).

The goal of all Markov-based music generators is to compute quickly and accurately

Markov (s, x).

Now we also introduce an arbitrary fitness function Fitness(x, C) , which

represents the fitness of musical element x according to a context C. This fitness can

be determined arbitrarily, and can represent for instance the harmonic distance of a

note given a chord.

Because Markov (s, x) and Fitness (x, C) are a priori independent, we

aggregate them using a simple linear combination, parameterized by a variable S as

follows, where S can vary from 0 to 1:

Prob(S, C, x) = S * Markov (S, x) + (1 – S) * Fitne ss (C, x).

This general probability scheme ensures that all cases can be covered. If S = 1, then

the scheme is strictly equivalent to a standard Markovian generator. If S = 0 then the

scheme corresponds to an interactive system where one wants to control the

generation of a musical process by some user input. When S is between 0 and 1, the

system tries to satisfy both criteria at the same time. S is considered here as a typical

control parameter (see Figure 1) and set before a session.

Finally, the continuation sequence produced is crude, in the sense that it does not

necessarily have the global musical properties of the input sequence. Therefore, a

mapping mechanism is applied to transform the brute continuation into a musical

phrase that will be played just in time to produce seamlessness. Currently, the

properties that are analyzed and mapped are tempo, metrical position, and dynamics

(more details can be found in (Pachet, 2002)).

2.4 Interaction protocols

Finally, the interaction per se obeys some given interaction protocol. Interaction

protocols are independent of the rest of the architecture. Bolter and Gromala (2003)

argue that, contrary to common practice in interface design, man-machine interfaces

should not always be “transparent,” and that good, useful design should allow a

balance between transparency (i.e. the computer is invisible) and reflection, “in which

the medium itself helps the user understand their experience of it.” Indeed, one

important element we have learned from our experiments (Pachet, 2002) is that there

should not be any graphical interface in the standard sense of the term (with a mouse,

buttons, etc.). Users engaged in creative music-making cannot afford have their

attention distracted from the instrument to the computer, however well designed the

interface may be. Therefore, all the interactions with the system should be performed

only by playing. Several control parameters can be made available if needed, but they

are not designed to be used in real time. Once a session is started, there should be no

need to look at the computer screen and to press any button.

Different interaction protocols are possible with an IRMS. Protocols can be seen as

the rules based on which the system decides to play. These protocols are independent

in Musical Creativity: Current Research in Theory and Practice, Deliège, I. And Wiggins, G. Editors,

Psychology Press, 2004

Page 7

of the actual analysis and synthesis methods used. As in conversations, these rules can

be varied; question-answer is by no means the only possible interaction protocol:

lectures, small talk (in the common sense meaning), exams, baby talk, etc. are types

of communication where interaction protocols differ vastly.

The issue of interaction protocols is closely related to the idea of music as a

conversation, put forward by Bill Walker (among others) in his ImprovisationBuilder

system (Walker & Belet, 1999). In ImprovisationBuilder, the system is able to take

turns with the player, and also to detect, in case of collaborative music playing, whose

turn it is using simple analysis of the various musicians’ inputs. These examples show

that there is potentially an infinite number of interesting interaction protocols.

Currently, several interaction protocols were designed and experimented with IRMS.

Here are some of them, by increasing order of complexity (and represented

graphically in Figure 2). They are by no means exhaustive, and given here as simple

examples:

- Turn-taking. This mode is represented graphically as a perfect succession of

turns, with no gap. The IRMS detects phrase endings, then learns and

produces a continuation. It stops as soon as the user starts to play a new

phrase.

- Turn taking with delay. The same as above, except that the IRMS stops only

when the user finishes a phrase. This produces an interesting overlapping

effect in which the user and the Continuator can play at the same time.

- Single note accompaniment. The IRMS produces an appropriate chordal

accompaniment each time a note is played, and with the same duration (stops

the chord when the key is released).

- Phrase-based accompaniment. The same as above except that the chord is

produced only at the beginning of a phrase.

- Collaborative. In this mode, the IRMS plays an infinite stream of music

(based on material previously learned). The user can play simultaneously, and

what he/she plays is taken into account by the IRMS, e.g. harmonically. The

user’s actions act then as a high-level control, more than a question to be

answered.

Turn-taking

Turn-taking

With delay

Human

Continuator

Human

Continuator

Single note

accompaniment

Human

Continuator

Phrase based

accompaniment

Human

Continuator

Collaborative Human

Continuator

Figure 2. Various interaction protocols with the IRMS.

in Musical Creativity: Current Research in Theory and Practice, Deliège, I. And Wiggins, G. Editors,

Psychology Press, 2004

Page 8

These various modes are in turn usually highly parameterized: The phrase length of

the continuation in turn-taking mode, the rhythm mode, the adaptation or not of the

music produced to surface parameters such as dynamics, tempo, etc. In practice, it is

easy to see that an infinite number of concrete interaction protocols can be defined, all

tailored to a particular situation.

3 Applications

This section described several applications which can be seen as different IRMS

systems implemented using the architecture described above. The differences between

these applications concern the “variable” parts of the architecture, and more precisely:

the interaction mode, the nature of the various inputs (learning, real-time, and

context), and the nature of the music being fed into the system (monophonic

melodies, chord sequences, arbitrary polyphonic music, fixed-beat music, etc.).

For each of these applications we describe the system characteristics and experiments

performed.

3.1 The Continuator-I: Question-Answer

The Continuator-I system is chronologically the first Reflexive System developed at

Sony CSL. Its aim is to propose a musical dialogue with the user with as little

constraints as possible, of course satisfying the IRMS criteria. The system is defined

as follows:

• Learning input = real-time input: arbitrary polyphonic music, without any

imposed metrical structure.

• Contextual input: not used.

• Interaction mode: turn-taking (see Section 3.4). The system stops when the

user plays, and reacts as soon as the user finishes a musical phrase. There is no

overlap between the real-time input and the output.

The following set of examples (Figure 3 to 8) show a typical interaction with the

Continuator-I. For the sake of clarity we have split the interaction into three

“sessions.” Each session consists of a user playing a phrase and a continuation. The

sessions are performed in a continuous manner with the real system. The idea here is

to show how the user can progressively feed the system with his own music material

(in the case below different scale patterns) and get, in real time, an exploration of the

accumulated material.

Figure 3. Session #1: a chromatic scale played by the user.

Figure 4. A Continuation played by the Continuator, having learned from the chromatic scale.

in Musical Creativity: Current Research in Theory and Practice, Deliège, I. And Wiggins, G. Editors,

Psychology Press, 2004

Page 9

Figure 5. Sessions #2: The user plays an octatonic scale.

Figure 6. A Continuation played by the Continuator, having learned from the two preceding

sessions.

Figure 7. Session #3: The user plays arpeggios in fourths.

Figure 8. A continuation played by the Continuator, having learned from the three preceding

sessions. Note how the various patterns of the sessions (chromatic, octatonic, and fourths) are

seamlessly weaved together.

Similar sessions can be performed with arbitrary polyphonic music, and are described

in (Pachet, 2003).

Although a complete analysis of the musical content produced by Continuator could

be performed, it is simple to note here that the output does “sound like” the inputs

given by the user. Moreover, one can see how the different “patterns” of the user are

combined naturally to create new, seamless musical sequences.

Various experiments with Continuator-I were performed with professional jazz

musicians and children. The observations conducted so far have stressed the

remarkable success of the Continuator for stimulating users (professionals and

children alike) to engage in musical conversations. In all cases, a systematic Flow

experience was observed (see Pachet & Addessi, 2004 and Addessi & Pachet, 2004

for more details). The various criteria of Flow were all clearly reached, notably

excitement and sustained concentration (see Figure 9). It is also quite clear, both with

professionals and children, that the activity of playing with the Continuator becomes

quickly self-motivated. The evolution of the interaction with the system is also

relatively stable. In a first phase, users try to understand the rules of the game (which

are usually not told explicitly) and test the ability of the system to understand their

style and reproduce it. This phase is usually motivated by external pressure

(obligation of doing an experiment, demonstration, etc.). In a second phase, typically

after a few minutes, the nature of the interaction changes, and invariably users

become engaged in an exploration of their own style, solely through their interaction

with the system, without requiring any help or feedback otherwise.

in Musical Creativity: Current Research in Theory and Practice, Deliège, I. And Wiggins, G. Editors,

Psychology Press, 2004

Page 10

Figure 9. Various expression of excitement in experiments with children and Continuator-I.

3.2 The Continuator-II: Accompaniment

The Continuator-II uses basically the same technical modules as the Continuator-I and

differs only again in the variable parts of the architecture. It is defined as follows:

• Learning input: chord sequences played before the interactive session, and

saved in a file.

• Real-time input = contextual input: monophonic melodies with no metrical

structure.

• Interaction mode: single-note accompaniment (see Section 3.4). The system
produces one chord each time a not is played by the user.

We present an example of a typical session with Continuator-II using simple chords

and simple melodies. Figure 10 shows a chord sequence played by the user (the

author in this case) into the system. These are jazzy chords which all sound good

using an arbitrary piano sound on a typical synthesizer or MIDI piano. During the

session, the user plays a melody (real-time input), and the Continuator-II produces an

accompaniment to this melody in real time (see Figure 11). The remarkable aspect of
this accompaniment is that it satisfies the following constraints naturally:

Each chord “fits” with the current note played by the user. The fitness here is defined

simply by the fact the chord chosen by the system contains at least one occurrence of

the same pitch class (this can be checked on the example given below). Of course any

other fitness function can be defined, as described in Section 2.3.3.

in Musical Creativity: Current Research in Theory and Practice, Deliège, I. And Wiggins, G. Editors,

Psychology Press, 2004

Page 11

Figure 10. A chord sequence entered by the user. The chords, as well as the transitions between

the chords and their transpositions to neighboring tones, are learned by the system,

Figure 11. A chord sequence produced from the interaction between a musician (playing a

melody on a guitar) and the Continuator (playing chords in accordance to the melody). The

contextual force creates harmonies which are always fluent, locally correct, and converging. In

this case, each chord contains the same pitch class as the melody, possibly anywhere in the chord.

However, the sequence is also full of “interesting” harmonic surprises, all created using only the
chords and the melodic input of the user.

Because this systematic mapping of chords to each note can be tiring, several

refinements can be introduced in the interaction mode. For example, a temporal
threshold is introduced so that when a note played by the user is sufficiently long (say

more than one second), the system toggles between an on and off state.

This simple scheme allows the user to improvise on a chord he likes for as long as he

wishes. To end the improvisation and resume the accompaniment state, the user has to

play a sufficiently long note. This scheme is yet another example of the “no interface”

paradigm, which allows the user to remain concentrated on the playing. It is also an

example of how the user can “capture” and retain interesting musical elements

produced by the system, in this case by just holding a note.

Note that such a scheme has interesting effects on the concentration involved: because

the user controls the on/off switching of the system by note durations, he has to listen

quite carefully to what the system is producing.

3.2.1 Variations

Other variations of the Continuator-II have also been tried. In particular, one can

envisage the use of a fixed metrical structure to produce an interesting system in

which the user literally plays with himself. Such a system is described in (Pachet,

2003b).

in Musical Creativity: Current Research in Theory and Practice, Deliège, I. And Wiggins, G. Editors,

Psychology Press, 2004

Page 12

This system is defined as follows:

• Learning input: a musical piece, following a fixed metrical structure and
tempo which is then saved in a file. Figure 12 shows a simple example where

a Bach prelude in C is played by the user (or from a MIDI file) and learned by

the system.

• Real Time input = null. The system generates an infinite stream from the

learned input, there is no triggering, and the system does not stop.

• Contextual input = chords played by the user. The chords played by the user
bias the generation of the stream toward a specific harmonic region.

• Interaction mode: infinite stream without interruption.

The Continuator-II first learns a given musical piece, with a fixed metrical structure

(in our example, the Bach Prelude). In the second phase (the actual session) the

system produces an infinite sequence in the same “style” (in this case, these sequences

can be described as ascending arpeggios using thirds of diatonic chords). At the same

time, it tries to adapt its production to a chord (or any musical material) produced by

the user in real time. The mechanism for producing this compromise is sketched in

Section 2.3.3 and consists of substituting the Markovian probability function of the

generator with a function that takes into account the fitness between the continuation

and the melody of the user. Figure 13 shows a simplified example of the output of the

Continuator-II (bottom line) taking into account in real time the chords played by the

user (top line), as well as the “style” learned from the Bach prelude.

Figure 12. The Bach arpeggiator example. In a first phase, the Bach prelude in C is played and

learned by the Continuator (in all tonalities).

Continuation

User input

Figure 13. In the second phase, chords are played by the user (top line), and the system reacts to

them by playing “Bach-like” arpeggiations (second line).

Of course, this example is a musical caricature; given the space constraints of the
chapter, but it shows the basic principle underling the particular mode. In some sense,

the system allows a user to literally play twice with himself. In the first stage, the user

teaches the system all his patterns, tricks, preferred chords, etc. Then the same user

plays a melody, and the Continuator uses the learned material to produce an

accompaniment. Because of the way the system is designed, it will find matches and

associations between musical elements of the user that would be difficult or

impossible to find by hand. It is, in our view, a typical example of a reflexive system

because the system does not invent anything new, but simply digs out and recombines

in Musical Creativity: Current Research in Theory and Practice, Deliège, I. And Wiggins, G. Editors,

Psychology Press, 2004

Page 13

material of the user in a meaningful way (in this case, the “meaning” is given

essentially by the harmonic distance function). More complex examples as well as

audio excerpts can be found on the web site o the author.

3.3 Continuator-III: Experiments in song composition

The finale example of IRMS using our architecture doesn’t concern improvisation as

in Continuator-I and II, but the process of composition. More precisely, we have

started a study to observe the process of pop-song composition, where we apply our

ideas concerning IRMS. We are interested in the creation process per se, from the

generation of musical ideas, motives, patterns, to the creation of a structure, including

variation of motives, repetition of structural elements, etc. Many tools have been

designed to help the music composition process, starting with sequencers (see Pachet,

2004) up to fully-fledged programming environments such as C-sound or OpenMusic

(Assayag et al., 1999). However, these environments do not really assist in the

creative process, and are targeted at composers who already know what they want to

produce quite well. Qsketcher (Abrams et al., 2002) is an example of a system

designed with the goal of assisting in the early stages of the creation process, and in

particular aims at capturing ideas with minimum user interaction. The system is,

however, largely menu-based and involves many standard computer interactions with

mouse, buttons, and drawings. Our approach to assisting early-stage composition

follows the same goals, but we investigate the use of IRMS without a computer

interface, and try to push the idea as far as possible.

The current state of the system is decomposed into several subsystems, corresponding

with various steps in the creation process. First, a system allows the user to find

“musical motives,” typically a few bars long, with a chord sequence and a related

melody. In this phase, the system definition is basically the same as Continuator-II

except for the interaction mode:

• Learning input: chord sequences played before the interactive session, and

saved in a file.

• Real-time input = contextual input: monophonic melodies with no metrical

structure.

• Interaction mode: each note of the melody triggers a chord. When the melody

is finished (as detected by a temporal threshold), the melody just played and

its associated chord sequence is played back in a loop. When the user plays

again, the loop stops, and the process starts again until the end of the new

melody, and so forth.

Several variations are introduced in this basic mode, using various control schemes as

in Continuator-II, such as duration or velocity of the last note played. For instance, the

user can play new melodies on top of a chord sequence generated by the system

without triggering a new generation. When a satisfying melody has been found, the

whole sequence is saved in a repository, and can be used later as a building block for

the whole song.

In a second step, the task is to produce a structure using the various building blocks

created before. One of the difficulties here is to create interesting “variations” of

motives.

• Learning input: a harmonized melody, i.e. a melody with its corresponding

chord sequence, typically generated in the first phase, and possibly saved in a

file.

in Musical Creativity: Current Research in Theory and Practice, Deliège, I. And Wiggins, G. Editors,

Psychology Press, 2004

Page 14

• Real-time input = null.

• Contextual input: chords played by the user. Ideally these chords are not heard

(so-called local off MIDI mode), to avoid interference with the harmony being

played.

• Interaction mode: the harmonized melody is played in a loop. When the user

plays a chord, the system transforms the harmonized melody so that it matches

harmonically with the chord (as in the Bach prelude example illustrated in

Figure 13).

Another variation lets the user change both the harmony and the rhythm of a given

harmonized melody. In this case, the system is defined by:

• Learning input: same as above—a harmonized melody, i.e. a melody with its

corresponding chord sequence, typically generated in the first phase, and

possibly saved in a file.

• Real-time input = contextual input: chords played by the user.

• Interaction mode: Each chord played by the user triggers one note of the
harmonized melody transformed so that it matches harmonically with the

chord (above). When the user plays one note of the chord again (and keeps the

other notes sustained) the next note of the melody is played. When the whole

melody is exhausted, it starts again. When the user plays a new chord (after

having released the former one), the melody stops wherever it was playing and

starts again with the new chord as an attractor.

4 Conclusion

We have introduced the concept of Interactive Reflexive Musical System as a class of

interactive systems aimed at enhancing musical creativity. The most important

characteristics of IRMS are 1) the gradual learning of musical material which allows a

scaffolding in complexity, necessary to sustain the interest of users for long periods of

time, 2) the lack of a standard graphical user interface which allows users to

concentrate on playing music without thinking about the system design. We proposed

an architecture as well as three different applications created with this architecture.

Several experiments are described with various users using an IRMS (children,

improvisers, composers). The most important contribution to creativity studies is to

introduce a novel class of studies formed by the interaction between a user and an

IRMS.

Finally, we believe our work is an example of a fruitful collaboration between

experimental psychology and computer science. Because innovation in computer

science is rarely strictly endogenous (innovative ideas in computer science often come

from blending with other domains), we believe that an approach that closely

integrates psychological experiments with system design is very productive and

should be pursued in other domains of creativity studies.

5 References

Abrams, S. Bellofatto, R. Fuhrer, R. Oppenheim, D. Wright, J. Boulanger, R.

Leonard, R. Mash, D. Rendish, M. Smith, J. (2002) QSketcher: an environment for

composing music for film. in Proceedings of the Fourth Conference on Creativity

and Cognition, pp. 157-164. Loughborough University, U.K., ACM Press, New

York.

in Musical Creativity: Current Research in Theory and Practice, Deliège, I. And Wiggins, G. Editors,

Psychology Press, 2004

Page 15

Addessi, Anna-Rita and Pachet, François (2004) Musical Style Replication in 3/5 year

old Children: Experiments with a Musical Machine, British Journal of Musical

Education, to appear.

Assayag, G. Rueda, C. Laurson, M. Agon, C. Delerue, O. (1999) Computer Assisted

Composition at Ircam: PatchWork and OpenMusic, Computer Music Journal, 23:3.

Bolter, J.D. and Gromala, D. (2003). Windows and Mirrors, Interaction Design,

Digital Art and the Myth of Transparency, MIT Press.

Cope, D. (2001) Virtual Music. Computer Synthesis of Musical Style, MIT Press.

Pachet, François (2002) Playing with Virtual Musicians: the Continuator in practice.

IEEE Multimedia, 2002.

Pachet, François (2003) Musical Interaction with Style. Journal of New Music

Research, 32(3):333-341.

Pachet, François (2003b) Beyond the Cybernetic Jam fantasy: The Continuator.

IEEE Computers Graphics and Applications, January/February 2004. special issue

on Emerging Technologies.

Pachet, François (2004). Creativity Studies and Musical Interaction. Same volume.

Pachet, F. and Addessi, A.-R. (2004) “When Children Reflect on their Playing style:

the Continuator” in ACM Computers in Entertainment Journal, 1(2).

Walker, W. Belet, B. (1999) Applying ImprovisationBuilder to interactive

composition with Midi piano. In ICMC 99, Hong-Kong.

