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ABSTRACT 
The goal of the FDAI project is to create a general system that computes an efficient representation of the acoustic 
environment. More precisely, FDAI has to compute a noise disturbance indicator based on the identification of six 
categories of sound sources. This paper describes experiments carried out to identify acoustic features and 
recognition models that were implemented in FDAI. This framework is based on EDS – Extractor Discovery System 
– an innovative acoustic feature extraction system for sound feature extraction. The design and development of 
FDAI raised two critical issues. Completeness: it is very difficult to design descriptors that identify every sound 
source in urban environments, and Consistency: some sound sources are not acoustically consistent. We solved the 
first issue with a conditional evaluation of a family of acoustic descriptors, rather than the evaluation of a single 
general-purpose extractor. Indeed, a first hierarchical separation between vehicles (moped, bus, motorcycle and car) 
and non-vehicles (bird and voice) significantly raised the accuracy of identification of the buses. The second issue 
turned out to be more complex and is still under study. We give here preliminary results.  

1. INTRODUCTION 

1.1.  Framework 

Automatic recognition of environmental sounds has 
become an important field of research with the 
increasing demand coming from applications such as 

environment monitoring [1-4], media annotation [5] or 
robotics [6]. 

In this paper we deal with urban soundscape analysis. 
The impact of environmental noise can have harmful 
effects on human health and well-being. The European 
Directive 2002/49/EC of 25th June 2002 relating to the 
assessment and management of environmental noise 
lays down a general framework to produce mappings for 
city noise management [7]. Available to the public and 
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intended to urban planners, these mappings are strategic 
tools to prepare and implement action plans i.e. prevent 
and reduce environmental noise where necessary and 
preserve environmental noise quality where it is 
satisfactory. In complement to an indicator based on 
global energetic properties of the sound, this directive 
encourages member states to define innovative 
indicators that have to be introduced in mappings.  

We have shown recently that models of environmental 
noise are substantially more accurate when the nature of 
sound sources is taken into account explicitly [8]. We 
have therefore introduced a environmental noise model 
as a linear combination of basic features of source 
categories (e.g. time of presence of car, moped, 
motorcycle, bus, voices and birds) in which coefficients 
are specific to the type of soundscape considered (e.g. 
park, market, district road). 

FDAI is a general framework to provide an efficient 
representation of the acoustic environment, conforming 
to the European directive’s recommendations. FDAI 
provides a visualization of the indicator described above 
on a city’s GIS (Geographic Information System). 

Operationally, monitoring systems are located in 
various urban locations. A monitoring system is 
composed of a sound acquisition set (microphone and 
audio acquisition card), a notebook computer and real 
time analyzer that performs measurements, in particular 
sound sources identification. Then, raw data are sent to 
a server via an internet connection. The global indicator 
is then computed from these measurements and 
automatically sent to a GIS for visualization.  

Technically, the most difficult task of FDAI is to 
classify automatically the sounds sources occurring in 
the soundscape. The six categories of sound sources 
considered are: Car, Moped, Bus, Motorbike, Voice and 
Bird. This paper describes experiments carried out to 
identify acoustic features and recognition models of 
FDAI. 

1.2.  Feature Extraction 

A typical audio classification system basically follows a 
two-phase scheme: (1) a feature extraction phase to 
extract information from the samples to classify; and (2) 
a classification phase, in which classifiers are trained on 
the results of the features of the first phase on a training 
dataset.  The quality of the resulting classifiers depends 
on three parameters: (1) the quality of the features, i.e. 

how well they separate samples of different classes 
while grouping samples of the same class; (2) the 
performance of the machine-learning algorithm; and 3) 
the quality (size and variety) of the training dataset. We 
use here a new approach to improve the typical 
classification scheme. The idea is to create 
automatically problem-specific features, i.e. features 
that perform well on the problem at hand, thus 
improving the quality the resulting classifiers.  From a 
technical standpoint, our approach uses a genetic 
algorithm which generates features by combining 
elementary domain-specific operators (also called low-
level descriptors). At each generation, the best features 
are kept to be the seeds for the next generation; the 
seeds undergo mutations or are combined together to 
create new, hopefully better, features.  

EDS – Extractor Discovery System – is an 
implementation of this approach in the domain of 
acoustic signal classification [9].  Many acoustic 
features have been devised by audio signal processing 
researchers, and each of them is known to be adapted to 
specific classification tasks. For instance, some features 
are well-suited to musical instrument classification, 
others perform well on speaker recognition, or musical 
genre classification. A signal processing expert will 
typically use features known to perform well on the 
problem at hand. EDS aims at replacing the signal 
processing expert. EDS, as opposed to the domain 
expert, has powerful computational skill but poor 
domain knowledge. More precisely, the domain 
knowledge in EDS consists of the following elements 
(note that X represents the signal): 1) a library of 
operators (low-level descriptors for audio signal 
processing) containing approximately 80 operators, e.g. 
Fft, Db, Arcsin, Normalize, Min, Max, LowPassFilter; 
2) heuristics that prevent creating useless features, e.g. 
Min (Max (X)), or LowPassFilter (LowPassFilter (X, 
freq1), freq2); and 3) typing rules that ensure the creation 
of features that are well-formed, e.g. forbid 
Normalize (Max (X)).  The key idea of EDS is to invent 
features as combinations of operators that are specific to 
the problem to solve, i.e. features that an expert would 
never have come up with, as they are not in the 
literature. This approach has been shown to outperform 
the standard approach on several classification 
problems, e.g. musical instrument recognition  
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2. CONSTRUCTION OF DATABASES 

2.1.  Metrology 

We carried out recordings in typical urban conditions, 
such as U-shaped streets, speeds around 50 km/h, 
irregular streams of vehicles and weak slopes of the 
road. We recorded on streets of various types of asphalt-
coating.  

We are interested in recognizing six main categories of 
sound sources: cars, mopeds, bus, motorbikes, human 
voices, and birds twittering. Note that we work on real-
life sounds, not isolated sounds as found e.g. on CD 
effect libraries. In particular, the sound sources we try to 
identify are usually mixed up together and with 
background noise. Figure 1 shows a typical sound 
sequence used in this study. 

 

 

 

 

Figure 1. Sonogram of a sequence containing a car, a 
moped and birds. 

Each measurement is based on a protocol and material 
used by official organizations of measurements, 
engineering and design acoustic departments. The sound 
acquisition set (01dB Symphony® system) consists of a 
transducer linked to a small computer unit (a single 
channel omni directional Bruel & Kjaer class1 
microphone) which transfers data in real time to a 
notebook computer.  

The protocol of measurement is done according to the 
recommendation of standards [10] i.e. the sites of 
measurement near buildings must be located at 2 meters 
in front of the most advanced part of the building, the 
height of measurement is between 1.2 and 1.5 meters 
above the ground-level and the microphone is placed at 
a distance between 2 and 3 meters from the vehicles.  

Measurements were carried out in the city of Paris, on 
one-way streets with isolated vehicles as well as two-
way streets. These measurements were made during 
various moments of the day, on a dry roadway.  

We recorded more than 2,000 sequences with the 
following sound sources, see Table 1: 

Cars Horns 
Mopeds Steps 

Motorcycles Background noise 
Buses Dogs barking 
Birds Stroller 
Voices Police horns 
Trucks Slamming door 

Brake whistling Rain 

Table 1. Sound sources composing the different sound 
databases.  Names in bold correspond to the six main 
categories mentioned in Section 1.1  

2.2. Databases for EDS 

In order to avoid features based on intensity, each 
sample is normalized i.e. its maximum level is brought 
to the digital maximum level before saturation. 
Sampling rate is 44,100. 

The length of each sample is arbitrary fixed at 500 ms. 
For each database, 66% of the data was used for training 
and the other 33% for testing. Typically, we trained 
classifiers on databases containing between 200 and 800 
samples. 

3. EXPERIMENTAL RESULTS 

3.1.  Parameters of the classifiers 

For the experiments reported here, we focused only on 
two types of classifiers: Gaussian Mixture Models – or 
GMMs – and Nearest Neighbors – or kNN. 

The first task is to find the best parameters for the 
machine-learning algorithms, to optimize the resulting 
success ratios. Two parameters are considered here: the 
number of Gaussian Components (M) used in GMMs, 
and the number of Nearest Neighbor (K) used in kNN.  

The experience was set on two different sets of features 
obtained by EDS with respect to two different databases 
Moped and Bird. M and K can take the values 20, 30, 
40, 50 and 1, 3, 5, 10 respectively. The recognitions 
rates are counted as follows.  

All: percentage of correctly recognized samples, Bird or 
Moped: percentage of correct recognition of the 
corresponding class, Other: percentage of correct 

Car Moped Birds 
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recognition of other sounds. Results are shown in Table 
2 and 3. 

KNN Train Test 
 All Bird Other All Bird Other 

K=1 100.0 100.0 100.0 69.0 46.8 92.9 

K=3 95.0 96.7 93.3 71.8 53.2 90.5 

K=5 94.0 95.6 92.2 71.8 53.2 90.5 

K=10 93.0 95.6 91.1 70.8 53.2 90.5 

GMM Train Test 
 All Bird Other All Bird Other 

M=20 93.0 95.6 90.0 70.0 51.1 90.5 

M=30 94.0 96.7 91.1 71.0 51.1 92.9 

M=40 96.0 100.0 92.2 65.0 44.7 88.1 

M=50 97.0 100.0 93.3 69.0 53.2 85.7 

Table 2. Recognition results (in percentage) for various 
parameters of the models for the discrimination task 
between Bird and Other. The models use 9 features. 

KNN Train Test 
 All Moped Other All Moped Other 

K=1 100.0 100.0 100.0 81.0 73.2 89.4 

K=3 95.0 96.4 93.1 86.0 82.1 89.4 

K=5 94.0 96.4 92.6 84.0 77.7 89.4 

K=10 94.0 94.6 93.5 84.0 78.6 90.3 

GMM Train Test 
 All Moped Other All Moped Other 

M=20 94.0 96.9 91.8 83.0 80.4 85.8 

M=30 94.0 95.1 92.2 84.0 82.1 86.7 

M=40 97.1 96.9. 97.4 86.0 85.7 85.8 

M=50 95.0 97.8 93.1 86.0 83.9 87.6 

Table 3. Recognition results between Moped and 
other sounds. The models use 4 features. 

As a conclusion we observe an optimal accuracy for K = 
3 and M = 40. Note that all models tend to be more 
efficient for the recognition of the other sounds.  

3.2.  Timbre Features 

The following so-called Timbre feature is commonly-
used for musical instrument recognition [11] or 
similarity measures between music titles [12] with 
better performance than basic MPEG-7 features in the 
general case [13]. 

)10)),5.0,2048,(((0 xapSplitOverlHanningMfcc      (1 ) 

This feature cuts the signal into 2048 points frames (50 
ms), and for each frame, computes the short-time 
spectrum. Then the ten first MFCC (Mel Frequency 
Cepstrum Coefficients) are computed to estimate the 
spectral envelope of each frame. A typical 500 ms 
sample is represented with 10 feature vectors, i.e. 100 
coefficients. This feature is tested to complement the 
features found with EDS.  

3.3.  Mechanical versus Non Mechanical 

We ran several experiments on databases containing all 
seven sound sources (i.e. car, bus, truck, motorcycle, 
moped, voice, bird). We noticed that we could not 
manage to create classifiers that have good performance 
on every sound source (see 3.4). This is what we refer to 
as the Completeness issue. Instead, we split the 
recognition process into two phases: a first classifier 
distinguishes between mechanical sounds and non 
mechanical sounds (i.e. voices and birds). The idea is to 
find in a first step robust features able to separate 
vehicles from natural, not mechanical sounds (voices, 
birds, dogs, background noise, etc). In a second step we 
test others classes of sounds and see if they are grouped 
together with the extractor. Although this is an arbitrary 
distinction, this workaround happens to be effective, as 
shown below. 

3.3.1.  Database 

The repartition of samples of the database is indicated in 
Table 4. 

Class Sequences Quantity 

car 60 

bus 60 

truck 60 

moped 60 

Vehicle 

motorcycle 60 

bird 144 
Other 

voice 149 

Total 623 

Table 4. Constitution of the database Mechanical. 

We did not include classes such as Horn or Brake 
whistling because they always come with strong 
foreground vehicle sounds.  
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3.3.2.  Features  

The best features obtained with EDS are shown in Table 5: 
Features 

Sqrt(Rangs(SpectralSkewness 
(Hanning(SplitOverlap(x, 1323, 0.6))))) 

Sqrt(Sqrt(Range(SpectralSpread 
(Hanning(SplitOverlap(x, 2205, 0.7))))) 

Sqrt(Sqrt(Range(SpectralKurtosis 
(Hann(SplitOverlap(x, 1323, 0.6)))))) 

Table 5. Features obtained by EDS for the 
discrimination between Mechanical and Non 
Mechanical sounds. 

3.3.3.  Models 

First we designed optimal models containing the three 
pre-cited EDS features (Table 6). 

KNN Train Test 

 All Vehi Other All Vehi Other 

EDS 96.0 96.6 95.3 89.2 91.2 87.2 

GMM Train Test 

 All Vehi Other All Vehi Other 

EDS 96.5 96.6 96.3 91.2 87.2 95.1 

Table 6. Recognition accuracies (%) between 
Mechanical and Non Mechanical sounds using the best 
features found by EDS. 

In a second step, we introduced the timbre feature in 
addition to the 3 EDS features. The accuracy of the 
resulting models are shown in Table 7. 

KNN Train Test 
 All Vehi Other All Vehi Other 

EDS + 
Timbre 

100.0 100.0 100.0 95.7 97.2 94.1 

GMM Train Test 
 All Vehi Other All Vehi Other 

EDS + 
Timbre 

100.0 100.0 100.0 96.6 96.3 97.1 

Table 7. Recognition accuracies between Mechanical 
and Non Mechanical sounds using the 3 best features 
found by EDS plus the Timbre feature. 

A significant increase in recognition rate was brought 
by the introduction of the Timbre feature: the rate raises 
to 96.6% gaining 3.5%.  

3.4.  Bus 

3.4.1.  Bus vs. all other sound classes 

In this experiment we considered the separation 
between class Bus and all other classes of events. We 
created a database containing 578 samples. The best 
features obtained with EDS have a relatively weak 
fitness (Table 8) predicting poor recognition. 

Features 

Sqrt(MaxPos(Derivation(MelBands   (x, 8.0)))) 

Sqrt(Max(Derivation(Sqrt(BarkBands  (x, 8.0)))) 

Iqr(Derivation(Zcr(FilterBank(x, 10.0)) 
Sqrt(Mean(Power(Chroma(x), -1.0))) 

Table 8. Features obtained by EDS for discrimination 
between Bus and all other classes of sound. 

Indeed, the best recognition rate on Test is only 67.0% 
for the model using k-NN (Table 9). 

KNN Train Test 
 All Bus Other All Bus Other 

K=3 92.0 95.3 88.7 67.0 50.0 84.2 
GMM Train Test 

 All Bus Other All Bus Other 
M=40 96.1 99.5 92.8 64.3 47.8 80.8 

Table 9. Recognition accuracies (%) between Vehicle 
and all other sounds classes using the 4 best EDS 
features. 

The recognition is also weak with the feature Timbre 
(Table 10). 

KNN Train Test 
 All Bus Other All Bus Other 

K=3 99.5 100 99.0 70.6 60.4 81.1 
GMM Train Test 

 All Bus Other All Bus Other 
M=40 98.9 100 97.9 69.1 46.9 91.6 

Table 10. Recognition accuracies (%) between Vehicle 
and all other sounds classes using the Timbre feature. 
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3.4.2.  Bus vs. other vehicles 

This experiment addresses the bus versus other vehicles 
problem. A database was created containing only buses 
and other vehicles (777 samples). The genetic search 
with EDS yields the following features (Table 11). 

Features 
Log10(Range(SpectralDecrease (SplitOverlap         

(x, 1323, 0.8)))) 

Sqrt(MaxPos(Derivation(BarkBands  (x, 5.0)))) 

Power(MaxPos(MelBands(x, 7)), -4.8) 
Median(Power(Chroma(x), -1.0)) 

Table 11. Features obtained by EDS for discrimination 
between Bus and other vehicles. 

Finally, we have extracted models containing these four 
features (EDS) plus the feature Timbre (Table 12). 

KNN Train Test 
 All Bus Other All Bus Other 

EDS 95.9 95.1 96.9 85.2 72.5 98.4 
EDS + 
Timbre 

100.0 100.0 100.0 85.6 75.6 96.1 

GMM Train Test 
 All Bus Other All Bus Other 

EDS 95.3 92.8 98.0 86.8 75.6 98.4 
EDS + 
Timbre 

99.6 99.6 99.6 79.4 69.5 89.9 

Table 12 Recognition accuracies (%) between Bus and 
other vehicles using 4 best features found by EDS plus 
feature Timbre. 

Here, the best recognition rate reaches 86.8% on the 
Test database. It represents a much better result than the 
one obtained while trying to separate buses from all 
other classes of events. The Timbre feature does not 
have a significant influence on the results. However, the 
accuracy of the models is not completely satisfying. It is 
probably due to the large diversity of sounds within the 
bus category. It could be fixed by listening the samples 
in order to separate the sample into sub-groups.  

The next experiments address the distinction between 
vehicles sound and no vehicle sounds. 

3.5.  Moped 

A first experiment ran on mopeds gave unsatisfactory 
results. By listening to the incorrectly classified 
samples, we noticed that they sounded differently from 

the other samples. Indeed, these samples were 
representing a new class that was finally identified as a 
particular type of mopeds called Vespa.  

We decided to create a new database but this time, 
without considering Vespa as a part of the class mopeds. 

The five best features found by EDS are shown in Table 
13. 

Features 
Sqrt(Mean(SpectralFlatness (SplitOverlap            

(x, 2205.0, 0.8)))) 

Log10(Median(MelBands(Normalize (x), 2.0))) 

Min(SpectralCentroid(Split(x, 256.0))) 
Power(Mean(Mfcc(x, 9.0) 1.3) 
Log10(SpectralSkewness(x)) 

Table 13. Features obtained by EDS for discrimination 
between Moped and other vehicles. 

The best model found uses only one feature containing 
Mfcc as a core operator (Table 14). 

KNN Train Test 
 All Moped Other All Moped Other 

K=3 83.3 85.2 81.4 88.9 96.4 81.4 

Table 14. Recognition accuracy (%) between Mopeds 
and other classes of vehicles. The model uses the only the 
feature Power(Mean(Mfcc(x, 9.0) 1.3). 

As a good feature for discrimination between bus and 
other vehicles, it is noticeable that Timbre does not 
work satisfactorily for the identification of the mopeds 
(we tried with 10 and 20 Mfcc’s).  

This experiment shows that the perceptive class Moped 
is acoustically inconsistent. We discuss this issue below 
(see 4.2.). 

3.6.  Car 

The database for Car contains 276 samples of cars and 
other vehicles. The features obtained by EDS are shown 
in Table 15. 

The best model using the 6 best EDS features yields a 
recognition rate of 90.0% (Table 16). k-NN is more 
appropriate than GMMs with a difference on TestD 
equal to 23.3%. The introduction of the Timbre features 
yields a recognition rate of 85.6%. However, the 
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combination between the 6 EDS features and Timbre is 
not profitable.  

Features 
Power(Abs(Sum(SpectralFlatness(Triangle 

(BpFilter(SplitOverLap(x, 441.0, 0.8), 882.0, 
1323.0))))), -0.25) 

Power(Mean(SpectralRolloff(BpFilter(Split          
(x, 1764))))) 

Power(Abs(Median(RHF(Abs(BpFilter 
(FilterBank(x, 11.0), 882.0, 1323.0)))))), -0.25) 
Sqrt(Range(SpectralDecrease(Triangle(BpFilter 

(FilterBank(x, 5.0), 853.0, 970.0))))) 
Sqrt(Zcr(Percentile(Hann(SplitOverLap             

(x, 441.0, 0.5)), 58.0))) 
Sum(Hamming(Derivation(Mfcc(x, 8.0)))) 

Table 15. Features found by EDS to discriminate 
between Car and other classes of vehicles. 

 

KNN Train Test 
 All Car Other All Car Other 

EDS 93.0 92.5 93.5 90.0 84.4 95.6 
Timbre 
10Mfcc 

95.6 77.8 93.3 85.6 77.8 93.3 

EDS + 
Timbre 

100.0 100.0 100.0 85.6 77.8 93.3 

GMM Train Test 
 All Car Other All Car Other 

EDS 99.5 100.0 98.9 66.7 53.3 80.0 
Timbre 
10Mfcc 

98.9 100.0 97.8 84.4 73.3 95.6 

EDS + 
Timbre 

100.0 100.0 100.0 78.9 62.2 95.6 

Table 16. Recognition accuracies (%) between Car and 
other classes of vehicles. 

Finally, the best model is obtained with the 20 MFCC in 
a k-NN classifier. Its accuracy is slightly improved by 
1.1% with the addition of an EDS feature using RHF 
(Ratio of High Frequencies) exposed in Table 15. The 
final rate is 94.4% of correct recognitions on TestD 
(Table 17). 

 

 

 

 

 
KNN Train Test 

 All Car Other All Car Other 
Timbre 
20Mfcc 

100.0 100.0 100.0 93.3 93.3 93.3 

Timbre 
+ EDS 

100.0 100.0 100.0 94.4 95.6 93.3 

GMM Train Test 
 All Bus Other All Bus Other 

Timbre 
20Mfcc 

99.5 100.0 98.9 83.9 80.0 87.8 

Timbre 
+ EDS 

99.5 100.0 98.9 85.6 80.0 91.1 

Table 17. Recognition accuracies (%) between Car and 
other classes of vehicles. 

3.7.  Motorbikes 

The database created contains 466 samples of 
motorbikes and other vehicles. The models created with 
the best EDS features or Timbre features never yield a 
recognition rate over 82.5 % on Test. As in the Moped’s 
case, the samples are not acoustically consistent i.e. 
there are too many different types of sound in the 
Motorbike category.  

3.8.  Bird 

The database created contains 274 samples of birds and 
other non mechanical sounds. The 4 best features 
obtained by EDS are shown in Table 18. 

Features 
Power(Median(Log10(SpectralRolloff 

(FilterBank(x,10.0)))), -0.125) 
Square(Iqr(PitchBands(Sqrt (Abs(x)), 9.0))) 

Power(RMS(SpectralSpread(Arcsin 
(Hann(SplitOverlap(x, 220.0, 0.2))))), 3.0) 
Power(Arcsin(Square(Iqr(Zcr(Integration 

(Hanning(FilterBank(x, 8.0)))))), 2.6) 

Table 18. Features obtained by EDS to discriminate 
between Bird and other non mechanical sounds. 

The better model found yields only 71.8% of 
recognition rate on Test. One explanation of this weak 
recognition rate could come from the fact that bird 
twitter is most of the time shorter than the duration of 
the sample (500 ms) used here. This technical problem 
could be fixed in further studies by using larger samples 
(about 100 ms). 
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3.9.  Voice 

The database created contains 298 samples of voices 
and other non mechanical sounds. The voices are either 
male, female or child speaking. After several iterations, 
EDS did not produce satisfactory accuracy. Thus we 
decided to use only the Timbre features while varying 
the number of Mfcc. The best result is obtained with 20 
coefficients. The global recognition rate on Test goes up 
to 99.0% (Table 19). 

KNN Train Test 
 All Voice Other All Voice Other 

10Mfcc 100.0 100.0 100.0 89.2 100.0 79.2 
20Mfcc 100.0 100.0 100.0 99.0 100.0 98.1 
GMM Train Test 

 All Voice Other All Voice Other 
10Mfcc 100.0 100.0 100.0 87.0 100.0 75.5 
20Mfcc 100.0 100.0 100.0 92.2 100.0 84.9 

Table 19. Recognition accuracies (%) between Birds 
and other non mechanical sounds using Timbre features 
with 10 or 20 coefficients. 

4. COMMENTS 

During the design and development of FDAI, we faced 
too critical issues.  Completeness: it is very difficult, if 
not impossible, to design descriptors that identify every 
sound source in such a complex acoustic environment.   
Consistency: some sound sources are not acoustically 
consistent. 

4.1.  Completeness 

When dealing with multiple-class classification 
problems, we face the completeness issue, i.e. it is 
difficult to design classifiers that perform well on all the 
classes. In our implementation, we solved this issue by 
introducing a hierarchy of classifiers instead of a single 
multi-class classifier. Basically, we considered the 
distinction a human would spontaneously make between 
motor-vehicles and “natural” sounds (voices, birds). The 
classification process we enforce consists in first, using 
the “motor-vehicles versus natural sounds” classifier, 
and then, apply either the “car-truck-moped-bus-
motorcycle” or the “voice-birds” classifier according to 
the results yielded by the first classifier. 
Obviously, this is an ad hoc workaround based on 
human mental categories. It is not satisfying since there 
is no guaranty that this hierarchy is optimal, and 
besides, the idea to distinguish first between motor-
vehicles and natural sounds is based on human 
intuitions, and is therefore difficult to automate. 

We are working on a generalization of this idea. First, 
we want to automate and optimize the composition of 
the hierarchy of classifiers. Secondly, we will explore 
more complex organizations than hierarchies, like for 
instance Bayesian networks of classifiers. 

4.2.  Consistency  

When asked to describe their perception of an urban 
soundscape, people spontaneously mention sound 
sources corresponding to mental categories that are 
culturally consistent, e.g.  motorcycle, car, truck, or 
birds. However, these categories are not acoustically 
consistent. For instance, in the motorcycle category, the 
sound of a Japanese 4-cylinder engine in a sports 
motorcycle is acoustically very different from the sound 
of a 2-cylinder Harley-Davidson engine. This 
phenomenon also occurs with musical instruments: the 
category called guitar corresponds in reality to various 
instruments that are acoustically very different from one 
another, e.g. saturated electric guitar and folk guitar. 
 
The performance of the best classifiers we created on 
the motorcycle category is substantially worse than the 
performance obtained on other categories (motorcycle: 
82.0% versus bus: 86.8%, moped: 88.9%, car: 90.0%, 
voice: 99.0%). As explained in this article, the 
performance depends on the quality of the features, on 
the performance of the training algorithm, and on the 
quality of the training dataset. 
 
So far, we do not know whether the poor performance 
we obtained stems from some shortcoming of our 
implementation. It could be the case that EDS cannot 
produce high-quality features for inconsistent 
categories, or that the machine learning algorithms we 
used are not well-adapted to this case, although the 
GMM model is designed to handle this situation. 
Finally, we may improve the performance by using 
larger training datasets. 
 
However, we do suspect that standard classification 
systems, even augmented with EDS’s automatic feature 
creation, cannot reach very high success ratios on 
acoustically inconsistent categories. We are in the 
process of devising techniques to improve further the 
classification process by taking into account 
inconsistent categories explicitly. 
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5. CONCLUSIONS AND PROSPECTS 

In this paper, we have presented FDAI, a framework 
that uses an innovative features extraction system (EDS) 
to identify sound sources in complex urban soundscape.  
This system is already used in a real-time environment 
for noise quality assessment. Our experiments show that 
the best results are obtained using both EDS and Timbre 
features. As far as we know, no other study gives 
recognition accuracies for a similar problem. [3] 
describes an approach with 95.3% of correct recognition 
of mopeds (vs. 88.9% in this study). But the recognition 
task was simpler and consisted in recognizing only two 
classes of sound sources: moped and horns. 

The results we have shown are satisfactory with respect 
to four sound categories: bus (86.8%), moped (88.9%), 
car (90.0%) and voice (99.0%) and for separation 
between mechanical and non mechanical sounds 
(96.6%). As discussed, we need to improve the 
performance on motorbikes (82.0%) and birds (71.8%). 
One way to improve the quality of our system (both in 
terms of performance and extensibility) is to address the 
two critical issues discussed above; completeness and 
consistency. 
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