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Abstract

The “bag of frames” approach (BOF) to audio pattern recognition models signals
as the long-term statistical distribution of their local spectral features, a proto-
typical implementation of which being Gaussian Mixture Models of Mel-Frequency
Cepstrum Coefficients. This approach is the most predominent paradigm to extract
high-level descriptions from music signals, such as their instrument, genre or mood,
and can also be used to compute direct timbre similarity between songs. However,
a recent study by the authors shows that this class of algorithms when applied to
music tends to create false positives which are mostly always the same songs regard-
less of the query. In other words, with such models, there exist songs - which we
call hubs - which are irrelevantly close to very many songs. This paper reports on
a number of experiments, using implementations on large music databases, aiming
at better understanding the nature and causes of such hub songs. We introduce 2
measures of “hubness”, the number of n-occurrences and the mean neighbor angle.
We find that in typical music databases, hubs are distributed along a scale-free dis-
tribution: non-hub songs are extremely common, and large hubs are extremely rare
- but they exist. Moreover, we establish that hubs are not a property of a given
modelling strategy (i.e. static vs dynamic, parametric vs non-parametric, etc.) but
rather tend to occur with any type of model, however only for data with a given
amount of “heterogeneity” (to be defined). This suggests that the existence of hubs
could be an important phenomenon which generalizes over the specific problem of
music modelling, and indicates a general structural property of an important class
of pattern recognition algorithms.
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1 Introduction

The majority of systems extracting high-level music descriptions from audio
signals rely on a common, implicit model of the global “sound” or “timbre” of
a musical signal. This model represents timbre as the long-term accumulative
distribution of frame-based spectral features. This approach has been nick-
named “bag-of-frames” (BOF), in analogy with the “bag-of-words” (BOW)
treatment of text data as a global distribution of word occurrences, used
in Text Classification (1). The signal is cut into short overlapping frames
(typically 50ms with a 50% overlap), and for each frame, a feature vector
is computed. Features usually consists of a generic, all-purpose spectral rep-
resentation such as Mel Frequency cepstrum Coefficients (MFCCs) (2). The
physical source of individual sound samples is not explicitely modelled: the
features are fed to a statistical model, such as a Gaussian Mixture Model
(GMM) (3), which models their global distributions over the total length of
the extract. Global distributions can then be used to compute decision bound-
aries between classes (to build e.g. a genre classification system such as (4))
or directly compared to one another to yield a measure of timbre similarity

(5).

1.1 Euxistence of hubs

The above approach has led to some success, but recent research (6) on the
issue of polyphonic timbre similarity shows that BOF seems to be bounded to
moderate performance. Notably, thorough exploration of the space of typical
algorithms and variants (such as different signal features, static or dynamic
models, parametric or non-parametric estimation, etc.) and exhaustive fine-
tuning of the corresponding parameters fail to improve the precision above a
empirical glass-ceiling, around 70% precision (although this of course should be
defined precisely and depends on tasks, databases, etc.). Further, traditional
means to model data dynamics, such as delta-coefficients, texture windows or
Markov modelling, do not provide any improvement over the best static models
for polyphonic textures of several seconds length. This is a paradoxical obser-
vation, as psychophysical experiments (7) have established the importance of
dynamics in the perception of individual instrument notes.

* Corresponding author. Address: Ikegami Laboratory, Department of General Sys-
tems Studies, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1
Komaba, Meguro-ku, Tokyo 153-8902, Japan. Tel:+81-3-5454-4378. Fax : +81-3-
5454-6541.

Email addresses: aucouturier@gmail.com (Jean-Julien Aucouturier),
pachet@csl.sony.fr (Francois Pachet).



However, the most intriguing finding of (6) is that the class of algorithms
described above tends to create false positives! which are mostly always the
same songs regardless of the query. In other words, there exist songs, which
we call hubs, which are irrelevantly close to all other songs.

This paper reports on a number of experiments aiming at better understanding
the nature and causes of such hubs. We give a detailed description of this
phenomenon, as well as a methodological basis to its study by introducing 2
measures of “hubness”, the number of n-occurrences and the mean neighbor
angle. We find that in typical music databases, hubs are distributed along a
scale-free distribution: non-hub songs are extremely common, and large hubs
are extremely rare - but they exist. Moreover, we establish that hubs are not
a property of a given modelling strategy (i.e. static vs dynamic, parametric
vs non-parametric, etc.) but rather tend to occur with any type of model,
however only for data with a given amount of “heterogeneity” (to be defined).
We find that the hubness of a given song is not an emerging global property
of the distribution of its frames, but rather can be localised to certain parts
of the distribution, defined by their statistical weight.

1.2 Why this may be an important problem

The phenomenon of hubs is reminiscent of other isolated reports in other do-
mains than music. Biometric verification systems, such as fingerprints, but also
speech and speaker recognition systems typically exhibit striking performance
inhomogeneities among users within a population. The statistical significance
of such critical classes of users, in the context of Speaker Verification, was for-
mally shown in (8), by analysing population statistics based on the test data
used for the NIST 1998 speaker recognition evaluation. The paper established
a speaker taxonomy in terms of animal names, notably goats (users that are
very difficult to recognize), lambs (users that are particularly easy to imper-
sonate) and wolves (users who are particularly successful at imitating other
speakers).

A complete analogy with this taxonomy would call a wolf a song which is
constantly closer to a random song S than S is to itself. However, the Speaker
Recognition menagerie is essentially pointing out the same phenomenon as
the hubs observed with our timbre similarity measure: that high false positive
rates are not uniformly distributed in the database, but manifests only in a
small critical population.

The reason for the appearance of such classes is generally thought to be an

I we describe an evaluation framework to practically decide such false positives in

section 2.1



intrinsic property of human users. However, a recent study (9) in the context
of fingerprint recognition suggests that these properties of wolfiness, goatness,
etc.. are rather properties of the algorithms themselves. The observation that
we make here of the existence of “wolf songs”, in the different context of music
pieces, seem to corroborate this hypothesis. This is especially interesting as
the techniques used for timbre similarity (namely variations on the GMMs
of MFCCs) are typically similar to the ones employed in Speaker /fingerprint
recognition systems. We will show in the remaining of this paper that hubs
occur for many different algorithms but that the hubness of a given song is
algorithmic-dependent.

2 Definition and Measures

This section gives a detailed description of the phenomenon of hubs, as well as
the algorithms for which these were observed. Notably, we describe 2 metrics
we designed to quantify the “hubness” of a song, which will be used in the
experiments in the remaining of the paper.

2.1 Algorithms, databases and groundtruth

We sum up here the timbre similarity algorithm presented in (6). The signal
is first cut into frames. For each frame, we estimate the spectral envelope by
computing a set of Mel Frequency Cepstrum Coefficients (MFCCs). We then
model the distribution of the MFCCs over all frames using a Gaussian Mixture
Model (GMM). A GMM estimates a probability density as the weighted sum
of M simpler Gaussian densities, called components or states of the mixture:

m=

p(xe) = Z TN (%t fm, Ym) (1)

m=1

where z; is the feature vector observed at time ¢, N is a Gaussian pdf with
mean fi,,, covariance matrix %,,, and m,, is a mixture coefficient (also called
component prior probability). The parameters of the GMM are learned with
the classic E-M algorithm ((3)).

We then compare the GMM models to match different signals, which gives a
similarity measure based on the audio content of the items being compared.
We use a Monte Carlo approximation of the Kullback-Leibler (KL) distance
between each duple of models A and B. The KL-distance between 2 GMM



probability distributions p4 and pp (as defined in Equ.1) is defined by :

_ pa(x)
A(A, B) = [ pa(@)log MO (2)

The KL distance can thus be approximated by the empirical mean :

(A =" illog b E; (3)

(where n is the number of samples z; drawn according to p4) by virtue of the
central limit theorem.

In this study, we will consider several variations on the above algorithm, in-
spired by the study in (6). These variations were chosen to be representative
of several typical modelling strategies in pattern recognition (as classified e.g.
in (3)), namely:

Static parametric model: 20 MFCCs (incl. 0" coefficient), 50-component
GMM, compared with n = 2000 Monte-Carlo draws.

Static non-parametric model: 20 MFCCs (incl. 0" coefficient), vector-quantized
to 200 codebook vectors using LVQ (10), modelled by histograms compared
by euclidean distance.

Static parametric modelling of first-order dynamics: 20 MFCCs (incl. 0%
coefficient), appended with 20 delta coefficients (11), 50-component GMM,
compared by Monte Carlo.

Static parametric modelling of second-order dynamics: 20 MFCCs (incl. 0**
coefficient), appended with 20 first-order delta coefficients and 20 second-
order acceleration coefficients, 50-component GMM, compared by Monte
Carlo.

Dynamic modelling with parametric model: 20 MFCCs (incl. 0 coefficient),
modelled with 12-state HMM (12), using 4 Gaussian components per state,
compared by Monte Carlo.

In all of the above, the specific algorithm settings such as number of GMM
components correspond to optimally-performing values found in previous re-
search (6).

This study uses two music databases:

a large set of 15,460 popular music titles, assembled for the purpose of the
Cuidado European IST project (13) (referred to as the “Cuidado database”).
a subset of this database, containing 350 titles, used for the evaluation study
in (6). It is organized in 37 clusters of songs by the same artist, encompassing
very different genres and instrumentations (from Beethoven piano sonata to



The Clash punk rock and Musette-style accordion). In the following, we
refer to this database as the “test database”.

When relevant, we will measure the precision of the above algorithms on the
test database by computing their R-precision. It measures the ratio of the
number of relevant documents to the number of retrieved documents, when
all relevant document have been retrieved (i.e. precision at recall = 1). The
set of relevant documents for a given music title is the set of all titles of the
same artist cluster than the seed. This is identical to the methodology used
in (6). In this framework, we call a “false positive” to a seed song S a song T'
which is found in the nearest neighbors of S, but not in the cluster of S.

In the following, we will argue that hub songs are close to many songs (accord-
ing to the algorithmic measure) to which they have “no perceptual similarity”.
This is judged on the basis of the groundtruth described above, and not on any
psychological evaluation using actual human similarity ratings. Note however
that recent research (14) has found that typical human ratings are indeed in
accordance with groundtruths that are similar to the one used here. More-
over, the fact that certain hubs are found close algorithmic matches to more
than a fourth of the very heterogeneous Cuidado database (as seen in Sec-
tion 3) strongly indicates that similarity measures involving hubs have little
perceptual grounding if any.

2.2 Definition of a hub

In this paper, we call hub a song which occurs frequently as a false positive
according to a given similarity measure. This both implies that

(1) a hub appears in the nearest neighbors of many songs in the database
(2) most of these occurrences do not correspond to any meaningful perceptual
similarity.

Each condition in itself is not sufficient to characterize a hub:

(1) A given song may occur very many times in the nearest neighbors of other
songs, but this may not be a false positive (as defined by the evaluation
procedure described above). Depending on the composition of a given
databases, some songs may well approximate the perceptual center-of-
mass of the database. For instance, it may be found that A Hard Day’s
Night by The Beatles is a song that bears close timbre similarity to most
of 60’s pop music, and therefore could be found to occur very frequently as
a nearest neighbor to many songs in a database composed by a majority
of Rock and Pop songs. However, in a classical music database, the same
song would not be such a common neighbor.



(2) A given song may be a false positive for a given seed song, i.e. be in
the first nearest neighbors of the seed without any actual perceptual
similarity. However, different songs may have different false positives.
For instance, a given Beethoven piano sonata may be mismatched to an
acoustic guitar piece, but not necessarily mismatched to other songs. A
hub is a piece than is irrelevantly close to very many songs, i.e. a bug
which is not local to only a few queries.

2.8 Measures of hubness

We propose here 2 measures to quantify the “hubness” of a given song.

2.3.1 Number of occurrences

A natural measure of the hubness of a given song is the number of times
the song occurs in the first n nearest neighbors of all the other songs in
the database. As discussed in appendix A, the measure of the number of
n-occurrences N, of a song has the property that the sum of the values for all
songs is constant given a database.

Table 1 shows the ten songs in the test database having the largest number
of occurrences in the first 10 nearest neighbors over all queries (Nyo). This
illustrates the predominance of a few songs that occur very frequently. For in-
stance, the first song, MITCHELL, Joni - Don Juan’s Reckless Daughter
is very close to 1 song out of 6 in the database (57 out of 350), which is
more than 6 times more than the theoretical mean value (10). Among these
occurrences, many are likely to be false positives.

2.3.2  Neighbor angle

An operational definition of a hub is that it is a song H which is found to be
“close” (though not perceptually) to duplets of songs A and B which them-
selves are (perceptually) distant from one another. Therefore, the hubness of
song H can be estimated by comparing its distances to its neighbors d(H, A)
and d(H, B) on the one hand, and the distance between the neighbors d(A, B)
on the other hand. Equivalently, one can measure the angle 85 formed by the
segments [H, A] and [H, B

d(A, B)? — d(H, A)? — d(H, B)? A
2d(H, A)d(H, B) )

cosfy =



Table 1
10 Most Frequent False Positives

Song Nyg

MITCHELL, Joni - Don Juan’s Reckless Daughter 57
MOORE, Gary - Separate Ways 35

RASTA BIGOUD - Tchatche est bonne 30
BRIDGEWATER, DD - What Is This Thing Called Love | 30
PUBLIC ENEMY - Cold Lampin With Flavor 27
MOORE, Gary - Cold Day In Hell 27

MARDI GRAS BIG BAND - Funkin’Up Your Mardi Gras | 25
GILBERTO, Joao - Tin tin por tin tin 25
MITCHELL, Joni - Talk To Me 22

CABREL, Francis - La cabane du pécheur 22

Linear scale plot of the distribution of songs by nb of occurrences Binned distribution of nb of occurrences to songs

2000 4 10° L
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Fig. 1. Distribution of the songs according to their number of 100-occurrences in
the Cuidado 15,460-song database, with a GMM-based distance. Left: using a linear
scale. Right: using a log-log scale. In this second scale, the distribution is approxi-

mately linear, which indicates a power-law.

This is computed for a given song H by drawing a large number of successive
duplets of neighbors (A, B) (such that A # B # H), and computing the mean
value of 0. We use 1000 successive random draws.

An important property of the neighbor-angle value is that, like the number
of n-occurrences N,, of a song, the sum of the values for all songs is constant
given a database size. (see Appendix A for more details).



3 Hubs form a scale-free distribution

Figure 1-left shows the distribution of songs in the Cuidado database (15,460
titles) according to their number of 100-occurrences for the optimal GMM-
based distance. One can observe that while most songs only have around
a few hundred occurrences (more than 6,000 songs have between 150 and
160 occurrences), a few songs get upward of 2000 occurrences. This latter
songs can reasonably be described as hubs. Moreover, hubness appears to be
a continuous variable (with a continuum of intermediate values), rather than
a discrete boolean property.

Table 2 shows the 5 biggest hubs in the Cuidado database ranked by their
number of 100-occurrences for the baseline GMM-distance. The first song,
from French alternative rock band Noir Désir, is a close neighbor to more than
a fourth of the database. The fifth biggest hub, a folk song by Joni Mitchell
was the biggest hub of the much smaller test database, as seen previously in
Table 1.

Table 2
5 Most Frequent False Positives in the Cuidado database

Song Nioo

NOIR DESIR - En Route Pour la Joie 4090
VANNELI, GINO - Stay With Me 3552
OSWALD, JOHN - Explo 3533

ABC - When Smokey Sings 3256
MITCHELL, Joni - Don Juan’s Reckless Daughter | 3255

Figure 1-right shows the same plot than Figure 1-left, but on a log-log scale the
same distribution shows itself to be linear. This is the characteristic signature
of a power-law distribution P[X = z| = 277. The nearly linear relationship
extends over 4 decades ([1 — 10%]) songs, which is why such distributions have
been called “scale-free”, or lacking a “characteristic length scale”.

Many man-made and naturally occurring phenomena, including city sizes,
word frequencies, number of links to a web page, are distributed according
to a power-law distribution (15; 16). Similarly, scale-free distributions have
been observed in musical data, notably in networks of artists that co-occur in
playlists from specialized websites (17).

For all these reasons, the scale-free distribution of networks of timbrally simi-
lar songs is a remarkable, but not utterly surprising phenomenon. If all timbre
distances were perceptually relevant (“no bugs”), then it would an acceptable
conclusion that some songs be more “prototypical” than others, thus translat-



ing the distribution of musical and social influences and communities inherent
to possibly every human activity. However, as already noted, what we observe
here is a distribution of algorithmic bugs rather than the self-organization of
an ideal music space: The most connected songs (extreme hub songs that are
close matches to more than a fourth of a given database) typically appear
as the nearest neighbors of songs to which they do not bear any perceptual
similarity. It is yet unclear whether the scale-free distribution that we observe
here is

e the result of a scale-free organisation of an ideal perceptual distance mea-
sure, which is being polluted by measurement errors

e the result of a non remarkable ideal distribution, polluted by a scale-free
distribution of false-positives

e or both

The influence of measurement errors on scale-free distributions could be stud-
ied e.g. in the light of recent results on the robustness of experimental topo-
logical analysis of protein interaction networks (18).

4 Hubs are a consequence of the agglomerative modelling of the
features, not of the features themselves

4.1 Hypothesis

In this section, we investigate whether hubs are a consequence of poor featural
representation of the frames of audio data. We test the hypothesis that hubs
exist on full songs, because hubs also exist on individual MFCC frames, i.e.
that there are specific segments of audio data which are close non-perceptive
matches to every other possible frames.

4.2 Ezperiment

We build a database of individual 2048-point hamming-windowed frames of
audio data, obtained from the uniform segmentation of a few different songs.
The database is made to contain 15,460 frames, so results can be quantita-
tively compared to the full-song behaviour in the Cuidado database. Each
frame is modelled by 20 MFCCs (incl. 0'h order coefficient), which is the fea-
ture space used in the best performing full-song measure. A distance measure is
implemented using euclidean distance, each dimension being normalized to be
between 0 and 1, using the 5% and 95% percentile values. This distance mea-

10



Distribution of number of 100-occurrence of individual MFCC frames in a 15,000 frame database, using normalized euclidean dista
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Fig. 2. Distribution of the MFCC frames according to their number of 100-occur-
rences in a 15,460-frame database, based on normalized euclidean distance.

sure was chosen to yield a behaviour similar to MFCCs comparison in GMM
probability estimation (euclidean comparison with mean vector, rescaled by
variance coefficients in each dimension). We compute the 100 nearest neigh-
bors of each frame in the database, store them, and compute the number of
100-occurrence of each frame in the database.

4.8  Results

Figure 2 shows the distribution of the MFCC frames according to their num-
ber of 100-occurrences. The distribution is exponentially decreasing, with a
maximum Njgo value around 500. Such small numbers do not indicate the
presence of hubs, which is confirmed by manual inspection of the neighbors
of the most re-occurring frames. These frames typically correspond to sounds
that are common to many different songs, such as noise or silence, and thus
have more neighbors than more specific frames (harmonic sounds) that tend
to be close to frames of the same song only. The maximum Njoy value of 500
is more than 8 times smaller than the maximum value obtained for full songs
in the Cuidado database. This indicates that the hub phenomenon is not a
direct consequence of poor featural representation, but rather an effect of the
modelling of the agglomeration of the very many frames in full songs.
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5 Hubs appear for all algorithms

5.1 Hypothesis

In this section, we investigate whether hubs are a consequence of a specific
algorithmic strategy for modelling the agglomeration of frames in full songs.
We test the hypothesis that hubs appear only (or in majority) for a given
algorithm.

5.2 Experiment

We compare several measures of hubness on our test database for the 5 algo-
rithms described in section 2.1, chosen to be representative of the principal
modelling strategies (GMM, Delta, Acceleration, HMM, Histograms).

5.8 Results

Figure 3 shows the distribution of the number of 100-occurrences of songs
in the test database, for the 5 algorithmic variants. Since the number of oc-
currences is a constant-sum measure (see Appendix A), all 5 distributions
are centered on the same mean value of 100. However, it appears that the
choice of the algorithm has an influence on the shape of the distribution of oc-
currences. While all algorithms produce extreme hubs having high number of
occurrences (e.g. Nigp > 300), hubs tend to be smaller for the GMM-based dis-
tance than for both the dynamic-based and the histogram-based ones. Due to
the constant-sum effect, algorithms that produce more high-occurrence songs
also produce more low-occurrence songs. This results in a skewed distribution
(where very many low-occurrence songs compensate a few high-occurrence
songs) in the case of the dynamic-based distances, and a bi-modal distribu-
tion for the histogram-based distance, for which very few songs actually take
the mean occurrence value.

This behaviour is confirmed by Table 3, which shows the number of songs in
the test database that exhibit high values for both number of 100-occurrences
and number of 20-occurrences. The 5 similarity measures exhibit different pro-
portions of hubs: GMM-based distances produce the fewest, while Histogram-
based distance produce 5 times as many. The proportion of hubs produced by
each algorithm is in agreement with the precision reported in previous research
(6): GMM-based distances perform better than (or equivalent to) dynamics,
which perform better than histograms.
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Histogram of 100occurrences  Histogram of 100occurrences  Histogram of 100occurrences
for GMM-based distance for HMM-based distance for Delta-based distance
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Fig. 3. Distribution of the Number of 100-occurrences of songs in the test database
for several distance algorithms.

Nevertheless, it is difficult to conclude that hubs are a specific property of a
given algorithmic strategy to model the MFCC frames. All algorithms create
hubs. Moreover, static modelling create more hubs than dynamics in the case of
Histograms and HMMs, but not in the case of GMM and HMMs. If anything,
it seems that non-parametric (Histograms) create more hubs that paramet-
rics approaches (GMMs, HMMs). This notably rules out possible convergence
problems of parametric estimation (local minima) as a source of bugs.

Table 3
Comparison of number of songs exhibiting high number of occurrences in the test
database, for several distance algorithms

Measure GMM | HMM | Delta | Acceleration | Histogram
Nigo > 200 16 48 49 45 69
Nag > 40 34 41 39 39 42
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6 Hubness is not intrinsic to songs

6.1 Hypothesis

In this section, we investigate whether hubs are an intrinsic property of given
songs, which will act as hubs independantly of the algorithm used to model
them. We test the hypothesis that hub songs are strongly correlated between
different algorithmic measures.

6.2 FEzxperiment

We compute the correlation between hubness measures for songs modelled
with the same five algorithms as above, using the test database.

6.3 Results

Table 4 reports the correlation of the hubness of all songs between various
algorithmic models, using 2 measures of hubness (number of 100-occurrences
and the neighbor angle).

Table 4

Correlation of the hubness of all songs between various algorithmic models. The
hubness of songs is measured both by the number of 100-occurrences and the neigh-
bor angle (the latter in parenthesis).

GMM HMM Delta Acceleration | Histogram
GMM 1.0 | 0.78 (0.67) | 0.79 (0.69) | 0.79 (0.71) | 0.42 (0.17)
HMM - 1.0 0.95 (0.96) | 0.90 (0.96) | 0.47 (0.17)
Delta - - 1.0 0.97 (0.99) | 0.46 (0.15)
Acceleration - - - 1.0 0.43 (0.14)
Histogram - - - - 1.0

Both measures reveal the same structure:

e Hubs appearing with GMMs are moderately correlated to HMMs, Delta
and Acceleration.

e Hubs appearing with HMMs, Delta and Acceleration are very strongly cor-
related.

e Hubs appearing with Histograms are strongly decorrelated to those appear-
ing with the other algorithms.

14



In more details, Tables 5 and 6 compare the most frequent hubs for 2 GMM and
Histogram-based distances, here measured with their number of 20-occurrences.
It appears that some songs act as hubs for both measures, e.g. MITCHELL,

Joni - Dom Juan’s Reckless Daughter. However, a vast majority of the
hubs are different. Notably, certain songs are important hubs for one measure
and perfectly standard songs for the other. For instance, SUGAR RAY - Fly is
a hub for the GMM-based distance, but not for the one based on Histograms.

Similarly, CABREL, Francis - Samedi soir sur la Terre is only a hub for
the histogram distance.

Table 5
Most Frequent False Positives for parametric approach with GMMs
Hubs with {MFCC,GMM } Ny (card(Cys))
MITCHELL, Joni - Don Juan’s Reckless Daughter 98(9)
BRIDGEWATER, DD - What A Little Moonlight Can do 79(12)
RASTA BIGOUD - Tchatche est bonne 79(7)
MOORE, Gary - Separate Ways 77(9)
SUGAR RAY - Fly 75(13)
CABREL, Francis - Samedi soir sur la Terre 29 (7)
Table 6
Most Frequent False Positives for non parametric approach with Histograms.
Hubs with {VQ,CM} Ny (card(Cs))
VOCAL SAMPLING - Radio Reloj 153 (13)
MOORE, Gary - The Hurt inside 126 (9)
CABREL, Francis - Samedi soir su la Terre 122 (7)
CABREL, Francis - Corrida 105
MITCHELL, Joni - Dom Juan’s Reckless Daughter 95 (9)
SUGAR RAY - Fly 23(13)

Therefore, we can conclude that:

e The hubness of a given song is not an intrinsic property of the song, but
rather a property of a given algorithm.

e Dynamics, both via static modelling of dynamical features (delta, accelera-
tion) or via dynamic modelling (HMMs) seems to have an influence of the
songs that act as hubs. All three algorithms tend to create the same hubs.

e Parametric modelling tend to create very distinct hubs from non-parametric
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modelling, so the dynamical/static aspect is not the only involved factor in
the appearance of hubs

7 Hubs do not appear for any dataset

7.1 Hypothesis

Section 6 establishes that hubness is not an intrinsic property of a given song,
but rather is dependent on the modelling algorithm. In this section, we in-
vestigate whether hubs are a structural property of pattern recognition-based
similarity measures, and that they can be observed in any dataset. This is a rel-
evant question knowing as remarked earlier that hubs have been observerved
in this study on timbre similarity, but also in the domain of Speaker and
Fingerprint identification.

7.2 Experiment

We apply the same modelling technique (GMMs of MFCCs) to compute the
perceptual similarity of another class of audio signals, namely ecological sound
textures. We gathered a database of 106 3-minute urban sound ambiances,
recorded in Paris using a omni-directional microphone 2. The recordings are
clustered in 4 “general classes” (Boulevard, Neighborhood Street, Street Mar-
ket, Park) and 11 “detailed classes”, which correspond to the place and date of
recording of a given environment. For instance, “Parc Montsouris, Paris 14¢e”
is a subclass of the general “Park” class.

Each audio recording is modelled with 50-ms frames, 20-MFCCs and 50-
component GMMs. Models are compared to one another with Monte-Carlo
distance using 2000 samples.

7.8 Results

Figure 4 shows the histogram of the number of 20-occurrences obtained with
the above distance on the database of ecological sound ambiances, compared
with the same measure on the test database of polyphonic music. It appears
that the distribution of number of occurrences for ambiance sounds is more

2 This material was collected and kindly made available by Boris Defreville from
LASA.
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Fig. 4. Comparison of the histograms of number of 20-occurrences for the same
distance used on ecological sound ambiances and polyphonic music.

narrow around the mean value of 20, and has a smaller tail than the distribu-
tion for polyphonic music. Notably, there are four times as many audio items
with more than 40 20-occurrences in the music dataset than in the ambiance
dataset. This is also confirmed by the manual examination of the similarity
results for the ecological ambiances: none of the (few) false positives re-occur
significantly more than random. As we discuss elsewhere (19), this is also re-
vealed when analyzing the precision of the measures, which is significantly
better for soundscapes than music.

This indicates that hubs are not an intrinsic property of the class of algo-
rithm used here, but rather appear only for a certain classes of signals, among
whom polyphonic music, but not ecological sound ambiances. As we will see
now, the two classes of signals can notably be distinguished in terms of their
homogeneity.

8 Hubness can be localized to certain frames

8.1 Hypothesis

This section investigates whether the hubness of a given song is a emerging
global property of the distribution of its frames, or rather can be localised e.g.
to certain frames that are less discriminant then others.

We have already shown that MFCC frames intrinsically don’t exhibit hub
behaviours, i.e. one cannot find a specific frame of audio which is close to
any other frame, in an euclidean framework. However, this doesn’t make any
statement about the discriminative power of MFCC frames: it is well possible
that most MFCC frames be globally close to one another, which has notably
been observed in the domain of speech sounds in (20). It is therefore possible
to imagine that a large part of the distribution of MFCCs is composed of
non-discriminative frames, and that what is perceptually salient for a human
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listener may not be statistically predominant when comparing models of the
frame distribution.

8.2  Ezxperiment

We describe here an experiment to assess whether there exists such a small
portion of the frame distribution which is responsible in majority for the dis-
crimination between non-perceptually close songs. We propose to explore the
distribution of MFCC frames by ranking them by statistical importance. We
define a statistical homogeneity transform h;, : G +— G on the space G of all
GMNMs, where k € [0, 1] is a percentage value, as:

92 = hi(g1)
(c1,...,¢n) < sort(components(g;), decreasing w.)

define S(i) = 3% weight(c;)
i < argmine ,,) {S() > k}
g2 < newGMM(ig)
define d; =component(gy,i)
di — ¢, Vi € [1,’ik]
weight (d;) «— weight(c;)/S(ix), Vi € [1, 1]
return go
end hy

From a GMM g trained on the total amount of frames of a given song, the
transform hy derives an homogenized version of g which only contains its top
k% components. Frames are all the more so likely to be generated by a given
gaussian component ¢ than the weight w,. of the component is high (w. is also
called prior probability of the component). Therefore, the homogenized GMM
accounts for only a subset of the original song’s frames: those that amount
to the k% most important statistical weight. For instance, hggy(g) creates a
GMM which doesn’t account for the 1% least representative frames in the
original song.

We apply 11 transforms hy for k € [20, 40, 60,80, 90, 92,94, 96, 98, 99, 100] to
the GMMs corresponding to the optimal measure described above. Each trans-
form is applied to 2 datasets, the test database containing polyphonic music
and the database of urban soundscapes used in Section 7. This yields 11 sim-
ilarity measures per dataset, the properties of which we study below.
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Influence of GMM-heterogeneity on the number of songs with more than 200 100-occurrences
45 T T T T T T

B
S

0
a
T

N
a
T

number of songs with more than 200 100-occurrences
w
S

N
]
T

15 . . . . . . .
20 30 40 50 60 70 80 90 100
Percentage of GMM-heterogeneity

Fig. 5. Influence of the percentage of statistical homogenization on the number of
songs with more than 200 100-occurrences

8.3 Influence on hubs

Figure 5 and 6 show the influence of the homogenization transform on the num-
ber of hubs in the database of polyphonic music. The database of soundscapes
is not used in this comparison, as we found in Section 7 that soundscapes did
not engender hubs. Hubness is measured in the case of Figure 5 by the number
of songs in the test database having a number of 100-occurrences greater than
200, and in the case of Figure 6, by the number of songs with a mean neighbor
angle greater than 65°.

Both metrics indicate that GMM homogenization critically increases the num-
ber of big hubs in the music database: homogenization with k& = 30% creates
more than twice as many hubs with more than 200 occurrences, and more
than 5 times as many hubs with angles greater than 65°. It seems reason-
able to interpret the increase of hubness when k decreases as a consequence
of reducing the amount of discriminative information in the GMMs (i.e. from
representing a given song, down to a more global style of music, down to the
even simpler fact that it is music).

However, the increase in hubness is not monotonic. Both figures clearly show
a very important increase in the number of hubs in the first few percent
of homogenization. The extreme number of hubs obtained with & = 30%
is reached as early as k = 92% in the case of the occurrence metric and
k = 96% in the case of the mean angle metric. This is a strong observation:
the hubness (or rather non-hubness) of a song seems to be controlled by an
extremelly small amount of critical frames, which represent typically less than
5% of whole distribution. Moreover, these frames are the least statistically
significant ones, i.e. are modelled by the least important gaussian components
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Influence of GMM heterogeneity on number of songs with high neighbor angle
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Fig. 6. Influence of the percentage of the homogenization on the number of songs
with a mean neighbor angle greater than 65°

in the GMMs. This indicates that the majority (more than 90%) of the MFCC
frames of a given song are a poor representation of what discriminates this
song from other songs.

Moreover, Figure 6 shows that after the extremely rapid peak of hubs when
removing the first 5% frames, the number of hub songs tend to decrease when
k decreases from 90% to 60%, and then increases again for k smaller than
60%. The minimum value reached at k& = 60% is equivalent to the original
value at k = 100%. A similar decreasing behaviour is observable to a smaller
extent with the other metric in Figure 5 (with a local minimum at k = 80%),
although it is difficult to establish that this is a statistically significant trend.

The behaviour in Figure 6 suggests that there is a population of frames in the
range [60%),95%)] which is mainly responsible for the hub behaviour. While
the hubness of songs diminishes as more frames are included when k increases
from 20% to 60% (such frames are increasingly specific to the song being
modelled), it suddenly increases when k gets higher than 60%, i.e. this new
30% information is detrimental for the modelling and tend to diminish the
discrimination between songs. The continuous degradation from 60% to 95%
is only eventually compensated by the inclusion of the final 5% critical frames.

8.4 Influence on precision

Figure 7 shows the influence of homogenization on the precision of the resulting
similarity measure, for both datasets. The precision for urban soundscapes is
measured with the 10-precision using the detailed classes as ground truth, and
with the R-precision for polyphonic music. For both dataset the precision is
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Influence of statistical homogenization on the precision of the similarity of
urban soundscapes and polyphonic music
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Fig. 7. Comparison of the influence of the homogeneity transform on the precision

of the similarity measure for soundscape and music signals.

measured by reference to the baseline precision corresponding to k& = 100%,
which is different for environmental and music, as we discuss in (19).

For polyphonic music, the figure closely mimics the (inverse) behaviour seen in
Figure 6, with precision plummeting when k decreases from 100% to 92%, and
then reaching a local maximum again between 60% and 80%. This gives further
support to the observation that not all frames are equally discriminative, and
that there exists a population of frames in the range [60%,95%)| which is
detrimental to the modelling of perceptual similarity.

We notice a very different behaviour in the case of urban soundscape signals.
It appears that 99% homogenization is slightly beneficial to the precision.
This suggests that the 1% less significant frames are spurious frames which
are worth smoothing out. Further homogenization down to 60% has a mod-
erate impact on the precision, which is reduced by about 1% (absolute). This
suggests that the frame distribution is very homogeneous, and doesn’t exhibit
critical populations of frames which are either extremely discriminative (such
as the [95%, 100%)] region for polyphonic music), or non-discriminative (such
as the [60%, 95%] region for polyphonic music). Ecological ambiances can be
discriminated nearly optimally by considering only the most significant 50%
of the frames.

The greater heterogeneity of polyphonic music data for pattern recognition
purposes may explain the appearance of hubs, and their non-existence for
other, more homogeneous classes of signals. It would be worth investigating
the feature-homogeneity of other hub-prone classes of signals, such as speaker
data or fingerprints, to give further support to this hypothesis.

Note that a possible further experiment to validate the existence of a critical
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region in [60%, 95%] would be to study the properties of models built using
only these frames on the one hand, and models using all frames except these
ones on the other hand. Models of the latter type would be expected to not
generate as many hubs as the standard type. This will form the basis of future
work.

9 Conclusion

This study shows that the class of algorithms predominently used to extract
high-level music descriptions from music signals tends to create false positives
which are mostly always the same songs regardless of the query. In other words,
there exist songs, which we call hubs, which are irrelevantly close to all other
songs.

We studied the nature and properties of such hub songs in a series of experi-
ments, and established that:

e hubs are distributed according to a scale-free distribution.

e hubs are not a consequence of poor feature representation of each individual
frame, but rather an effect of the modelling of the agglomeration of the many
frames of a sound texture.

e hubs are not a property of a given modelling strategy (i.e. static vs dynamic,
parametric vs non-parametric, etc.) but rather tend to occur with any type
of model.

e hubs are not an intrinsic property of certain songs, but that different algo-
rithms distribute the hubs differently on the whole database.

e hubs are not a property of the class of algorithms studied here which appears
regardless of the data being modelled, but only for data with a given amount
of heterogeneity, e.g. for polyphonic music, but not for ecological sound
ambiances.

e the hubness of a given song is not an emerging global property of the dis-
tribution of its frames, but rather can be localised to certain parts of the
distribution, notably a population of non-discriminative frames correspond-
ing to the [60%, 95%] region of statistical weight.

This phenomenon of hubs is reminiscent of other isolated reports in differ-
ent domains, such as Speaker Recognition or Fingerprint Identification, which
intriguingly also typically rely on the same features and pattern-recognition
algorithms. This suggests that this could be an important phenomenon which
generalizes over the specific problem of timbre similarity, and indicates a gen-
eral structural property of the class of algorithms examined here, for a class of
signals which is probably defined by the heterogeneity of their feature distri-
bution. This of course would require further investigation, for which this study
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provides a methodological basis, notably by introducing metrics to quantify
hubness. Therefore, this paper can be thought as a “witness call” to the com-
munity to identify similar effects in different application contexts.

The phenomenon of hubs, and notably the evidence of its important sensibil-
ity to certain critical frames, illustrates one deep discrepancy between human
perception of timbre and all its computation models. Namely, that all frames
are not of equal importance, and that these weights does not merely result of
their long-term frequencies(i.e. the corresponding component’s prior probabil-
ity 7). Some timbres (i.e. here sets of frames) are more salient than others:
for instance, the first thing than one may notice while listening to a given
singer’s music is his/her particular timbre of voice, independently of the in-
strumental background (guitar, synthesizer, etc...). This saliency may depend
on the context or the knowledge of the listener and is obviously involved in
the assessment of similarity. These experiments open the way for more careful
investigations of the perceptive paradoxes proper to polyphonic music timbre,
in which listeners “hear” things that are not statistically significant in the ac-
tual signal, and that the low-level models of timbre similarity studied in this
work are intrinsically incapable of capturing.
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A Appendix: Some properties of hubness measures

A.1 mn-occurrence is constant-sum

An important property of the number of n-occurrences NN, of a song is that
the sum of the values for all songs is constant given a database. A query for
n neighbors only gives the opportunity for n occurrences to the set of all the
other songs, such that the total number of n-occurrences in a given N-size
database is n * N. Therefore, the mean n-occurrence of a song is equal to n,
independantly of the database and the distance measure.
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A.2  Neighbor-angle is constant-sum

An important property of the neighbor-angle value is that, like the number of
n-occurrences N,, of a song, the sum of the values for all songs is constant given
a database size. This directly derives from the fact that the angles of a triangle
sum to 27 radians (in a euclidean geometry - which is only approximated here
in the general case). Given a set of A/ points, the number of angles whose
vertex is a given point X, and are formed by the lines from X to the N’ — 1
other points, is equal to the number of combinations of 2 points within N —1,
i.e. C%,_,. There are N possible vertices X for such angles, thus there are a
total of NC%_, = M angles formed between the N points. It is easy
to see that n(n — 1)(n — 2) is divisible by 3 Vn. Hence, these angles can be
clustered by triplets, so that their supporting lines form a triangle, and thus
sum to 2. Therefore, the sum of all angles formed between N points equals

2 2
?WNCN—l-

A.8 Neighbor-angle is distance-dependant

The neighbor angle is dependant on the discrimination capacity of the dis-
tance, i.e. the typical distance ratio between what can be considered a close
distance, and what can be considered a large distance. Therefore it can’t be
used to compare different algorithms, but to compare the hubness of different
songs within the same distance measure.

A.4  Correlation between measures

Further studies show that there is a nearly logarithmic dependency between
the number of occurrences of a given song and its mean neighbor angle. This
logarithmic behaviour is observed independently of the modelling algorithm
(GMMs, HMMs, histograms, etc.). In all cases, it appears that hub songs tend
to be associated to higher values of neighbor angle. However, the logarithmic
dependency makes it difficult to distinguish songs with number of occurrences
in the range 100-200 using their value of neighbor angle. Therefore, in this
paper, the former measure is preferred when comparing different settings in
the same database.
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