

Automatic Robust Classification of Speech Using

Analytical Feature Techniques

Gonçal Calvo i Pérez

Sony CSL Paris Technical Report 2009-1

 IRCAM - Université Pierre et Marie Curie – Paris 6

Internship Report

Automatic Robust Classification of Speech Using Analytical

Feature Techniques

Gonçal Calvo i Pérez

Supervisor: François Pachet

Sony CSL Paris

6, rue Amyot

75005 Paris

Master de Sciences et Technologies de l’UPMC spécialité : Mécanique et

Ingénierie des Systèmes. Parcours : ATIAM

Course 2007-2008

i

Abstract

This document reports the research done in the domain of automatic classification of speech
within a Master’s degree internship in the Sony CSL laboratory. The work explores the potential
of the EDS system, developed at Sony CSL, to solve speech recognition problems of a small
number of isolated words, independently of the speaker, and with the presence of background
noise. EDS automatically builds features for audio classification problems. This is done by
means of (functional) composition of mathematical and signal processing operators. These
features are called analytical features and are built by the system specifically for each audio
classification problem, given under the form of a train and a test database.

In order to adapt EDS to speech classification, since features are generated through
functional composition of basic operators, a research on specific operators for speech
classification problems has been done, and new operators have been implemented and added to
EDS. To test the performance of our approach to the problem, a speech database has been
created, and experiments before and after adding the new specific operators have been carried
out. An SVM classifier using EDS analytical features has then been compared to a standard
HMM-based speech recognizer.

The results of the experiments indicate, on the one hand, that the new operators have
shown to be useful to improve the speech classification performance. On the other hand, they
show that EDS performs correctly in a speaker-dependent context, while further
experimentation has to be done to draw conclusions in a speaker-independent situation.

iii

Résumé

Ce document est un rapport sur la recherche réalisée dans le domaine de la classification
automatique de la parole dans le contexte d’un stage de Master au sein du laboratoire Sony CSL.
Le travail explore les possibilités du système EDS de Sony CSL pour résoudre des problèmes de
reconnaissances d’un petit nombre de mots isolés, indépendamment du locuteur et en présence
de bruit de fond. EDS construit des features automatiquement pour des problèmes de
classification audio. Ceci est fait par composition (fonctionnelle) d’opérateurs mathématiques et
de traitement du signal. Ces features sont appelées features analytiques et sont construites par le
système spécifiquement pour chaque problème de classification audio, donné sous la forme
d’une base de train et de test.

 Pour adapter EDS à la classification de la parole, comme les features sont engendrées par
composition fonctionnelle d’opérateurs de base, une recherche a été faite pour trouver des
opérateurs spécifiques aux problèmes de la classification de voix, et de nouveaux opérateurs ont
été implémentés et ajoutés à EDS. Pour pouvoir tester la performance de notre approche au
problème, une base de données de voix a été créée, et des expériences avant et après avoir ajouté
les nouveaux opérateurs spécifiques ont été réalisées. Un classifieur SVM construit avec des
features analytiques a été ensuite comparé avec un système de reconnaissance vocale standard basé
sur HMMs.

 Les résultats des expériences indiquent, d’une part, que les nouveaux opérateurs sont
montrés utiles pour améliorer les résultats de classification vocale. D’autre part, ils montrent que
l’approche d’EDS est performante dans le contexte speaker-dépendant, tandis qu’il faut effectuer
encore plus d’expérimentations pour tirer de conclusions concernant les situations speaker-
indépendantes.

v

Contents

List of Figures and Tables ... vii

Abbreviations ... viii

1 Introduction .. 1

1.1 Background .. 1

1.2 State of the Art in Speech Classification .. 2

1.2.1 Speech Feature Extraction ... 3

1.2.2 State-of-the-art Systems for Similar Problems .. 4

1.3 The Extractor Discovery System (EDS) ... 5

1.3.1 General Overview ... 5

1.3.2 Data Types and Patterns .. 6

1.3.3 Genetic Search ... 7

1.3.3.1 Genetic Operations ... 7

1.3.3.2 Feature and Feature Set Evaluation .. 8

1.3.4 Feature Selection ... 11

1.3.5 Descriptor Creation and Evaluation ... 11

1.4 Working Plan ... 12

1.5 Thesis Structure ... 13

2 Adapting EDS to Speech Classification .. 15

2.1 Classical Features for Speech Classification Problems ... 15

2.2 New Operators for EDS ... 19

2.3 Limitations of EDS ... 29

3 Experimental Work .. 31

3.1 The Databases .. 31

3.1.1 The Training Database .. 31

3.1.2 The Test Databases .. 32

vi

3.2 Pattern Sets .. 32

3.3 The First Experiment .. 34

3.4 The Endpoint Detector .. 35

3.5 The Experiments.. 36

3.5.1 Experiment with the Old Operators ... 37

3.5.2 Experiment with the Old and New Operators ... 38

3.5.3 Experiment with the Old and New Operators and up to 35 Features 39

3.5.4 Experiment with an MFCC-like Feature ... 41

4 Discussion and Conclusions ... 43

4.1 Results Discussion ... 43

4.2 Comparison with a Standard Speech Classifier ... 44

4.3 Conclusions .. 46

4.4 Future Work ... 46

Acknowledgements ... 49

Bibliography .. 51

Appendices ... 57

Appendix I – List of the EDS Operators .. 57

Appendix II – Results of the First Experiment .. 59

Appendix III – Matlab® Code of the Endpoint Detector .. 62

Appendix IV – Results of the Experiment with the Old Operators .. 68

Appendix V – Results of the Experiment with the Old and New Operators 71

Appendix VI – Results of the Experiment with the Old and New Operators and up to 35

Features .. 74

Appendix VII – Results of the Experiment with an MFCC-like Feature 77

vii

List of Figures and Tables

Figure 1.1: A screenshot of EDS. Loading a database ... 6

Figure 1.2: A screenshot of EDS. A genetic search .. 10

Figure 1.3: A screenshot of EDS. The feature selector .. 11

Figure 1.4: A screenshot of Weka. Summary of the test results of a classifier 12

Figure 2.1: CRRM gives higher values for voiced speech than for unvoiced speech 16

Figure 2.2: Waveforms of a signal before and after the application of AddWhiteNoise 24

Figure 3.1: The endpoint detector applied to an utterance of the word white............................... 35

Figure 3.2: The endpoint detector applied to an utterance of the word black 36

Figure 3.3: The endpoint detector applied to an utterance of the word blue 36

Figure 3.4: Evolution of the classification rates with the increase of the number of features used

in an SVM classifier, for each test set .. 40

Figure 4.1: Topology of the HMMs ... 45

Table 4.1: Summary of all the main results ... 43

Table 4.2: Classification rate of the HMM-based speech recogniser built with HTK and

comparison with the results of the analytical feature + SVM technique 45

viii

Abbreviations

ASR Automatic Speech Recognition
AWGN Addtive White Gaussian Noise
CMN Cepstral Mean Normalization
DWCH Daubechies Wavelet Coefficient Histogram
EDS Extractor Discovery System
FFT Fast Fourier Transform
HMM Hidden Markov Models
HTK Hidden Markov Model Toolkit
IFFT Inverse FFT
LPC Linear Predictive Coding
MFCC Mel-frequency cepstral coefficients
RMS Root Mean Square
SMO Sequential Minimal Optimization
SNR Signal-to-Noise Ratio
SVM Support Vector Machine
ZCR Zero-Crossing Rate

1

Chapter 1

Introduction

1.1 Background

For its expansive possibilities and direct applications, Automatic Speech Recognition (ASR) has
become an attractive domain of study in the area of information and communication technology
for the last five decades. The challenge of building a machine capable to dialog with humans
using natural language was in the mind of scientists for centuries, but it was not till the second
half of the 20th century that technological advances made possible significant steps in that
direction (Juang and Rabiner 2005).

 On the other hand, the increasing amount of information that generates today’s society
has triggered off the need to create intelligent systems to automatically search, select and classify
information. This interest has led to many developments in the data mining, information
retrieval and pattern recognition domains. A key step to the success of classification problems is
feature extraction. Features are the individual measurable heuristic properties of the phenomena
being observed and, traditionally, construction and selection of good features has been made by
hand.

 In the intersection of these two fields starts the idea of this work. Sony CSL is developing
for some years the EDS (Extractor Discovery System), an original system for the automatic
extraction of high-level audio descriptors, based on the idea of analytical feature (Zils and Pachet
2004; Pachet and Roy 2004). Conversely to the classical approach, these features, used for
supervised classification, are invented by the system and are conceived for being particularly
adapted to a specific problem, given under the form of a train and a test database. This approach
has been shown promising for several examples of audio classification (Cabral et al. 2007) like
urban sounds (Defréville et al. 2006), percussive sounds (Roy et al. 2007), or dog barks (Molnár
et al. 2008).

 The aim of this work is to study how this technique can be applied to another type of
sounds: short speech messages. The system should classify a small number of isolated messages,
in a speaker-independent way, i.e. be able to identify the words uttered by subjects other than the
ones the system was trained with. The system should be robust enough to work in non-ideal
conditions, including the presence of background noise or voices of subjects of different ages
and accents. Lastly, this speech classifier should work leaving aside sophisticated traditional
techniques which use Hidden Markov Models (HMM).

 Introduction

2

 The hypothesis to verify through this work is that this new approach can be well-adapted
to speech classification, but that new basic operators must be added to EDS to achieve good
performances.

1.2 State of the Art in Speech Classification

ASR technologies are present nowadays in infinity of applications used on a daily basis by
millions of users, from GPS terminals to call centres, from weather information telephonic
services to domestic speech-to-text software. Although automatic speech recognition and speech
understanding systems are far from perfect in terms of accuracy, properly developed applications
can still make good use of the existing technology to deliver real value to the costumer. Which
are the state-of-the-art tools that make that possible? This is the question that we will try to
answer in this section.

Juang and Rabiner (2005) revised the milestones in ASR research of the last four decades:

“In the 1960’s we were able to recognize small vocabularies (order of 10-100 words) of
isolated words, based on simple acoustic-phonetic properties of speech sounds. The key
technologies that were developed during this time frame were filter-bank analyses, simple time
normalization methods, and the beginnings of sophisticated dynamic programming
methodologies. In the 1970’s we were able to recognize medium vocabularies (order of 100-1000
words) using simple template-based, pattern recognition methods. The key technologies that
were developed during this period were the pattern recognition models, the introduction of LPC
methods for spectral representation, the pattern clustering methods for speaker-independent
recognizers, and the introduction of dynamic programming methods for solving connected word
recognition problems. In the 1980’s we started to tackle large vocabulary (1000-unlimited
number of words) speech recognition problems based on statistical methods, with a wide range
of networks for handling language structures. The key technologies introduced during this period
were the hidden Markov model (HMM) and the stochastic language model, which together
enabled powerful new methods for handling virtually any continuous speech recognition
problem efficiently and with high performance. In the 1990’s we were able to build large
vocabulary systems with unconstrained language models, and constrained task syntax models for
continuous speech recognition and understanding. The key technologies developed during this
period were the methods for stochastic language understanding, statistical learning of acoustic
and language models, and the introduction of finite state transducer framework (and the FSM
Library) and the methods for their determination and minimization for efficient implementation
of large vocabulary speech understanding systems. Finally, in the last few years, we have seen the
introduction of very large vocabulary systems with full semantic models, integrated with text-to-
speech (TTS) synthesis systems, and multi-modal inputs (pointing, keyboards, mice, etc.). These
systems enable spoken dialog systems with a range of input and output modalities for ease-of-use
and flexibility in handling adverse environments where speech might not be as suitable as other
input-output modalities. During this period we have seen the emergence of highly natural
concatenative speech synthesis systems, the use of machine learning to improve both speech
understanding and speech dialogs, and the introduction of mixed-initiative dialog systems to
enable user control when necessary.”

Despite the comercial exploitation of the ASR technologies is quite recent, major
advances were brought about in the 1960’s and 1970’s via the introduction of advanced speech
representations based on LPC analysis and cepstral analysis methods, and in the 1980’s through

Erreur ! Utilisez l'onglet Accueil pour appliquer Títol 2 au texte que vous souhaitez faire apparaître

ici.

3

the introduction of rigorous statistical methods based on hidden Markov models. The main part
of state-of-the-art speech feature extraction schemes are based on both LPC analysis
(Hermansky 1990; Hermansky et al. 1991) and cepstral analysis (MFCC) (Acero and Huang 1995;
Liu et al. 1993; Tyagi et al. 2003), while hidden Markov models have become the prevalent
representation of speech units for speaker-independent continuous speech recognition (Holmes
1994).

1.2.1 Speech Feature Extraction

In the feature extraction stage, since the speech signal is considered as a quasi-stationary process,
speech analysis is performed on a short-term basis. Typically, the speech signal is divided into a
number of overlapping time windows and a speech feature vector is computed to represent each
of these frames. The size of the analysis window is usually of 20-30ms. The frame period is set to
a value between 10 and 15ms.

The goal of front-end speech processing in ASR is to attain a projection of the speech
signal to a compact parameter space where the information related to speech content can be
extracted easily. Most parameterization schemes are developed based on the source-filter model
of speech production mechanism. In this model, speech signal is considered as the output of a
filter (vocal tract) whose input source is either glottal air pulses or random noise. For voiced
sounds the glottal excitation is considered as a slowly varying periodic signal. This signal can be
considered as the output of a glottal pulse filter feed with a periodic impulse train. For unvoiced
sounds the excitation signal is considered as random noise.

State-of-the-art speech feature extraction schemes (Mel frequency cepstral coefficients

[Hunt et al. 1980] and perceptual linear prediction [Hermansky 1990]) are based on auditory
processing on the spectrum of speech signal and cepstral representation of the resulting features.
The spectral and cepstral analysis is generally performed using Fourier transform. The advantage
of Fourier transform is that it possesses very good frequency localization properties.

Linear Predictive Coding has been considered one of the most powerful techniques

for speech analysis. LPC relies on the lossless tube model of the vocal tract. The lossless tube
model approximates the instantaneous physiological shape of the the vocal tract as a
concatenation of small cylindrical tubes. The model can be represented with an all pole (IIR)
filter. LPC coefficients can be estimated using autocorrelation or covariance methods.

Cepstral analysis denote the unusual treatment of frequency domain data as it were
time domain data. The cepstrum is a measure of the periodicity of a frequency response plot.
The unit measure in cepstral domain is second but it indicates the variations in the frequency
spectrum.

One of the powerful properties of cepstrum is the fact that any periodicities or repeated

patterns in a spectrum will be mapped to one or two specific components in the cepstrum. If a
spectrum contains several harmonic series, they will be separated in a way similar to the way the
spectrum separates repetitive time patterns in the waveform. The mel-frequency cepstral
coefficients proposed by Mermelstein (Hunt et al. 1980) make use of this property to separate
the excitation and vocal tract frequency components in cepstral domain. The spectrum of
excitation signal is composed of several peaks at the harmonics of the pitch frequency. This
constitutes the quickly varying component of the speech spectrum. On the other hand the vocal
tract frequency response constitutes the slowly varying component of the speech spectrum.

 Introduction

4

Hence a simple low pass liftering (i.e. filtering in cepstral domain) operation eliminates the
excitation component.

 As said in the beginning of this section, a feature vector is extracted for each frame.
Typically, state-of-the-art recognition systems use feature vectors based on LPC or MFCC of
length between 10 and 40. That means, that these systems need to extract between 1000 and
4000 values per second (with a usual frame period set to 10ms) from the speech signal (Bernal-
Chaves et al. 2005).

1.2.2 State-of-the-art Systems for Similar Problems

ASR technologies face very different levels of complexity depending on the characteristics of the
problem they are tackling. These problems can range from classifying a small size vocabulary of
noise-free isolated words in a speaker-dependent context to recognize thousands of different
words in a noisy continuous speech in speaker-independent situations.

In order to take some state-of-the-art solutions as a reference for the performances of
our experiments, only systems that face similar problems to ours have to be taken into account.
In particular, the characteristics that define our problem are the following:

• small vocabulary (10-20 words)
• isolated words
• speaker-independent context
• presence of background noise

Research on systems thought to cope with problems of similar characteristics has being
done for the last 30 years, and different performances have been reported depending on the
proposed approach, though results are difficult to compare since they depend strongly on the
database used in each experiment. For the same reason, a direct comparison of previous works
with our system is not possible.

Rabiner and Wilpon (1979) reported a recognition accuracy of 95% on a classification
problem with a moderate size vocabulary (54 words), using statistical clustering techniques to
provide a set of word reference templates for a speaking-independent classifier, and dynamic
time warping to align these templates with the tested words. Nevertheless, tests with subjects
with foreign accents led to poor recognition accuracies of 50%.

More recently, the greatest advances have been achieved thanks to the development of
complex statistical techniques based on hidden Markov models, though systems are still far from
being perfect. These techniques were introduced because of the time dimension of the speech
signal, which prevents to pose ASR as a simple static classification problem that could be solved
using straightforward SVM classifiers using traditional feature vectors. In a problem with 10
classes of clean isolated words, Bernal-Chaves et al. (2005) reported a recognition accuracy of
99.67% of an HMM-based ASR system developed using the HTK package (Young et al. 2008)
that needed a 26 elements long feature vector every 10ms. These feature vectors were made of
the MFCCs and energy of each signal frame. When the clean speech was corrupted with
background noise (SNR = 12 dB), performances fell down up to accuracies of 33.36%.

The great majority of the state-of-the-art ASR systems are more or less complex
variations of this last example, trying to solve robustness issues by improvements in the
preprocessing of the speech signals, in the feature extraction stage or tuning better the HMMs.

Erreur ! Utilisez l'onglet Accueil pour appliquer Títol 2 au texte que vous souhaitez faire apparaître

ici.

5

Finally, it is important to note that, contrary to these traditional techniques, our approach

extracts only a feature vector per word (not one per signal frame), reducing notably the
computational costs of the system and saving about 50 times more data storage (considering that
the average word length is about 500ms). It does not use HMMs or dynamic time warping either,
but a straightforward SVM classification algorithm. Thus, we want EDS to find features that are
robust to time dealignments produced by different speaking speeds.

1.3 The Extractor Discovery System (EDS)

The Extractor Discovery System started to be developed in 2003 thanks to the work of Aymeric Zils
(Zils and Pachet 2004) at Sony CSL. As described by Cabral et al. (2007), the Extractor Discovery
System is a heuristic-based generic approach for automatically extracting high-level audio
descriptors from acoustic signals. EDS uses Genetic Programming (Koza 1992) to build
extraction functions as compositions of basic mathematical and signal processing operators, such
as Log, Variance, FFT, HanningWindow. A specific composition of such operators is called an
analytical feature (e.g. Log (Variance (Min (FFT (Hanning (Signal)))))), and a
combination of features forms a descriptor.

1.3.1 General Overview

Given a database of audio signals with their associated perceptive values, EDS is capable of
generalizing a descriptor. Such descriptor is built by running a genetic search in order to find
relevant features matching the description problem, and then using machine learning algorithms
to combine those features into a general descriptor model. The genetic search performed by the
system is intended to generate functions that may eventually be relevant to the problem. The
best functions in a population are selected and iteratively transformed (by means of
reproduction, i.e. constant variations, mutations, and/or cross-overs), respecting a pattern
chosen by the user. The default pattern is !_x(Signal), which means a function presenting any
number of operations but a single value as result (for more information about EDS syntax, look
at [Zils and Pachet 2004]). The populations of functions keep reproducing until no improvement
is achieved, or until the user intervenes. At this point, the best functions are available to be
combined. A selection can be made both manually or automatically. The final step is to choose
and compute a model (linear regression, model trees, k-NN, locally weighted regression, neural
networks, etc.) that combines all features. The set of features can be exported in a format
readable by Weka (Witten and Frank 2005), a machine learning tool, where a classifier can be
built and tested using any of the methods available. In short, the user needs to 1) create the
database, in which each recording is labelled with the correspondent class; 2) write a set of
general patterns for construction of the features; 3) launch the genetic search; 4) select the
appropriate features; 5) choose a model to combine the features. Some of the choices taken in
these steps are crucial to the process. They delimit how the user can interfere in the search for
features, as explained next.

 Introduction

6

Figure 1.1: A screenshot of EDS. Loading a database.

1.3.2 Data Types and Patterns

To ensure that the generated features are syntactically correct functions, the system uses data
typing. Types in EDS are thought to let the program know both the “programming” type and
the physical dimension of the data. The physical dimension indicates while the data belongs to
time (t), to frequency (f), to amplitude or non-dimensional data (a), or to a functional relation of
the previous: amplitude evolving in time (t:a), frequency evolving in time (f:a). Types also allow
to express if the data is a vector of atomic values (Va, Vt, Vf), a vector of functional relations
(Vt:a, Vf:a), or a vector of vectors of atomic values (VVa, VVt, VVf). For each operator, there
are typing rules that determine the type of its output data depending on the types of its input
data. This way, heuristics can be expressed in terms of physical dimensions, and not only in
terms of programming types, avoiding physically invalid functions.

On the other hand, patterns are specified in the EDS algorithm in order to represent
specific search strategies and guide the search of functions. The pattern encapsulates the
architecture of the feature, and is a regular expression denoting subsets of features
corresponding to a particular strategy for building them. Syntactically, it is expressed like an
analytical feature, with the addition of regular expression operators, such as “!”, “?” and “*”.
Patterns make use of types to specify the collections of targeted features in a generic way. More
precisely:

Erreur ! Utilisez l'onglet Accueil pour appliquer Títol 2 au texte que vous souhaitez faire apparaître

ici.

7

• “?_τ” stands for one operator whose type is τ
• “*_τ” stands for a composition of several operators whose types are all τ (for each of

them)
• “!_τ” stands for several operators whose final type is τ (the types of the other operators

are arbitrary)

For example, the pattern:
?_a(!_Va(Split(*_t:a(x))))

can be instantiated by the following concrete analytical features:

Sum_a(Square_Va(Mean_Va(Split_Vt:a(HpFilter_t:a(x_t:a, 1000Hz), 100))))

Log10_a(Variance_a(Npeaks_Va(Split_Vt:a(Autocorrelation_t:a(x_t:a), 100),

10)))

1.3.3 Genetic Search

Given a set of patterns, a genetic search is launched. It means that a population of features is
created, and the capacity of each feature to separate (i.e. correctly classify) the samples in the
training database is evaluated. The best features are selected as seeds for the next population.
This process evolves the features until no improvement is found.

Although the genetic search can be performed fully automatically, the user can supervise

and interfere in the search. This intervention is even desired, since the space of possibilities is
enormous, and heuristics are hard to express in most cases. Therefore, the user can lead the
system through some specific paths by 1) stopping and restarting the search if it is following a
bad path; 2) selecting specific features for future populations; 3) removing ineffective features
from the search. Additionally, the stop condition itself is an important factor frequently left to
the user.

The choice of the population size may also influence the search, since larger populations

may hold a bigger variety of features (which will converge slower), whereas smaller populations
will perform a more in depth (faster) search (which will be most likely to terminate at local
maxima). At last, the user can optimize features, finding the values for their arguments which
maximize the class separation. For example, the split function (which divides a signal in sub-
signals) has the size of the sub-signals as a parameter. Depending on the case, a tiny value can be
notably better than large values, for example.

1.3.3.1 Genetic Operations

New populations are created by applying genetic transformations on the most relevant functions
of the current population. These operations are relatively standard in genetic programming. Five
transformations are used in EDS: cloning, mutation, substitution, addition and crossover:

• Cloning consists in keeping the tree structure of a function and applying variations on its
constant parameters, such as the cut-off frequencies of filters or the computation window sizes.
For example:

Sum(Square(FFT(LpFilter(Signal, 1000Hz))))

 Introduction

8

can be cloned as:

Sum(Square(FFT(LpFilter(Signal, 800Hz))))

• Mutation consists in cutting a branch of a function, and replacing it by another composition of
operators of the same type. For example:

Sum(Square(FFT(LpFilter(Signal, 1000Hz))))

can be mutated into:

Sum(Square(FFT(BpFilter(Normalize(Signal), 1100Hz, 2200Hz))))

• Substitution is a special case of mutation in which a single operator is replaced by a type-wise
compatible one. For instance:

Sum(Square(FFT(LpFilter(Signal, 1000Hz))))

can be replaced by:

Sum(Square(FFT(BpFilter(Signal, 1100Hz, 2200Hz))))

• Addition consists in adding an operator as the new root of the feature. For instance:

Sum(Square(FFT(Signal))

is an addition of:
Square(FFT(Signal))

• Crossover consists in cutting a branch from a function and replacing it by a branch cut from
another function. For example:

Sum(Square(FFT(Autocorrelation(Signal))))

is a crossover between:

Sum(Square(FFT(LpFilter(Signal, 1000Hz)))) and Sum(Autocorrelation(Signal))

In addition to the genetically transformed functions, the new population is completed

with a set of new randomly generated analytical features to ensure its diversity and introduce new
operations in the population evolution.

1.3.3.2 Feature and Feature Set Evaluation

The evaluation of features is a delicate issue in feature generation. It is now well-known that
good individual features do not necessarily form good feature sets when they are considered
together (feature interaction). In principle, only feature sets should be considered during search,
as there is no principled way to guarantee that a good individual feature will be good once it is in
a given feature set. However, this induces a risk to narrow the search, as well as a high evaluation
cost.

Erreur ! Utilisez l'onglet Accueil pour appliquer Títol 2 au texte que vous souhaitez faire apparaître

ici.

9

That is the reason why another option is chosen in EDS, based on our experiments with
large-scale feature generation, in which exploration of large areas of the analytical features’ space
is favoured. Within a feature population, features are evaluated individually. Feature interaction is
considered during the selection step for creating new populations.

Individual feature evaluation

There are several ways to assess the fitness of a feature. For classification problems, the
Fischer Discriminant Ratio is often used because it is simple to compute and reliable for binary
classification problems. However it is notoriously not adapted to multi-class problems, in
particular for non convex distributions of data. To improve feature evaluation, a wrapper
approach to feature selection has been chosen: features are evaluated using an SVM classifier
built during the feature search with a 5-fold cross-validation on the training database. The fitness
is the performance of the classifier built with this unique feature. As we often deal with multi-
class classification (and not binary), the average F-measure is recommended to assess the classifier’s
performance. However, as training databases are not necessarily balanced class-wise, the average
F-measure can be artificially good. Therefore, the fitness in EDS is finally given by an F-measure
vector (one F-measure per class) of the wrapper classifier. For regression problems, the Pearson
correlation coefficient is used, but other methods could be applied, such as a wrapper approach
with a regression SVM.

Feature set evaluation: taking advantage of the syntactic form of analytical features

After a population has been created and each feature has been individually evaluated, a
number of features need to be selected to be retained for the next population. In principle, such
a feature selection process could be done using any feature selection algorithm, such as
InfoGain. But feature selection algorithms usually require the computation of redundancy,
which, in turn, implies the computation of correlations of feature’s values across samples. As our
features are all analytical features, we take advantage of their syntactic expression to compute a
rougher but efficient redundancy measure. This can be done thanks to the observation that
syntactically similar analytical features have (statistically) correlated value series (Barbieri 2008).
Additionally, our algorithm considers the performance of features on each class, and not globally
for all classes.

 Finding an optimal solution would require a costly multi-criteria optimization. Instead, a
low-complexity algorithm as a one-pass selection loop is proposed: we first select the best
feature, and then iteratively select the next best feature not redundant with any of the selected
ones, until we have the required number of features. Its particularity is to cycle through each
class of the problem, and to take into account the redundancy between a feature and the
currently built feature set using the syntactic structure of the feature. The algorithm is as follows:

FS � {}; the feature set to build

For each class C of the classification problem

S � {non-selected features, sorted by decreasing performance wrt C};

For each feature F in S

If (F is not s-correlated to any feature in FS)

FS � FS + {F}; Break;

If (FS contains enough features) Return FS;

Return FS;

 The syntactic correlation (s-correlation) between 2 features is computed on the basis of
their syntactic form. This not only speeds up the selection, but also forces the search algorithm

 Introduction

10

to find features with a great diversity of operators. S-correlation is defined as a specific distance
between two analytical features, using specific edit operations costs and taking into account
analytical features’ types. More precisely, the cost of replacing operator Op1 by Op2 in an
analytical feature is:

if Op1 = Op2 return 0

else if (Op1 != Op2) return 1

else return 2

In order to yield a Boolean s-correlation function, the edit distance for all pairs of features

in the considered set (the analytical feature population in our case) is computed and the
maximum (Max-s-distance) values for these distances are got. S-Correlation is finally defined as:

S-correlation (F, G):

Return tree-edit-distance (f, g) >= ½ * Min-S-Correlation

 As a consequence, our mechanism allows 1) to speed up the evaluation of individual
features, thereby exploring a larger feature space, while 2) ensuring a syntactic diversity within
feature populations.

Figure 1.2: A screenshot of EDS. A genetic search. On the left, the pattern set used for the search; on the
right, a feature population generated by EDS.

Erreur ! Utilisez l'onglet Accueil pour appliquer Títol 2 au texte que vous souhaitez faire apparaître

ici.

11

1.3.4 Feature Selection

After many features were found, possibly in different genetic searches, they can be combined to
create the final descriptor (possibly with a single feature). The selection of which features to
combine is left to the user, even if one useful tool is available: the feature selection tool picks up
the features that have better fitness than a user-defined threshold and are less correlated with
one another than a second user-defined threshold. Both fitness and correlation are assessed
using the same methods described in the previous section for the feature and feature set
evaluation in the genetic searching algorithms. That is maybe the point at which the quality of
the result is more dependent on the user, since the result may vary notably depending on the
number of features that are going to be used for building a descriptor, as well as the level of
correlation between them.

Figure 1.3: A screenshot of EDS. The feature selector.

1.3.5 Descriptor Creation and Evaluation

Finally, in order to create a descriptor, the selected features must be exported to Weka, where a
supervised learning method is chosen, and features are combined. The resultant descriptor is

 Introduction

12

then evaluated on a test database, and Weka presents a summary with the results class per class,
along with the precision rates.

Figure 1.4: A screenshot of Weka. Summary of the test results of a classifier.

1.4 Working Plan

To accomplish the objectives set by the project, the work was divided into four different parts:

 First of all, a familiarization with EDS and a rapid initiation to analytical feature
techniques.

Secondly, a documentation task with the aim of identifying the state-of-the-art features
used in ASR. Due to the nature of our problem, attention was also paid to audio classification
studies other than ASR, such as speech/music discrimination, emotion recognition or accent and
language recognition. The reason is that nowadays ASR is generally oriented to large or unlimited
vocabulary in a continuous speech environment, while we were concerned with small vocabulary
and isolated-word problems, and approaches to this other audio classification topics could be
also useful.

Erreur ! Utilisez l'onglet Accueil pour appliquer Títol 2 au texte que vous souhaitez faire apparaître

ici.

13

The third part of the work entailed identifying the basic operators needed by EDS to
automatically generate specific analytical features adapted to speech problems. These operators
were deduced from the observation of the characteristics of the speech signals and from the
classical features identified in the previous stage. At this point, all the identified missing
operators were implemented in EDS.

Finally, a series of experiments were carried out on a previously built database to test the

performance of EDS before and after adding the new basic operators to the system. Taking the
features with best fitness that EDS had generated based on a training data base, some classifiers
were built using Weka and were tested in various test sets. The last part of the work was
analysing the results, comparing them to those obtained with a standard system, and proposing
future work from the conclusions drawn.

1.5 Thesis Structure

This work has been divided into four chapters:

 Chapter 1 introduces the framework in which the thesis has been developed. First, the
state of the art in automatic speech recognition is presented, and then the EDS system is
described.

Chapter 2 presents, first, the most relevant features used in speech recognition and other
related domains. Next, it describes the 23 new EDS operators that have been designed in order
to adapt EDS to speech classification, taking into account the features previously introduced.
Finally, the last section describes the limitations of the system that have been found when
carrying out this adaptation.

Chapter 3 contains the experimental work of the thesis. It presents the database used in

the experiments, along with an endpoint detector designed for cleaning the samples. It also
describes the most interesting experiments that were carried out in order to study the
performance of our approach, with and without the new operators.

Chapter 4 makes a summary and discusses the results obtained in the experiments. Then,

a comparison between our approach and a standard speech classifier is offered. Finally, the most
important conclusions are extracted, and future work directions are suggested.

15

Chapter 2

Adapting EDS to Speech Classification

As described in the previous chapter, EDS builds new analytical features adapted to a specific
problem, given under the form of a train and a test database. The construction of these features
is made by means of the composition of basic operators.

The key issue of the work, discussed in this chapter, is finding the basic operators that
must be added to the existing set of operators of EDS so that the system is able to produce good
analytical features for speech classification problems. For this purpose, an extensive
bibliographic research on ASR and other audio classification and recognition problems has been
done to identify the features used classically (see next Section 2.1). For each feature in Section
2.1, it has been studied if EDS would be able to build it by means of the composition of the pre-
existent operators. When that has been considered not possible, new operators have been
described. Section 2.2 contains the description of the 23 new operators that have been
implemented to EDS

 After the implementation of the additional operators, EDS is able to reach the features
used classically if they are appropriate for the given problem. Moreover, it is able to improve
their performance by applying to them genetic modifications, discovering new features well
adapted to the problem.

 On the other hand, due to the particular characteristics of EDS, certain features can not
be built with this approach. Section 2.3 explains the limitations of this analytical feature
technique.

2.1 Classical Features for Speech Classification Problems

There exists an extensive literature that discusses about features used in speech recognition.
Next, there is a list of the most interesting ones that can contribute to the definition of specific
operators for speech classification problems. A brief comment accompanies the feature when
necessary. Since is not the aim of this document to give a deep description of these features,
there is a bibliographic reference next to them to know more about their characteristics.

LPC (Linear Predictive Coding)
(Huang et al. 2001)
Its values represent the spectral envelope of a digital signal of speech in compressed form, using
the information of a linear predictive model.

Adapting EDS to Speech Classification

16

MFCC (Mel-frequency cepstral coefficients)
(Hunt et al. 1980)
This set of perceptual parameters provides a compact representation of the spectral envelope,
such that most of the signal energy is concentrated in the first coefficients. To represent speech,
13 coefficients are commonly used, although it has been demonstrated that for classification
tasks, it is enough to take into account only the first five coefficients.

Cepstral Mean Normalization (CMN)
(Liu et al. 1993)
This feature is useful for normalizing the cepstral feature space. It can be built using the operator
Horizontal Mean Normalization, described in the next section.

Cepstrum Resynthesis Residual Magnitude
(Scheirer and Slaney 1997)
The output of this feature is higher for voiced speech or music than for unvoiced speech.

Figure 2.1: CRRM gives higher values for voiced speech than for unvoiced speech.

For a description of this feature see the next section, where an operator with the same name
Cepstrum Resynthesis Residual Magnitude is presented.

Spectral Flux
(Scheirer and Slaney 1997)
The output of this feature, also known as Delta Spectrum Magnitude, is associated with the
amount of spectral local changes. It is lower for speech, particularly voiced speech, than it is for
music or unvoiced speech. The Spectral Flux is defined as the 2-norm of the frame-to-frame
spectral amplitude difference vector, �|��| � |����|�.

Erreur ! Utilisez l'onglet Accueil pour appliquer Títol 2 au texte que vous souhaitez faire apparaître

ici.

17

Percentage of “Low-Energy” Frames
(Scheirer and Slaney 1997)
This measure will be higher for unvoiced speech than for voiced speech or music. It represents
the proportion of frames with RMS power less than 50% of the mean RMS power within a one-
second window.

Spectral Centroid
(Scheirer and Slaney 1997)
This measure gives different results for voiced and unvoiced speech. It can be associated with
the measure of brightness of a sound, and is obtained by evaluating the center of gravity of the
spectrum:

�	
 � ∑
 � |�
�
�|����∑ |�
�
�|����

where �
�
� represents the k-th frequency bin of the spectrum at frame t, and N is the number
of frame samples.

Spectral Roll-off Point
(Scheirer and Slaney 1997)
This measure will be higher for unvoiced speech than for voiced speech or music. It is the n-th
percentile of the power spectral distribution, giving the frequency bin below which an n% of the
magnitude distribution is concentrated. The feature gives an idea of the shape of the spectrum.

Zero-Crossing Rate (ZCR)
(Scheirer and Slaney 1997)
This feature takes higher values for noise and unvoiced speech than for voiced speech. It is the
number of time-domain zero-crossings within a speech frame.

High Zero Crossing Rate Ratio
(Alexandre et al. 2006)
It takes higher values for speech than for music since speech is usually composed by alternating
voiced and unvoiced fragments. This feature, computed from the ZCR, is defined as the number
of frames whose ZCR is 1.5 times above the mean ZCR on a window containing M frames.

Low Short-Time Energy Ratio
(Alexandre et al. 2006)
This measure will be higher for unvoiced speech than for voiced speech or music. Similarly to
the High Zero Crossing Rate Ratio, it is obtained from the Short-Time Energy (i.e. the mean
energy of the signal within each analysis frame), and defined as the ratio of frames whose Short-
Time Energy is 0.5 times below the mean Short-Time Energy on a window that contains M
frames.

Standard Deviation of the Spectral Centroid + AWGN
(Minematsu et al. 2006)
The addition of white Gaussian noise (AWGN) only increases (slightly) the centroid value of the
unvoiced segments. More generally, the addition of white Gaussian noise helps to reduce speaker
differences in speech.

Adapting EDS to Speech Classification

18

Voicing Rate
(Kitaoka et al. 2002)
It gives higher values for segments of voiced speech than for unvoiced speech. This feature can
be calculated as follows:

� � log �����
�
�

�

where ���� is a sequence of LPC residual errors. An LPC model smoothes the spectral fine
structure and the LPC residual error contains this information. This corresponds to the vibration
of the glottal source.

Normalized Pitch
(Kitaoka et al. 2002)
It normalizes the pitch, smoothing speaker-dependent variations. It is defined as:

 !"#$,
 �
 � 1'� �
�

���

where � �� is a sequence of log fundamental frequencies and N is the length of � ��.

Pitch Regression Coefficients
(Kitaoka et al. 2002)
Another way to reduce the speaker-dependent factor present in the pitch:

∆
 � ∑

��)��*)∑
�)��*)

where � represents the log fundamental frequency and K is the window length to calculate the
coefficients.

Power Regression Coefficients
(Kitaoka et al. 2002)
It normalizes the power values, smoothing speaker-dependent and environment variations. This
feature is calculated using the same formula as in Pitch Regression Coefficients, where �
represents, in this case, power (i.e. the logarithm of the square sum of the speech waveform).

Delta MFCC
(Deemagarn and Kawtrakul 2004)
It measures the change in MFCC over time, in terms of velocity. This feature can be calculated
using the same formula as in Pitch Regression Coefficients, where � represents, in this case, the
MFCC.

Delta-Delta MFCC
(Deemagarn and Kawtrakul 2004)
It measures the change in MFCC over time, as well. It gives information about the acceleration
of the coefficients. This second-order delta MFCC is usually defined from the first-order one as:
 ∆∆ � � ∆ ��� � ∆ �*�

Erreur ! Utilisez l'onglet Accueil pour appliquer Títol 2 au texte que vous souhaitez faire apparaître

ici.

19

Some operators can also act as signal preprocessing functions when they are placed in the

beginning of the chain of operators in an analytical feature. Apart from the well-known
normalization and windowing functions, here they are some other usual ones for speech:

High-Frequency Preemphasis
(Nossair 1995)
This tends to whiten the speech spectrum as well as emphasizing those frequencies to which the
human auditory system is most sensitive. For a description of this filter see the next section,
where an operator with the same name High-Frequency Preemphasis is presented.

2 kHz cut-off Low-Pass Filtering
(Minematsu et al. 2006)
It smoothes inter-speaker differences. It consists of applying a common low-pass filter to the
signal, with a cut-off frequency of 2 kHz.

2.2 New Operators for EDS

A total of 23 new operators have been implemented in EDS. Most of them have appeared trying
to adapt ideas of the classical features described in the previous section. In some cases, some of
these classical features have become basic operators themselves due to the technical impossibility
of building them through the composition of several simpler operators. Other operators – the
horizontal ones – have been created after the observation of how EDS works, trying to cope
with some typing characteristics inherent in the system.

In the following lines, there is the description of the new operators. Some remarks:

• The names of the operators used in the EDS interface appear in brackets next to the
operator’s name.

• The input arguments are also specified, and their default value and possible range are
indicated whenever they are a parameter, following this format: (default value [min.
value, max. value]).

• At the end of each description, there are the typing rules followed by EDS with the
operator.

Horizontal Sum (HSum)
arguments: input matrix
It returns a matrix which elements are the sums of the rows of the input matrix.
For each row of the input matrix, +� � �,�� ,�� … ,�.�, it returns the single value:
 /� � ,�� 0 ,�� 010 ,��

HSum is the analogue operator of the existing Sum for the computation by rows.

Typing rules: atom_1 > NULL
 F?any_1:?any_2 > NULL!
 VF?any_1:?any_2 > Fany_1:any_2!

Adapting EDS to Speech Classification

20

 V?atom_1 > NULL
 VV?atom_1 > Vatom_1

Norm (Norm)
arguments: input matrix
It returns a matrix which elements are the norms of the columns of the input matrix.

For each column of the input matrix, +2 � 3,2� ,2� … ,2456, it returns the single value:

/2 � 7+27 8� 9,2�� 0 ,2�� 010 ,24�

Although EDS could find this result with the composition Sqrt (Sum (Power (x, 2))),
Norm has been implemented since it is a frequently used basic operation. This is an operator
associated with the energy of the input signal.

Typing rules: atom_1 > NULL
 F?any_1:?any_2 > any_2
 VF?any_1:?any_2 > Vany_2!
 V?atom_1 > atom_1
 VV?atom_1 > Vatom_1

Horizontal Norm (HNorm)
arguments: input matrix
It returns a matrix which elements are the norms of the rows of the input matrix.
For each row of the input matrix, +� � �,�� ,�� … ,�.�, it returns the single value:

/� � �+�� 8� 9,��� 0 ,��� 010 ,���

HNorm is the analogue operator of Norm for the computation by rows. EDS can also reach it
by doing Sqrt (HSum (Power (x, 2))) but, like Norm, it has been implemented to simplify
its construction. This is an operator associated with the energy of the signal.

Typing rules: atom_1 > NULL
 F?any_1:?any_2 > NULL!
 VF?any_1:?any_2 > Fany_1:any_2!
 V?atom_1 > NULL
 VV?atom_1 > Vatom_1

Horizontal Root Mean Square (HRms)
arguments: input matrix
It returns a matrix which elements are the RMS of the rows of the input matrix.
For each row of the input matrix, +� � �,�� ,�� … ,�.�, it returns the single value:

/� � ,� #$: 8� ;,��� 0 ,��� 010 ,���'

Erreur ! Utilisez l'onglet Accueil pour appliquer Títol 2 au texte que vous souhaitez faire apparaître

ici.

21

HRms is the analogue operator of the existing Rms for the computation by rows. This is an
operator associated with the power of the input signal.

Typing rules: atom_1 > NULL
 F?any_1:?any_2 > NULL!
 VF?any_1:?any_2 > Fany_1:any_2!
 V?atom_1 > NULL
 VV?atom_1 > Vatom_1

Horizontal Percentile (HPercentile)
arguments: input matrix, percentage (50 [1, 100])
It returns a column matrix where each row element is greater than a constant percentage
(between 0 and 100) of the elements in the corresponding row of the input matrix.

HPercentile is the analogue operator of the existing Percentile for the computation by rows.

Typing rules: atom_1, n > NULL
 F?any_1:?any_2, n > NULL!
 VF?any_1:?any_2, n > Fany_1:any_2!
 V?atom_1, n > NULL
 VV?atom_1, n > Vatom_1

Horizontal Derivation (HDerivation)
arguments: input matrix
It returns a matrix which rows are the first derivative of the rows of the input matrix.
For each row of the input matrix, +� � �,�� ,�� … ,�.�, it returns the vector:
 <� � �/�� /�� … /�.� � �,�� � ,�� ,�= � ,�� … ,�� � ,��*� 0�

HDerivation is the analogue operator of the existing Derivation for the computation by rows.
It is useful to compute the Spectral Flux, which can be computed in EDS as:

HNorm(HDerivation(Fft(SplitOverlap(x, window_size, overlap_percent))))

And for computing an approximation of the Delta and Delta-Delta MFCCs:

HDerivation(Mfcc(SplitOverlap(x, window_size, overlap_percent),

number_coeffs))

HDerivation(HDerivation(Mfcc(SplitOverlap(x, window_size, overlap_percent),

number_coeffs)))

Typing rules: V?atom_1 > NULL
 F?atom_1:?atom_2 > NULL
 VF?atom_1:?atom_2 > VFatom_1:atom_2
 VV?atom_1 > VVatom_1

Adapting EDS to Speech Classification

22

Horizontal Regression Coefficients (RegressionCoeffs)
arguments: input matrix, regression order (1 [1, 3])
It returns a matrix which rows are the regression coefficients of the rows of the input matrix.

For each row of the input matrix, +�, it returns the vector:

∆,�2 8� ∑ �?@ ABCDCEFD∑ �GDCEFD ∀ H

The regression order K is a parameter that varies usually between 1 and 3. This operator is
similar to HDerivation, and is very useful for capturing temporal information. If its input matrix
is a matrix of MFCCs, we obtain the Delta MFCCs. In the syntax of EDS:

RegressionCoeffs(Mfcc(SplitOverlap(x, 20ms, 50%), num_coeffs), reg_order)

Typing rules: V?atom_1, n > NULL
 F?atom_1:?atom_2, n > NULL
 VF?atom_1:?atom_2, n > VFatom_1:atom_2
 VV?atom_1, n > VVatom_1

Vertical Regression Coefficients (VRegressionCoeffs)
arguments: input matrix, regression order (1 [1, 3])
It returns a matrix which columns are the regression coefficients of the columns of the input
matrix.

VRegressionCoeffs is the analogue operator of RegressionCoeffs for the computation by
columns. Thus, the formula is applied this time to each column of the input matrix. Similar to
Derivation, this is a very useful operator for capturing temporal information. If the input matrix
is a matrix of powers or pitches, we obtain the power and pitch regression coefficients. In the
syntax of EDS:

VRegressionCoeffs(Log10(Norm(SplitOverlap(Normalize(x), 20ms, 50%))),

reg_order)

VRegressionCoeffs(Pitch(SplitOverlap(x, 20ms, 50%))), reg_order)

Typing rules: V?atom_1, n > Vatom_1
 F?atom_1:?atom_2, n > Fatom_1:atom_2
 VF?atom_1:?atom_2, n > VFatom_1:atom_2
 VV?atom_1, n > VVatom_1

Horizontal Mean Normalization (HMeanNormalization)
arguments: input matrix
It returns a matrix where each element is the corresponding element of the input matrix minus
the average value of the corresponding row.

Let’s call A the input matrix that contains N column vectors. A mean is computed for all the
elements of each row of the input matrix, obtaining a column vector of means, let’s call it B.

That is: I� � �� · �K�� 0 K�� 010 K��� ∀ i

Erreur ! Utilisez l'onglet Accueil pour appliquer Títol 2 au texte que vous souhaitez faire apparaître

ici.

23

Then, all the elements of each row of the input matrix are subtracted by their corresponding
mean of the column vector, obtaining the normalised values in C:
 �2 � K�2 � I� ∀ i, j

This operator is useful to compute the Cepstral Mean Normalization, which is the Horizontal
Mean Normalization when the input matrix is made of MFCC column vectors. In the syntax of
EDS:

HMeanNormalization(Mfcc(SplitOverlap(x, 20ms, 50%), num_coeffs))

It is also useful in Normalised Formants, if the input matrix is a matrix of formants:

HMeanNormalization(FormantSplitPraat(x))

Typing rules: VV?any_1 > VVany_1!
 VF?any_1:?any_2 > VFany_1:any_2!

Vertical Mean Normalization (VMeanNormalization)
arguments: input matrix
It returns a matrix where each element is the corresponding element of the input matrix minus
the average value of the corresponding column.

VMeanNormalization is the analogue operator of HMeanNormalization for the
computation by columns.
This operator is useful to compute the Normalised Pitch:

VMeanNormalization(Pitch(SplitOverlap(x, 20ms, 50%)))

VMeanNormalization(PitchSplitPraat(x))

Typing rules: V?atom_1 > Vatom_1!
 F?atom_1:?atom_2 > Fatom_1:atom_2!
 VV?atom_1 > VVatom_1!
 VF?atom_1:?atom_2 > VFatom_1:atom_2!

White Noise Addition (AddWhiteNoise)
arguments: input matrix, noise mean (0 [-1, 1]), noise variance (0.005 [0, 0.01])
It returns a matrix which columns are the sum of the columns of the input matrix with a white
Gaussian noise of same length, of mean and variance specified by the input arguments. For each
column of the input matrix, +2 , it returns the vector:
 <2�L� � +2�L� 0 M2�L� � +2�L� 0 �N�KL 0 OPQR�SKQTKL �� · UVWXW2�L��

 UVWXW�n� is a function that generates arrays of random numbers whose elements are normally
distributed with mean 0, and variance 1.

This operator is useful for dithering techniques and for reducing speaker differences in speech:

SpectralCentroid(AddWhiteNoise(Normalize(x), mean, variance))

Adapting EDS to Speech Classification

24

It is important to normalise the input signal before applying this operator, in order to keep
coherence along the entire data base.

Typing rules: Ft:a, n, n > Ft:a!
 VFt:a, n, n > VFt:a!

Figure 2.2: Plotted in red an utterance of the word black, and in blue the output of the AddWhiteNoise
operator with mean=0 and variance=0.005 as parameters, after normalising the signal.

High-Frequency Preemphasis (HFPreemphasis)
arguments: input matrix, preemphasis coefficient (0.97 [0.9, 1])
It returns a matrix which columns are the result of filtering the columns of the input matrix with
a second-order FIR filter which two elements are [1 -precoeff]. For each column of the input
matrix, +2 , it returns the vector:
 <2�L� � +2�L� � ZQ� [�\\ · +2�L � 1�

The relation between precoeff and the preemphasis frequency is:

ZQ� [�\\ � �*�]·^#__$`a:�:b#_c:a$^d�!eb#_c

Thus, the preemphasis coefficient depends on the sampling frequency. For around 16 kHz it is
between 0.9 and 1, and usually between 0.95 and 0.98, yielding a cut-off frequency between 50
and 130 Hz.

Typing rules: Ft:a, n > Ft:a!
 VFt:a, n > VFt:a!

Erreur ! Utilisez l'onglet Accueil pour appliquer Títol 2 au texte que vous souhaitez faire apparaître

ici.

25

Cepstrum Resynthesis Residual Magnitude (Crrm)
arguments: input matrix, number of mel band filters (27 [2, 40]), order of the smoothing filter (3
[2, 10]).
It returns a matrix which contains the Cepstrum Resynthesis Residual Magnitude (CRRM) of the
input matrix, taken as a temporal signal.
The CRRM is defined as the norm of the difference between the magnitude of its spectrum and
the magnitude of the same spectrum smoothed in the MFCC domain, both in the mel scale, i.e.:

	ffg 8� ;����
� � h�
���
�

where X[k] is the magnitude of the input signal’s spectrum in the Mel scale and Y[k] is the
magnitude of the same spectrum smoothed in the Mel Frequency Cepstral Coefficients (MFCC)
domain, also in the mel scale.
In more detail, Y[k] is obtained first by calculating the MFCC of the input matrix, using as many
mel band filters as in X[k], and then applying a moving average in order to smooth the results
before returning to the spectral domain by applying the inverse Discrete Cosine Transform
(iDCT) and taking its exponential. These two last operations are the inverse operations used in
the computation of the MFCC, the DCT and the natural logarithm.
The moving average of Nth order (normally order 2 or 3) is the convolution of its input vector

with a vector of N+1 components and constant value I� � ����, for T � 0, 1, … ,'.

Typing rules: ?atom_1, n, n > NULL!
 F?atom_1:?atom_2, n, n > atom_2!
 VF?atom_1:?atom_2, n, n > Vatom_2!
 V?atom_1, n, n > atom_1!
 VV?atom_1, n, n > Vatom_1!

Mel-Filterbank (MelFilterBank)
arguments: input matrix, number of bands (10 [2, 40])
It returns a matrix which columns contain copies of the input matrix filtered through different
mel-frequency bands.

It uses a modified implementation of the yet existing FilterBank, where calculated filter
bandwidths are passed as an argument to the modified FilterBank function. All the filters have
the same bandwidth in the mel-frequency scale, and frequency scale values can be calculated
using:
 \ � 700 · j�$ ���k.m�mno⁄ � 1q

Typing rules: F?atom_1:?atom_2, n > VFatom_1:atom_2!
 V?atom_1, n > VVatom_1!

Adapting EDS to Speech Classification

26

LPC Residual Error (LPCResidualError)
arguments: input matrix, order (10 [5, 40])
It returns a matrix which columns are the Linear Predictive Coding residual error sequences of
the columns of the input matrix.

This sequence can be calculated in Matlab® with the functions aryule and filter as follows (The
Mathworks 2008):

a = aryule (input_signal, m); % AR model parameters a of the signal input_signal for a m-order
model.
e = filter (a, 1, input_signal); % AR model prediction error sequence e.

The order m is often between 10 and 20, and the input signal should be a normalized and
Hamming-windowed frame of about 20ms:

LPCResidualError(Hamming(Normalize(SplitOverlap(x, 20ms, 50%))),10)

This operator is useful for EDS to build a feature that measures the voicing rate:
 � � log �∑ ����� , where ���� is a sequence of LPC residual errors.

Log10(Norm(LPCResidualError(Hamming(Normalize(SplitOverlap(x, 20ms,

50%))),10))

Typing rules: Ft:a, n > Ft:a!
 VFt:a, n > VFt:a!

Low Short-Time Energy Ratio (LSTER)
arguments: input matrix, threshold (0.15 [0, 1]), window size (1024), overlap percent (0.5 [0.2, 0.8])
It returns a matrix which elements are the ratio of low short-time energy frames of the columns
of the input matrix.

Algorithm:

� for each column +2 of the input matrix
begin for

• calculate total energy: rs2 � ∑ ,2�L��!
• split the signal into frames of size window size and overlap overlap percent
• for each of these frames +2�

begin for
o calculate frame energy: ts2� � ∑ ,2��L��!
o if ts2� u RvQ�Ov[wx · rs2

then number of low-energy frames increases: yst2 00
end for

• calculate the ratio of low energy frames in the column: y�rsf2 � yst2 'zNI�Q [\ \QKN�O⁄
 end for

The usual values for threshold, window size and overlap percent are: 0.15, 20 ms (the number of
samples depends on the sampling rate) and 0.5 respectively.

Erreur ! Utilisez l'onglet Accueil pour appliquer Títol 2 au texte que vous souhaitez faire apparaître

ici.

27

Applying this operator directly to a whole audio file is not very useful. In order to obtain good
results, making it robust to silence, this operator should have as input matrix the audio file
previously split into windows of approximately 250 ms with an overlap of 50%. Then, the global
LSTER can be obtained by computing its mean. It is also interesting to obtain its variance:

Mean(LSTER(SplitOverlap(x, 250ms, 50%), 0.15, 20ms, 50%))

Variance(LSTER(SplitOverlap(x, 250ms, 50%), 0.15, 20ms, 50%))

Typing rules: F?atom_1:?atom_2, n, n, n > atom_2
 VF?atom_1:?atom_2, n, n, n > Vatom_2!

Low RMS Ratio (LRMSR)
arguments: input matrix, threshold (0.5 [0, 1]), window size (1024), overlap percent (0.5 [0.2, 0.8])
It returns a matrix which elements are the ratio of low RMS frames of the columns of the input
matrix.

The algorithm is very similar to the one for LSTER, only changing few things.
Algorithm:

� for each column +2 of the input matrix
begin for

• calculate total RMS: rfg�2 � OPQR�∑ ,2�L���! OPQR�g�⁄ , where M is the
number of elements of the column

• split the signal into frames of size window size and overlap overlap percent
• for each of these frames +2�

begin for
o calculate frame RMS: tfg�2� � OPQR�∑ ,2��L���! OPQR�'�⁄ , where N

is the number of elements of the frame
o if tfg�2� u RvQ�Ov[wx · rfg�2

then number of low RMS frames increases: yfg�t2 0 0
end for

• calculate the ratio of low RMS frames in the column: yfg�f2 � yfg�t2 'zNI�Q [\ \QKN�O⁄

end for

The usual values for threshold, window size and overlap percent are: 0.5, 20 ms (the number of samples
depends on the sampling rate) and 0.5 respectively.

Applying this operator directly to a whole audio file is not very useful. In order to obtain good
results, making it robust to silence, this operator should have as input matrix the audio file
previously split into windows of approximately 250 ms with an overlap of 50%. Then, the global
LRMSR can be obtained by computing its mean. It is also interesting to obtain its variance:

Mean(LRMSR(SplitOverlap(x, 250ms, 50%), 0.5, 20ms, 50%))

Variance(LRMSR(SplitOverlap(x, 250ms, 50%), 0.5, 20ms, 50%))

Typing rules: F?atom_1:?atom_2, n, n, n > atom_2
 VF?atom_1:?atom_2, n, n, n > Vatom_2!

Adapting EDS to Speech Classification

28

High Zero Crossing Rate Ratio (HZCRR)
arguments: input matrix, threshold (1.5 [0, 4]), window size (1024), overlap percent (0.5 [0.2, 0.8])
It returns a matrix which elements are the ratio of frames with high Zero Crossing Rate of the
columns of the input matrix.

The algorithm is very similar to the one for LSTER, only changing few things.
Algorithm:

� for each column +2 of the input matrix
begin for

• calculate total ZCR: r{	f2
• split the signal into frames of size window size and overlap overlap percent
• for each of these frames +2�

begin for
o calculate frame ZCR: t{	f2�
o if t{	f2� | RvQ�Ov[wx · r{	f2

then number of high RMS frames increases: }{	ft2 0 0
end for

• calculate the ratio of frames with high ZCR in the column: }{	ff2 � }{	ft2 'zNI�Q [\ \QKN�O⁄

 end for

The usual values for threshold, window size and overlap percent are: 1.5, 20 ms (the number of samples
depends on the sampling rate) and 0.5 respectively.

Applying this operator directly to a whole audio file is not very useful. In order to obtain good
results, making it robust to silence, this operator should have as input matrix the audio file
previously split into windows of approximately 250 ms with an overlap of 50%. Then, the global
HZCRR can be obtained by computing its mean. It is also interesting to obtain its variance:

Mean(HZCRR(SplitOverlap(x, 250ms, 50%), 0.5, 20ms, 50%))

Variance(HZCRR(SplitOverlap(x, 250ms, 50%), 0.5, 20ms, 50%))

Typing rules: Ft:a, n, n, n > a
 VFt:a, n, n, n > Va!

Praat Library:

To complete the list of new operators specifically thought for speech classification
problems, we used part of Praat, a free computer program for speech analysis, synthesis and
manipulation, connecting it to EDS for being the core of the calculus of some new interesting
operators. Next, there is a brief explanation of them. The parameters used are always the default
ones proposed by Praat. More precise information of the following operators can be found on
its online documentation (Boersma and Weenink 2008).

Harmonicity (HarmonicitySplitPraat)
arguments: input matrix
It returns a matrix which elements are the degree (in dB) of acoustic periodicity of the frames of
the input matrix, taken as a temporal signal.

Erreur ! Utilisez l'onglet Accueil pour appliquer Títol 2 au texte que vous souhaitez faire apparaître

ici.

29

This short-term acoustic periodicity detection, on the basis of an accurate autocorrelation
method, it is also called Harmonics-to-Noise Ratio (HNR).

Typing rules: Ft:a > Va!

Pitch (PitchSplitPraat)
arguments: input matrix
It returns a matrix which elements are frequencies (in Hz) of the pitches of the frames of the
input matrix, taken as a temporal signal.
The algorithm performs an acoustic periodicity detection, optimized for speech, on the basis of
an accurate autocorrelation method.

Typing rules: VFt:a > Vf!

Formants (FormantSplitPraat)
arguments: input matrix
It returns a matrix which columns are the frequencies (in Hz) of the formants of the frames of
the input matrix, taken as a temporal signal.
It performs a short-term spectral analysis, approximating the spectrum of each analysis frame by
a number of formants, using an algorithm by Burg.

Typing rules: Ft:a > VVf!

LPC (LPCCovarianceSplitPraat)
It returns a matrix which columns are the Linear Predictive Coding coefficients of the frames of
the input matrix, taken as a temporal signal.
This algorithm uses the covariance method.

Typing rules: Ft:a > VVa!

2.3 Limitations of EDS

Despite being a powerful tool, EDS presents, by construction, some limitations which
sometimes are not possible to overcome. Here it is a description of those we have found during
the work.

 The first drawback is the fact that the output argument of an operator is limited to a two-
dimensional matrix. This dimension is enough for a great number of computations, but it
prevents from the implementation of operators that work with three-dimensional matrix, which
are quite usual in audio processing. A clear case is described next: EDS allows to work with
signal frames (using the operators Split or SplitOverlap), and with filter banks (using FilterBank),
having both a two-dimensional output matrix. Nevertheless, the combination of both
(Split(FilterBank(x, 16), 1024)) is not possible, since the dimension of the output
matrix would be greater than two. The described limitation made impossible the implementation
of some possibly interesting operators, derived from the following features: Spectral Balance-

Adapting EDS to Speech Classification

30

Based Cepstral Coefficients (Ren et al. 2004), Subband Spectral Centroids Histograms (Gajic and
Paliwal 2001).

 Derived from the previous limitation, one can deduce that operators can only work with
real numbers. This is caused by the fact that if the output matrix of an operator would be
complex, it would be necessary an extra dimension to store the imaginary part, leading to some
situations of three-dimensional output matrix. The implications of that observation are that an
operator like Fft is not able to give its entire complex output, but only its magnitude. Once in the
frequency domain, there is no way to return to the temporal domain through an inverse Fourier
transform, because the phase information is not kept through the calculations. So, no iFFT
operator can be implemented in the system.

 Another type of limitation is the impossibility of implementing operators that need more
than one element of the database to make the calculation. Typical operators of that kind are
those which normalize through the entire database. So, operators derived from this idea, like the
Augmented Cepstral Normalisation (Acero and Huang 1995), are not implementable.

 In another direction, a big constraint appears when trying to make genetic searches with
vectorial features (i.e. features that give as output a vector, as in the case of MFCCs). There is no
way to define the maximum length of a vectorial feature that EDS should explore, and this poses
a problem: since longer vectorial features have better fitness than shorter ones, EDS always
rejects by natural selection those vectorial features of short lengths. Thus, it is very difficult, even
impossible, to explore and keep good vectorial features of short lengths for next generations,
forcing to draw aside the exploration of genetic modifications of classical MFCC-like or LPC-like
features, which have typical lengths between 10 and 25.

 Lastly, the typing rules EDS works with present some limitations that appear in the
attempt of simplifying their complexity. This way, there exist some operators which take as input
matrix a temporal signal [t:a] that cannot take an array of amplitudes [Va] because the temporal
information has been lost. EDS is unable to build, then, a feature like the following:
BpFilter(Rms(Split(x))). The output of Split(x) is an array of temporal signals [Vt:a], but
in the next step, Rms(Split(x)) gives as output a vector of amplitudes [Va] that cannot be used
as input for the filtering operator BpFilter, because BpFilter only accepts temporal signals. This
fact makes that theoretically well-formed features, which are semantically correct, are not
accepted because of their syntax.

31

Chapter 3

Experimental Work

In order to explore whether EDS and the analytical feature technique can be applied with
success to speech classification problems, a series of experiments were carried out. For this
purpose, a speech database – described in Section 3.1 – was built, in parallel to the
implementation on the system of the new operators defined in Chapter 2. Section 3.2 details the
feature patterns that were used in the genetic searches, before a first experiment is presented in
Section 3.3. On the basis of the results of the preliminary experiment, an endpoint detector was
designed (see Section 3.4) and the experiment was repeated using a modified database. The effect
of the new operators are analysed from the experiments detailed in Sections 3.5.2 and 3.5.3, and
finally an experiment explores the EDS potential to build analytical vectorial features.

3.1 The Databases

The particular problem EDS has to face is defined under the form of a training database. The
characteristics of this database will set the characteristics of the problem. To test the
performance of the classifier, some test databases are needed. Since no suitable pre-existent
databases were found for the purpose of our experiments, new ones were built with the
characteristics described in the following sections.

3.1.1 The Training Database

The training set, named TrainDB48, presents the following characteristics:

• Since possible applications of these speech classifiers are toys or low-cost technology
used in informal environments, sounds were recorded with a domestic desktop
microphone in a desktop computer, in an office environment with background noise.

• The samples were recorded in a Microsoft WAV PCM format at a sampling rate of 48
kHz, and a bit depth of 16 bits, mono.

• The samples consist of isolated words with the presence of silence at the beginning and
the end of each utterance.

• There are 12 different words (12 classes): black, blue, brown, cyan, green, grey, orange, pink, red,
violet, white and yellow.

• 6 adult subjects: 4 males (AL, GB, GC, PR) and 2 females (MN, SB), with foreign
accents: Catalan, Dutch, French and Italian.

Experimental Work

32

• Each subject recorded each word 40 times, obtaining 240 samples per class, and a total
of 2880 samples.

3.1.2 The Test Databases

Three different databases to test the performance of the classifier were created. The recording
method and audio format, as well as the classes, were the same as in the training database. The
two first databases are to test the speaker-independent performance of the classifier, since
samples are recorded by different subjects from the training database. On the other hand, the
third database was build for testing the performance under speaker-dependent environments.

 First Test Database (TestDB48-1)

• 5 subjects: 3 adult males (FP, MS, V1), 1 adult female (V2) and 1 female child (CP), with
foreign accents: Chinese, Dutch, and French.

• Each subject recorded each word 2 times, obtaining 10 samples per class, and a total of
120 samples.

Second Test Database (TestDB48-2)

• 1 adult male (FP) with French accent.
• The subject recorded each word 30 times, obtaining 30 samples per class, and a total of

360 samples.

Third Test Database (TestDB48-3)

• 5 adult subjects: 3 males (AL, GB, PR), and 2 females (MN, SB), with foreign accents:
Dutch, French and Italian.

• Each subject recorded each word 2 times, obtaining 10 samples per class, and a total of
120 samples.

3.2 Pattern Sets

To make the genetic search of the features more efficient and exhaustive, it was divided in three
parts, using three different sets of patterns. The idea was to launch three genetic searches in
parallel, focusing each one on a specific type of feature.

EDS tries always to move from one type of signal to another in the simplest and shortest
way. Thus, a long list of highly specified patterns was set in order to use the greatest number of
operator combinations. In that sense, for example, the pattern expression [...!_f (!_t:a ...)] would
not be enough to make the FormantSplitPraat operator to appear. A more specific pattern
expression is necessary: [...!_f (!_VVf (!_t:a ...)].

First, a set of 25 patterns that allowed EDS to explore those features that do not split
either in time or in frequency:

Erreur ! Utilisez l'onglet Accueil pour appliquer Títol 2 au texte que vous souhaitez faire apparaître

ici.

33

!_a (x)

!_a (!_t:a (x))

!_a (!_Va (x))

!_a (!_Va (!_t:a (x)))

!_t (x)

!_t (!_t:a (x))

!_t (!_Vt (x))

!_t (!_Vt (!_t:a (x)))

!_f (x)

!_f (!_f:a (x))

!_f (!_Vf (x))

!_f (!_Vf (!_f:a (x)))

!_f (!_t:a (x))

!_a (!_f:a (!_t:a (x)))

!_f (!_f:a (!_t:a (x)))

!_a (!_Va (!_f:a (!_t:a (x))))

!_f (!_Vf (!_f:a (!_t:a (x))))

!_a (!_t:a (!_f:a (x)))

!_t (!_t:a (!_f:a (x)))

!_a (!_Va (!_t:a (!_f:a (x))))

!_t (!_t:a (!_f:a (x)))

!_t (!_Vt (!_t:a (!_f:a (x))))

!_f (!_VVf (!_t:a(x)))

!_f (!_Vf (!_t:a (x)))

!_a (!_VVa (!_t:a (x)))

Second, a set of 15 patterns that allowed EDS to explore those features that split in time:

!_a (Hamming (SplitOverlap (!_t:a (x), 1024.0, 0.5)))

!_t (Hamming (SplitOverlap (!_t:a (x), 1024.0, 0.5)))

!_f (Hamming (SplitOverlap (!_t:a (x), 1024.0, 0.5)))

!_a (!_Vt:a (Hamming (SplitOverlap (!_t:a (x), 1024.0, 0.5))))

!_t (!_Vt:a (Hamming (SplitOverlap (!_t:a (x), 1024.0, 0.5))))

!_f (!_Vt:a (Hamming (SplitOverlap (!_t:a (x), 1024.0, 0.5))))

!_a (!_VVa (Hamming (SplitOverlap (!_t:a (x), 1024.0, 0.5))))

!_a (!_Vf:a (Hamming (SplitOverlap (!_t:a (x), 1024.0, 0.5))))

!_f (!_Vf:a (Hamming (SplitOverlap (!_t:a (x), 1024.0, 0.5))))

!_a (!_VVa (!_Vf:a (Hamming (SplitOverlap (!_t:a (x), 1024.0,

0.5)))))

!_f (!_VVf (Hamming (SplitOverlap (!_t:a (x), 1024.0, 0.5))))

!_a (!_t:a (Hamming (SplitOverlap (!_t:a (x), 1024.0, 0.5))))

!_t (!_t:a (Hamming (SplitOverlap (!_t:a (x), 1024.0, 0.5))))

!_f (!_t:a (Hamming (SplitOverlap (!_t:a (x), 1024.0, 0.5))))

!_a (!_Va (!_t:a (Hamming (SplitOverlap (!_t:a (x), 1024.0, 0.5)))))

Note that before the temporal split, there is a degree of freedom left to EDS to use an

operator that preprocesses the samples. The length and overlap of the window frames are
specified by the arguments of SplitOverlap (in that case 1024, to get frames of about 20 ms at 48
kHz, and 0.5, for an overlap of 50%). After the temporal split, a Hamming windowing is applied
to each frame.

Third, a set of 12 patterns that allowed EDS to explore those features that split mainly in

the frequency domain:

!_a (!_Vf:a (!_f:a (x)))

!_f (!_Vf:a (!_f:a (x)))

!_t (!_Vf:a (!_f:a (x)))

Experimental Work

34

!_a (!_VVa (!_Vf:a (!_f:a (x))))

!_f (!_VVf (!_Vf:a (!_f:a (x))))

!_t (!_Vf:a (!_f:a (x)))

!_a (!_Vf:a (!_f:a (!_t:a (x)))))

!_f (!_Vf:a (!_f:a (!_t:a (x)))))

!_t (!_Vf:a (!_f:a (!_t:a (x)))))

!_a (!_t:a (!_Vf:a (!_f:a (!_t:a (x))))))

!_a (!_VVa (!_Vf:a (!_f:a (!_t:a (x)))))

!_f (!_VVf (!_Vf:a (!_f:a (!_t:a (x)))))

3.3 The First Experiment

Using the training database, three genetic searches (one for each set of patterns) were launched
with only the old operators enabled. After putting together the three sets of features explored by
EDS, corresponding to the three independent searches, the feature selection tool of EDS was
used to select the 10 best features:

Percentile (HMedian (Mfcc0 (Hamming (SplitOverlap (Normalize (x),

1024.0, 0.5)), 10.0)), 50.0)

Log10 (Kurtosis (LtasPCPraat (x)))

Power (Iqr (Mfcc0 (LpFilter (x, 100.0), 12.0)), 0.6)

Square (SpectralSpread (Triangle (x)))

Power (Abs (Iqr (Mfcc0 (Arcsin (x), 6.0))), 1.6)

Min (HSkewness (BarkBands (Fft (Hamming (SplitOverlap (Bartlett (x),

1024.0, 0.5))), 5.0)))

Iqr (MelBands (Normalize (x), 10.0))

Percentile (Mfcc (x, 10.0), 86.0)

Square (MaxPos (LtasPraat (BpFilter (x, 857.0, 411.0))))

Iqr (Nth (MelBands (SplitOverlap (Fft (Normalize (x)), 32.0, 0.5),

5.0), 1.0))

A classifier was built with Weka, using SMO (Sequential Minimal Optimization), a fast

method to speed up the training of the Support Vector Machines (SVM). The results of the
correctly classified instances of the three test databases are as follows (detailed results can be
found in the Appendix II):

TestDB48-1: 30.83 %
TestDB48-2: 29.44 %
TestDB48-3: 69.17 %

Note that the results in the third case are much better than in the other two. This is

because the third test is in a speaker-dependent context. That means, then, that the features
found in this experiment by EDS work much better in a speaker-dependent context than in a
speaker-independent one.

Not surprisingly, the classification rates are quite low, though, because the new operators

were not added at this point yet. Nevertheless, they seem worst than it should be expected. After
analysing the situation we got to the conclusion that the reason was that the samples of the
database had a variable amount of leading and trailing silence (with background noise). To
improve the classifier performance, the solution was to cut off these useless noisy frames.

Erreur ! Utilisez l'onglet Accueil pour appliquer Títol 2 au texte que vous souhaitez faire apparaître

ici.

35

3.4 The Endpoint Detector

In order to cut off the useless frames present at the beginning and the end of the samples of the
entire database, a Matlab® script was designed for doing it automatically and in batch
processing.

Tsao’s and Gray’s method and algorithm (1984) were used as inspiration for creating an
LPC-based method that detected the starting and ending points of an isolated utterance in the
audio samples, even in the presence of high-level Gaussian-like background noise. The detector
is also immune to short, transient pulses and low-level noises such as those generated by
breathing and small microphone movements, as it can be observed in Figs. 3.1, 3.2 and 3.3.
While Tsao’s and Gray’s method directly uses the LPC residual prediction error, our detector
uses the variance of the prediction error.

Figure 3.1: An example of how the endpoint detector works. On the top, the wave representation of an
utterance of the word white. Note how the detector preserves the semi-isolated /t/. On the bottom, the
plot of the logarithm of the variance of the prediction error, with its corresponding decision thresholds.

Some preprocessing is made to the signals before computing the variance of the
prediction error frame by frame: signal normalization, preemphasis filtering and low-pass
filtering. Once the signal has been preprocessed, the logarithm of the variance of the prediction
error is calculated (red signal of the bottom plot in the figures), and a moving average is
computed in order to smooth its behaviour (blue signal of the bottom plot in the figures). This is
taken as the decision curve, which is more robust to noise and transient pulses than the classical
energy + ZCR curves used in endpoint detectors. The start and end points are fixed with the aid
of a couple of thresholds, whose values are different for each speech sample (blue and green
lines of the bottom plot in the figures). For further details regarding the algorithm implemented
as well as the specific operations involved in our endpoint detector, the code of the Matlab®
script can be found in Appendix III.

Experimental Work

36

Figure 3.2: The endpoint detector applied to another sample, corresponding to black. Note how the
algorithm rejects the noise at the end of the utterance, produced by the lips of the speaker.

Figure 3.3: A last example of the endpoint detector, corresponding to an utterance of blue. Note how the
algorithm rejects, in this case, the low-frequency noise at the beginning of the sample, produced by a

microphone vibration.

3.5 The Experiments

All the samples of both train and test bases were processed with the endpoint detector. Before
going on with further experiments, another processing to the databases was made:

Erreur ! Utilisez l'onglet Accueil pour appliquer Títol 2 au texte que vous souhaitez faire apparaître

ici.

37

 Samples were recorded at 48 kHz, and they were used in the first experiment without
downsampling. One can fast remark that this high sampling frequency is unnecessary for speech.
The frequency range of speech signals is from about 100 Hz in adult males to about 5 kHz for a
female. That means that a sampling frequency of 16 kHz would be enough, as the Nyquist
frequency (8 kHz, i.e. half the sampling frequency) would be over the highest frequency. Having
that in mind, all the database was downsampled from 48 kHz to 16 kHz, making it 3 times
lighter and allowing EDS to make computations quicker.

 The databases, clean of spurious silence and downsampled, are renamed in order to
differentiate them from their old versions: TrainDB16, TestDB16-1, TestDB16-2, and
TestDB16-3.

3.5.1 Experiment with the Old Operators

Following the same procedure as described in the first experiment (see Section 3.3), a new
experiment was carried out, this time using the new training database TrainDB16. Three genetic
searches (one for each set of patterns) were launched with only the old operators enabled. After
putting together the three sets of features explored by EDS, corresponding to the three
independent searches, the feature selection tool of EDS was used to select the 10 best features:

Skewness (Integration (PeakPos (Integration (BpFilter (x, 2205.0,

752.0)))))

Skewness (Abs (PeakPos (LpFilter (Hann (Arcsin (x)), 441.0))))

Power (Abs (Centroid (Variance (BarkBands (Fft (Arcsin (SplitOverlap

(Power (Hamming (x), 3.0), 320.0, 0.8))), 5.0)))), -1.0)

Skewness (PeakPos (Hanning(x)))

Centroid (SpectralSkewness (Hamming (SplitOverlap (Normalize (x),

4410.0, 0.3))))

Power (Abs (Centroid (Iqr (BarkBands (Fft (Arcsin (SplitOverlap

(Power (HpFilter (x, 100.0), 3.0), 320.0, 0.8))), 5.0)))), -

1.0)

Rms (Zcr (SplitOverlap (Power (Hamming(x), 3.0), 320.0, 0.8)))

Power (Centroid (Peaks (Integration (BpFilter (Derivation (Hamming

(x)), 766.0, 98.0)))), -0.7)

Power (Abs (Centroid (Peaks (Abs (BpFilter (x, 766.0, 98.0))))), -

2.1)

Power (Abs (Centroid (Peaks (Blackman (Normalize (x))))), -0.4)

A classifier was built with Weka, using SMO. The results of the correctly classified

instances of the three test databases are as follows (detailed results can be found in the Appendix
IV):

TestDB16-1: 49.17 %
TestDB16-2: 47.22 %
TestDB16-3: 79.17 %

Note that, again, the results in the third case are much better than the other two. This is

because the third test is in a speaker-dependent context. That means, then, that the features
found in this experiment by EDS work much better in a speaker-dependent context than in a
speaker-independent one.

Experimental Work

38

As expected, the results are sensibly better than before cleaning the database with the
endpoint detector: the performance has improved 18.34, 17.78 and 10 points respectively.

3.5.2 Experiment with the Old and New Operators

In order to test the suitability of the new operators (described in Section 2.2) for speech
classification problems, the next experiment lay in repeating the previous one but adding the new
operators to the system. To succeed, the results of this experiment should be sensibly better.
Using the training database TrainDB16, three genetic searches (one for each set of patterns) were
launched with all operators enabled this time. After putting together the three sets of features
explored by EDS, corresponding to the three independent searches, the feature selection tool of
EDS was used to select the 10 best features:

Skewness (PeakPos (BpFilter (VmeanNormalization (VmeanNormalization

(x)), 2205.0, 706.0)))

Power (Zcr (HFPreemphasis (BpFilter (Power (HFPreemphasis

(Multiplication (x, 2.11), 5.0), 3.0), 2205.0, 706.0),

0.9709857365633688)), -0.3)

Skewness (PeakPos (BpFilter (HFPreemphasis (Derivation (Hamming

(HFPreemphasis (x, 5.0))), 5.0), 2205.0, 706.0)))

Skewness (PeakPos (Integration (BpFilter (LPCResidualError

(HFPreemphasis (x, 0.9945909981191632), 5.0), 676.0, 89.0))))

Skewness (PeakPos (Integration (Bartlett(x))))

Skewness (PeakPos (Abs (Integration (BpFilter (LPCResidualError

(Hamming (x), 5.0), 676.0, 89.0)))))

Power (SpectralCentroid (HFPreemphasis (BpFilter (HFPreemphasis

(HFPreemphasis (x, 5.0), 5.0), 1764.0, 706.0),

0.980802238935936)), -0.3)

Skewness (PeakPos (Arcsin (Multiplication (x, 5.0))))

Power (Zcr (HFPreemphasis (BpFilter (Power (HFPreemphasis

(HFPreemphasis (x, 0.9305338823473828), 5.0), 3.0), 2205.0,

706.0), 0.930205069958596)), -0.3)

Skewness (PeakPos (Integration (BpFilter (VregressionCoeffs (Triangle

(Integration (VregressionCoeffs (x, 3.0))), 5.0), 676.0,

89.0))))

A classifier was built with Weka, using SMO. The results of the correctly classified

instances of the three test databases are as follows (detailed results can be found in the Appendix
V):

TestDB16-1: 56.67 %
TestDB16-2: 62.22 %
TestDB16-3: 80.00 %

The speaker-dependent case (TestDB16-3) yields, as expected, the best results.

Comparing these results with the ones of the previous experiment, we can see that there

is an improvement in all three cases: 7.5 points in the first, 15 in the second, and 0.84 in the last
one. The improvement in the speaker-independent situations is notable, while in the speaker-
dependent case, results are roughly the same. That leads to the idea that the new operators help
to classify speaker-independent speech, while it seems difficult to improve the speaker-
dependent speech recognition performance by adding more operators to the system.

Erreur ! Utilisez l'onglet Accueil pour appliquer Títol 2 au texte que vous souhaitez faire apparaître

ici.

39

Something that has to be observed is that 8 out of 10 features have at least one new
operator. On the other hand, only 4 out of 23 new operators were used: HFPreemphasis (x11),
LPCResidualError (x2), VMeanNormalization (x2), VRegressionCoeffs (x2).

3.5.3 Experiment with the Old and New Operators and up to 35 Features

All the experiments carried out till that point were done taking a relatively small number of
features, taking into account the complexity of the problem.

To test the behaviour of our approach when increasing the number of features, a new
experiment was performed. Starting from exactly the same situation than the previous
experiment, the best 35 analytical features were selected using the feature selection tool of EDS:

Skewness (PeakPos (BpFilter (VmeanNormalization (VmeanNormalization

(x)), 2205.0, 706.0)))

Power (Zcr (HFPreemphasis (BpFilter (Power (HFPreemphasis

(Multiplication (x, 2.11), 5.0), 3.0), 2205.0, 706.0),

0.9709857365633688)), -0.3)

Skewness (PeakPos (BpFilter (HFPreemphasis (Derivation (Hamming

(HFPreemphasis (x, 5.0))), 5.0), 2205.0, 706.0)))

Skewness (PeakPos (Integration (BpFilter (LPCResidualError

(HFPreemphasis (x, 0.9945909981191632), 5.0), 676.0, 89.0))))

Skewness (PeakPos (Integration (Bartlett(x))))

Skewness (PeakPos (Abs (Integration (BpFilter (LPCResidualError

(Hamming (x), 5.0), 676.0, 89.0)))))

Power (SpectralCentroid (HFPreemphasis (BpFilter (HFPreemphasis

(HFPreemphasis (x, 5.0), 5.0), 1764.0, 706.0),

0.980802238935936)), -0.3)

Skewness (PeakPos (Arcsin (Multiplication (x, 5.0))))

Power (Zcr (HFPreemphasis (BpFilter (Power (HFPreemphasis

(HFPreemphasis (x, 0.9305338823473828), 5.0), 3.0), 2205.0,

706.0), 0.930205069958596)), -0.3)

Skewness (PeakPos (Integration (BpFilter (VregressionCoeffs (Triangle

(Integration (VregressionCoeffs (x, 3.0))), 5.0), 676.0,

89.0))))

Log10 (Norm (Zcr (Hamming (SplitOverlap (HFPreemphasis

(VmeanNormalization (x), -1.0), 320.0, 0.5)))))

Sqrt (Centroid (PeakPos (Integration (BpFilter (VregressionCoeffs

(Triangle (VmeanNormalization (x)), 5.0), 676.0, 89.0)))))

Skewness (PeakPos (Square (BpFilter (VregressionCoeffs (Bartlett (x),

5.0), 676.0, 89.0))))

Skewness (PeakPos (BpFilter (VregressionCoeffs (Hamming (Abs (x)),

3.0), 2205.0, 706.0)))

Skewness (PeakPos (Abs (VmeanNormalization (VregressionCoeffs

(BpFilter (Integration (VregressionCoeffs (x, 2.0)), 2205.0,

706.0), 5.0)))))

Power (Abs (SpectralSpread (Abs (BpFilter (LPCResidualError

(HFPreemphasis (Triangle (x), 0.9692254851728542), 5.0), 676.0,

89.0)))), 4.6)

Sqrt (Centroid (PeakPos (Integration (BpFilter (VregressionCoeffs

(Multiplication (Hann (x), 5.9), 5.0), 7938.0, 89.0)))))

Power (Skewness (PeakPos (Abs (VmeanNormalization (VregressionCoeffs

(Derivation (Hamming (x)), 5.0))))), 3.0)

Power (SpectralCentroid (Fft (Fft (x))), 3.0)

Abs (Skewness (PeakPos (Integration (BpFilter (LPCResidualError

(HFPreemphasis (Triangle (Normalize (x)), 0.9945909981191632),

5.0), 676.0_89.0)))))

Log10 (SpectralFlatness (x))

Abs (Skewness (PeakPos (BpFilter (VmeanNormalization (HFPreemphasis

(HFPreemphasis (Triangle (x), 5.0), 5.0)), 2205.0, 706.0))))

Power (Zcr (HFPreemphasis

2205.0, 1764.0), 0.9982319335180304)),

Abs (Skewness (PeakPos (BpFilter (Blackman (Hanning (x)), 2205.0,

706.0))))

Power (Zcr (Peaks (Derivation (x))), 1.8)

MaxPos (Peaks (Hamming (x)))

Bandwidth (BpFilter (x, 2

Power (Kurtosis (PeakPos (Derivation (Fft (Blackman (Derivation

(x)))))), -0.4)

Sqrt (SpectralSpread (BpFilter (x, 981.0, 556.0)))

Skewness (PeakPos (BpFilter (Arcsin (Derivation (x)), 2205.0,

706.0)))

Skewness (PeakPos (Power (x, 3.0))

Skewness (PeakPos (Integration (Bartlett (x))))

Skewness (PeakPos (BpFilter (x, 13.0, 6615.0)))

Zcr (HFPreemphasis (BpFilter (VMeanNormalization (x), 2205.0, 706.0),

0.996102293973963))

Skewness (Integration (PeakPos (Integration (BpFilter (x, 2205.0,

752.0)))))

The performance of the classification system

tested with the three databases TestDB16
classification rates with the increase

Figure 3.4: Evolution of the classification rates with the increase of the number of features used in an

0

10

20

30

40

50

60

70

80

90

100

1 5

%
 o

f
C

o
rr

e
ct

ly
 C

la
ss

if
ie

d
 I

n
st

a
n

ce
s

TestDB16

Experimental Work

40

Log10 (SpectralFlatness (x))

Abs (Skewness (PeakPos (BpFilter (VmeanNormalization (HFPreemphasis

(HFPreemphasis (Triangle (x), 5.0), 5.0)), 2205.0, 706.0))))

Power (Zcr (HFPreemphasis (BpFilter (VregressionCoeffs (x, 3.0),

2205.0, 1764.0), 0.9982319335180304)), -3.9)

Abs (Skewness (PeakPos (BpFilter (Blackman (Hanning (x)), 2205.0,

Power (Zcr (Peaks (Derivation (x))), 1.8)

MaxPos (Peaks (Hamming (x)))

Bandwidth (BpFilter (x, 234.0, 648.0), 50.0)

Power (Kurtosis (PeakPos (Derivation (Fft (Blackman (Derivation

0.4)

Sqrt (SpectralSpread (BpFilter (x, 981.0, 556.0)))

Skewness (PeakPos (BpFilter (Arcsin (Derivation (x)), 2205.0,

Skewness (PeakPos (Power (x, 3.0)))

Skewness (PeakPos (Integration (Bartlett (x))))

Skewness (PeakPos (BpFilter (x, 13.0, 6615.0)))

Zcr (HFPreemphasis (BpFilter (VMeanNormalization (x), 2205.0, 706.0),

0.996102293973963))

Skewness (Integration (PeakPos (Integration (BpFilter (x, 2205.0,

of the classification system (again, built using the Weka’s SMO)
with the three databases TestDB16-1, TestDB16-2 and TestDB16-3. The evolution of the

se of the number of used features can be observed in Fig. 3.4:

Figure 3.4: Evolution of the classification rates with the increase of the number of features used in an
SVM classifier, for each test set.

67,5% (28 feat.)

74,44% (35 feat.)

95% (23 feat.)

10 15 20 25 30

Number of Features

TestDB16-1 TestDB16-2 TestDB16-3

Experimental Work

Abs (Skewness (PeakPos (BpFilter (VmeanNormalization (HFPreemphasis

(HFPreemphasis (Triangle (x), 5.0), 5.0)), 2205.0, 706.0))))

(BpFilter (VregressionCoeffs (x, 3.0),

Abs (Skewness (PeakPos (BpFilter (Blackman (Hanning (x)), 2205.0,

Power (Kurtosis (PeakPos (Derivation (Fft (Blackman (Derivation

Skewness (PeakPos (BpFilter (Arcsin (Derivation (x)), 2205.0,

Zcr (HFPreemphasis (BpFilter (VMeanNormalization (x), 2205.0, 706.0),

Skewness (Integration (PeakPos (Integration (BpFilter (x, 2205.0,

(again, built using the Weka’s SMO) was
The evolution of the

can be observed in Fig. 3.4:

Figure 3.4: Evolution of the classification rates with the increase of the number of features used in an

67,5% (28 feat.)

74,44% (35 feat.)

30 35

Erreur ! Utilisez l'onglet Accueil pour appliquer Títol 2 au texte que vous souhaitez faire apparaître

ici.

41

 All three curves tend to follow a logarithmic law, by which the increase of the
improvement of the classification rate gets lower as the number of features increases. In some
cases, due to the machine learning algorithm employed or due to imprecisions in the feature
selection step, the classification rate can even locally decrease. This law remains valid as long as
there is no overfitting (i.e. when the classifier does not have to adjust to very specific random
features of the training data, which have no causal relation to the target function), when the
classification rate of the tests begins to decrease considerably. In our case, it does not seem that a
situation of overfitting has been reached yet with 35 features, since the curves still present an
upward trend.

The best classification rates achieved with the minimum number of features, using a
maximum of 35, are the following (detailed results can be found in the Appendix VI):

 TestDB16-1 (28 features): 67.50 %
TestDB16-2 (35 features): 74.44 %
TestDB16-3 (23 features): 95.00 %

As it can be observed, the improvement in the results of all three cases with the use 35

features is very interesting. The speaker-dependent case presents almost a perfect performance.

In this experiment, like in the previous one, there is a numerous presence of new

operators: 20 out of 35 features have at least one new operator. Nevertheless, only 5 out of 23
new operators were used: HFPreemphasis (x18), VRegressionCoeffs (x10), VMeanNormalization (x8),
LPCResidualError (x4) and Norm (x1), the same ones as in the last experiment plus Norm. This,
among other reasons, can appear due to the way EDS explores the feature space and also the
feature selection technique used by the system.

3.5.4 Experiment with an MFCC-like Feature

The last experiment was a little bit different from the others. The idea was to let EDS find a
feature derived from the MFCC. This vectorial MFCC-like feature should be of length 10 in
order to compare the results with the ones of the other experiments described in Sections 3.5.1
and 3.5.2.

In order to let EDS explore the MFCC-like feature space, a special set of patterns was
created:

Mfcc0 (!_t:a (x), 10)

Mfcc0 (!_t:a (!_Vt:a (!_t:a (x))), 10.0)

Mfcc0 (!_t:a (Hamming (SplitOverlap (!_t:a (x), 320.0, 0.5)))), 10)

Mfcc0 (!_t:a (!_Vt:a (Hamming (SplitOverlap (!_t:a (x), 320.0,

0.5)))), 10)

The particular architecture of EDS does not allow doing a detailed genetic search of

vectorial features, as explained in the section Limitations of EDS (2.3). The patterns have to limit
EDS to build analytical features that have Mfcc0 as last operator, because adding a vectorial “wild
card” (Va, Vt or Vf) after Mfcc0 would give EDS freedom to explore vectorial features without
any size limit. Despite these restrictions, the proposed pattern set allows EDS to explore a
subspace of the vectorial features we are interested in.

Experimental Work

42

Using the training database TrainDB16, a genetic search was launched with all operators
enabled. The best feature of size 10 that EDS found, with the previous pattern set, was:

Mfcc0 (Hmean (Arcsin (Blackman (SplitOverlap (x, 8820.0, 0.5)))),

10.0)

A classifier was built with Weka, using SMO. The results of the correctly classified

instances of the three test databases are as follows (detailed results can be found in the Appendix
VII):

TestDB16-1: 48.33 %
TestDB16-2: 50.83 %
TestDB16-3: 82.50 %

These results reveal that this vectorial MFCC-like feature is well adapted to the speaker-

dependent case, better than no other in the previous experiments with 10 features (in Section
3.5.2 the percentage of correctly classified was 80.00%). On the other hand, the results for
TestDB16-1 and TestDB16-2 do not beat the ones achieved in the experiment of Section 3.5.2.
This leads to the idea that this MFCC-like feature keeps the information of the speaker and
performs worst in a speaker-independent context.

43

Chapter 4

Discussion and Conclusions

This chapter gathers and discusses the main results of the experiments described along the work.
Then, a comparison between our approach and a standard speech classifier is offered. Finally,
the most significant conclusions are extracted from the analysis of the experiments, and future
work directions are suggested, among which the idea of the combination of the analytical feature
technique with HMMs stands out.

4.1 Results Discussion

At this point, it is important to make an overview of the main results of all the experiments
carried out in the study, shown in Table 4.1.

 Experiment 1
(cf. 3.3)

Experiment 2
(cf. 3.5.1)

Experiment 3
(cf. 3.5.2)

Experiment 4
(cf. 3.5.3)

Experiment 5
(cf. 3.5.4)

TrainDB48
old ops.
10 feats.

TrainDB16
old ops.
10 feats.

TrainDB16
old+new ops.

10 feats.

TrainDB16
old+new ops.

35 feats.

TrainDB16
old+new ops.
10 MFCC-like

Test 1
(spk-indep.) 30.83 % 49.17 % 56.67 % 65.83 % 48.33 %

Test 2
(spk-indep.) 29.44 % 47.22 % 62.22 % 74.44 % 50.83 %

Test 3
(spk-dep.) 69.16 % 79.16 % 80.00 % 93.33 % 82.50 %

Table 4.1: Summary of all the main results. The percentages show the amount of correctly classified
instances (the classification rate) of each classifier with each test set.

Besides those results, in Experiment 4 it was found that the best classification rates

achieved with the minimum number of features, using a maximum of 35, were 67.5% for Test
1(with 28 features), 74.44% for Test 2 (with 35 features) and 95% for Test 3 (with 23 features).

Discussion and Conclusions

44

The results of each experiment have been discussed in its corresponding section. Let’s sum
up here the most relevant ideas:

• The great improvement between Experiment 1 and 2 is thanks to the cleaning made by the
endpoint detector processing. Non-speech frames at the beginning and the end of the
samples should be always removed. We understand that this preprocessing is something
crucial in order to improve the classifier performance.

• The new operators appear to be useful for improving the performance in the speaker-
independent cases, although not in the speaker-dependent one. On the other hand, despite
the important presence of new operators in the best features built by EDS, only few of them
were used. This does not necessarily mean that the other operators are not suitable for
speech classification. We can ascribe this behaviour, to a certain extent, to a bias of the
genetic search algorithm.

• When the number of features increases, the results improve following a logarithmic law.
They improve substantially when adding more features to the only 10 used in Experiment 3.
It has been shown that with 23 features a correct classification of the 95% is achieved in the
speaker-dependent case, compared to the 80% that yielded the classifier built with 10
features.

• The best vectorial MFCC-like feature of length 10 performs worst than the 10 features built
by EDS in the Experiment 3 for the speaker-independent cases, while its performance in the
speaker-dependent case is slightly better.

• Observing the F-measures of the different classes, we can note that there are words that tend
to be easier to classify through all the experiments (e.g. pink), while other are harder (e.g. red).
This confirms the great variability existing in the pronunciation of certain words, and how
hard it is to find features that help to classify them.

• As a general remark, as it was expected, the results in the speaker-dependent situation are
always better than in the speaker-independent cases, since these ones present a more difficult
challenge.

4.2 Comparison with a Standard Speech Classifier

It is interesting to compare the results of our approach with those of a standard reference, using
the same speech database as in our experiments. This standard ASR system has been built with a
widely known and discussed software toolkit developed by the Cambridge University
Engineering Department (CUED), the Hidden Markov Model Toolkit (HTK), used for speech
recognition research to create state-of-the-art ASR systems (Young et al. 2008).

HTK provides sophisticated tools for building and manipulating hidden Markov models,
with facilities for speech analysis, testing and results analysis. Although the tool is often
employed to create complex large vocabulary continuous speech recognition systems, it can be
also used to build small vocabulary isolated word speech recognisers, as in our case.

Erreur ! Utilisez l'onglet Accueil pour appliquer Títol 2 au texte que vous souhaitez faire apparaître

ici.

45

Using HTK, an HMM-based standard isolated word classifier has been created. These are
its characteristics:

The system dictionary consists of a list of the 12 colours, and the task grammar is the

simplest: one word per input. The raw speech database is parameterised into sequences of
MFCC vectors. The feature vector is defined to contain 13 MFCC coefficients, 13 delta
coefficients and 13 acceleration coefficients (39 coefficients altogether), extracted each 10 ms of
a 25 ms window. The FFT uses a Hamming window and the signal has first order preemphasis
applied using a coefficient of 0.97.

The system is designed as a whole-word recogniser, which refers to a technique whereby

each individual word in the system vocabulary is modelled by a single HMM. The chosen
topology for the HMMs (the same for all) is shown in Fig. 4.1. Each HMM consists of 4 “active”
states {��, �=, �n, �~}. The first and the last ones (�� and ��) are “non emitting” states (with no
observation function), only used by HTK for some implementation facility reasons. The
observation functions I� are single Gaussian distributions with diagonal matrices. The transition
probabilities are quoted K�2.

 K�� K== Knn K~~

 K�� K�= K=n Kn~ K~�

 K�= K�n K=~ K~�

Figure 4.1: Topology of the HMMs.

The system is trained with the parameterised version of the database TrainDB16, and
then tested with the three sets TestDB16-1, TestDB16-2, and TestDB16-3. The percentages of
correctly classified instances, along with the best results of our approach, are presented in Table
4.2:

Test 1

(spk-indep.)
Test 2

(spk-indep.)

Test 3
(spk-dep.)

HTK 72.50 % 96.39 % 99.17 %

EDS + SVM 67.50 % 74.44 % 95.00 %

Table 4.2: Classification rate of the HMM-based speech recogniser built with HTK and comparison with
the results achieved with the analytical feature technique and an SVM-based classifier.

 While HTK offers a good performance in both Test 2 and 3, it is not able to give so
satisfying results in the first test, due to the complexity of this test set (TestDB16-1), which
includes voices of very different subjects with different ages and accents.

�� �� �� �� �� ��
I� I= In I~

Discussion and Conclusions

46

When comparing the results with those of our approach, they show that the standard

system performs better in all three tests, especially in the second one, where the difference is
bigger than 20%. However, the comparison should not be taken as definitive, since the results
achieved with our system can be improved by increasing the number of features used – here they
were fixed to a maximum of 35 in order to work with a reasonable number –. Moreover, the
structural differences between the two approaches make it impossible to compare their
performances for a fixed number of features. While the standard HMM-based system needs a
feature vector (here of length 39) to be extracted each 10ms, the SVM-based approach only takes
1 value per feature (here a maximum of 35) per word. To achieve those better results, the
standard technique is using much more data to feed a more complex system.

4.3 Conclusions

The objectives of this study have been accomplished. Although further experimentation is
necessary, a series of preliminary experiments have shown that the approach of the analytical
feature technique can bring its advantages to speech classification issues.

 First, the comparison between the results of the experiments shows that EDS is able to
discover better features after the incorporation into the system of the 23 new operators.

 While there is no doubt that in a speaker-dependent context the results have been
satisfying, there is still some work to do for trying to improve the results in the speaker-
independent context. Nevertheless, it is important to note that the difficult problem we are
facing is being solved by a much simpler approach than the traditional one, which uses more
complex methods, like HMMs.

 The speech database that served as the reference problem for the experimentation, built
ad hoc for this study, has turned out a complicated problem for an approach of this type: the
database contains voices with very different accents (there is no native English speaker among
the subjects that collaborated with the database, but Catalan, Chinese, Dutch, French, and
Italian), presence of background noise, bad quality of the recording equipment, and a great
number of classes made of monosyllabic words pretty similar one to another. It may be a good
idea to repeat some experiences reducing the initial difficulties, and increasing them as the
experimentations progress.

Finally, as a consequence of the work day by day with EDS, the study has been useful to
improve the system itself, solving an important number of software bugs and including some
improvements. Examples of improved aspects of the system are the feature selection tool, the
genetic mutations in the genetic search, the interaction between the system and the Praat
software, or the concurrence of more than one instance of EDS running on the same machine.

4.4 Future Work

This work makes an initial assertive step towards the study of the potential of EDS in the
domain of speech recognition. During the execution of the thesis, some interesting ideas have
been set out in order to continue with the research.

Erreur ! Utilisez l'onglet Accueil pour appliquer Títol 2 au texte que vous souhaitez faire apparaître

ici.

47

The experiments carried out in the thesis have been only a preliminary approach to the

problem. More experimentation is needed in order to come to solid conclusions. It is necessary
to work with other databases and assess the performance of the system in other situations.
During this study, another database was being created, of 20 classes (this time with the names of
20 different musical genres).

In order to improve the performance of the analytical feature technique, other specific

operators could be implemented, derived from well-known features thought for speech:
Daubechies Wavelet Coefficient Histogram (DWCH) (Li and Ogihara 2006), Rasta-PLP
(Hermansky et al. 1991), 4 Hz Modulation (Sheirer and Slaney 1997), which have not been finally
implemented because of time constraints and complexity.

Lastly, there is an interesting idea of incorporating the EDS analytical features to an

HMM-based recogniser through HTK, which could be the topic of a next study on the
adaptation of EDS to speech recognition. In Section 4.2, a comparison was made between a
standard speech recogniser (based on HMMs and MFCC) and the system that we designed (an
SVM classifier that takes as features the analytical features built by EDS). The results showed
that even a state-of-the-art system has problems with certain test sets. On the other hand, one of
the biggest drawbacks of the SVM-based technique is that it lacks time alignment, which is well
solved by the standard system. The idea is to combine the two approaches, replacing the generic
MFCC features of the HMM-based system with analytical features adapted to the problem. To
do so, EDS has to be modified so that it produces features for an HMM-based recogniser, which
can be achieved by evaluating the analytical features in the genetic search step with a classifier
created with HTK. These modifications are technically feasible, as our first attempts indicate, but
they are not straightforward, since they affect a part of the central mechanism of EDS. The
combination of the EDS with HTK can yield very satisfying results.

There is still a long way to run.

49

Acknowledgements

With these words I want to thank all the people who have made this work possible.

First of all, the team which I worked with every day during the internship: my supervisor
François Pachet, Pierre Roy (especially for the Java programming and debugging patience),
Anthony Beurive (for his efficient C programming skills) and Amaury La Burthe and his always
useful advices.

A big thanks to the people from who I received all their support: to Luc Steels, Sophie
Boucher and the rest of the Sony CSL team; to Carlos Agon and Fleur Gire, for being always
there when I needed them, their patience and hospitality, and of course to all the Master’s
teaching staff. I want to thank also the public institutions that have organized and coordinated
the Master programme: UPMC, TELECOM ParisTech and IRCAM.

I don’t forget the people that kindly contributed to the speech database: Gabriele
Barbieri, Sophie Boucher, Amaury La Burthe, Nicolas Maisonneuve, Maria Niessen, Charlotte
and François Pachet, Pierre Roy, Matthias Stevens, among others.

Finally, but not less important, a special “gràcies” to all the good friends I have made in
Paris, to my family for their financial backing and love and to juDh, for her unconditional
encouragement.

51

Bibliography

The bibliographic research for this work has been divided into two main areas: first of all the
study of automatic feature construction and extraction systems, in particular those intended for
audio classification purposes. In this field the interest was centred mainly on the study of the tool
employed in the project, EDS (a system developed at Sony CSL), and its results in previous
classification problems. A substantial bibliographic research on the state of the art has shown
that EDS is probably the only existing system of its kind today.

The other branch of interest has been the study of the state of the art in automatic

speech recognition, with the goal of finding the most performing features used to extract speech
information at present. Special attention has been paid to investigations in noise-robust systems,
while an overview on other speech-related classification and recognition problems has been
done. Finally, there are some bibliographic references on automatic information extraction of
generic audio signals that illustrate other possible paths to be followed in the speech recognition
area, and some references on usual audio signal processing and modelling techniques for
automatic recognition tasks.

• Bibliography on automatic feature construction and extraction for

audio classification

Related with Sony EDS system:

Barbieri, G. Is there a relationship between the syntactical structure and the fitness of analytical features? CSL-
Paris technical report, CSL 08-2, 2008.

Cabral, G.; Briot, J.-P.; Krakowski, S.; Velho, L.; Pachet F.; Roy P. Some Case Studies in

Automatic Descriptor Extraction. In: Proc. of Brazilian Symposium on Computer Music, São Paulo
(Brazil), 2007.

Defréville, B.; Roy, P.; Rosin, C.; Pachet, F. Automatic Recognition of Urban Sound Sources. In:

Proc. of the 120th AES Conference, Paris (France), 2006.

Koza, J. R. Genetic Programming: on the programming of computers by means of natural selection. Cambridge

(USA): The MIT Press, 1992.

Molnár, C.; Kaplan, F.; Roy, P.; Pachet, F.; Pongrácz, P.; Dóka, A.; Miklósi, Á. Classification of

dog barks: a machine learning approach. Animal Cognition, 2008.

Bibliography

52

Pachet, F.; Roy, P. Exploring billions of audio features. In: Eurasip (ed.). Proc. of the Internation

Workshop on Content-Based Multimedia Indexing, Bordeaux (France), 2007.

Roy, P.; Pachet, F.; Krakowski, S. Analytical Features for the Classification of Percussive Sounds:

The Case of the Pandeiro. In: Proc. of the International Conference on Digital Audio Effects,
Bordeaux (France), 2007.

Zils, A.; Pachet, F. Automatic Extraction of Music Descriptors from Acoustic Signals using

EDS. In: Proc. of the 116th AES Convention, Berlin (Germany), 2004.

Other sources:

Mierswa, I. Automatic Feature Extraction from Large Time Series. In: Weihs, C.; Gaul, W. (ed.).

Classification - the Ubiquitous Challenge, Proc. of the 28th Annual Conference of the Gesellschaft für
Klassifikation, Dortmund (Germany), Springer, 2004, p. 600-607.

Mierswa, I.; Morik, K. Automatic Feature Extraction for Classifying Audio Data. Machine

Learning Journal, 2005, vol. 58, p. 127-149.

Schuller, B.; Reiter, S.; Rigoll, G. Evolutionary Feature Generation in Speech Emotion

Recognition. In: Proc. of IEEE International Conference on Multimedia and Expo, Toronto
(Canada), 2006, p. 5-8.

• Bibliography on automatic speech recognition

About history and prior art of automatic speech recognition:

Holmes, W. J.; Huckvale, M. Why have HMMs been so successful for automatic speech
recognition and how might they be improved? In: Speech, Hearing and Language, UCL Work in
Progress, 1994, vol. 8, p. 207-219.

Juang, B. H.; Rabiner, L. R. Automatic Speech Recognition — A Brief History of the

Technology. In: Elsevier Encyclopedia of Language and Linguistics, 2nd ed., 2005.

Kimura, S. Advances in Speech Recognition Technologies. Fujitsu Sci. Tech. J., 1999, vol. 35, n. 2, p.

202-211.

About noise-robust automatic speech recognition:

Acero, A.; Huang, X. Augmented Cepstral Normalization for Robust Speech Recognition. In:
Proc. of the IEEE Workshop on Automatic Speech Recognition, Snowbird (USA), 1995.

Farahani, G.; Ahadi, S. M. Robust Features for Noisy Speech Recognition Based on Filtering and

Spectral Peaks in Autocorrelation Domain. In: Proc. of the European Signal Processing Conference,
Antalya (Turkey), 2005.

53

Gajic, B.; Paliwal, K. K. Robust Feature Extraction Using Subband Spectral Centroid
Histograms. In: Proc. of the International Conference on Acoustics, Speech and Signal Processing, Salt
Lake City (USA), 2001, p. 85-88.

Gupta, M.; Gilbert, A. Robust Speech Recognition Using Wavelet Coefficient Features. In: Proc.

of the IEEE Automatic Speech Recognition and Understanding Workshop, Italy, 2001, p. 445-448.

Hermansky, H.; Morgan, N.; Bayya, A.; Kohn, P. RASTA-PLP Speech Analysis. ICSI Technical

Report tr-91-069, 1991.

Hoshino, H. Noise-Robust Speech Recognition in a Car Environment Based on the Acoustic

Features of Car Interior Noise. The R&D Review of Toyota CRDL, 2004, vol. 39, n.1.

Liu, F.-H.; Stern, R. M.; Huang, X.; Acero, A. Efficient Cepstral Normalization For Robust

Speech Recognition. In: Proc. of the Sixth ARPA Workshop on Human Language Technology,
Princeton (USA), 1993, p. 69-74.

Tyagi, V.; McCowan, I.; Misra, H.; Bourlard, H. MelCepstrum Modulation Spectrum (MCMS)

Features for Robust ASR. In: Proc. of the IEEE Automatic Speech Recognition and Understanding
Workshop, Virgin Islands (USA), 2003.

Yao, K.; Paliwal K. K.; Nakamura, S. Feature extraction and model-based noise compensation

for noisy speech recognition evaluated on AURORA 2 task. In: Proc. of the European Conference
on Speech Communication and Technology, Aalborg (Denmark), 2001, p. 233-236.

Other:

Beritelli, F.; Cilia, G.; Cucè, A. Small Vocabulary Word Recognition Based on Fuzzy Pattern
Matching. In: Proc. of the European Symposium on Intelligent Techniques, Crete (Greece), 1999.

Bernal-Chaves, J.; Peláez-Moreno, C.; Gallardo-Antolín, A.; Díaz-de-María, F. Multiclass SVM-

Based Isolated-Digit Recognition using a HMM-Guided Segmentation. In: Proc. of ITRW on
Non-Linear Speech Processing, Barcelona (Spain), 2005, p. 137-144.

Deemagarn, A.; Kawtrakul, A. Thai Connected Digit Speech Recognition Using Hidden Markov

Models. In: Proc. of the Speech and Computer Conference, St. Petersburg (Russia), 2004.

Hermansky, H. Perceptual linear predictive (PLP) analysis of speech. The Journal of the Acoustical

Society of America, 1990, vol. 87, no. 4, p. 1738-1752.

Huang, X.; Acero, A.; Hsiao-Wuen, H. Spoken Language Processing: A Guide to Theory, Algorithm, and

System Development. Upper Saddle River: Prentice Hall PTR, 2001. ISBN 0-13-022616-5.

Hunt, M.; Lennig, M.; Mermelstein, P. Experiments in Syllable-based Recognition of Continuous

Speech. In: Proc. of the IEEE international Conference on Acoustics, Speech, and Signal Processing,
Denver (USA), 1980, vol. 5, p. 880-883.

Kitaoka, N.; Yamada, D.; Nakagawa, S. Speaker independent speech recognition using features

based on glottal sound source. In: Proc. of the International Conference on Spoken Language
Processing, Denver (USA), 2002, p. 2125-2128.

Bibliography

54

Malayath, N.; Hermansky, H.; Kain, A.; Carlson, R. Speaker-Independent Feature Extraction by
Oriented Principal Component Analysis. In: Proc. of the European Conference on Speech
Communication and Technology, Rhodes (Greece), 1997.

Minematsu, N.; Nishimura, T.; Murakami, T.; Hirose, K. Speech recognition only with supra-

segmental features - hearing speech as music -. In: Proc. of the International Conference on Speech
Prosody, Dresden (Germany), 2006, p.589-594.

Rabiner, L. R.; Wilpon, J. G. Speaker Independent, Isolated Word Recognition for a Moderate

Size (54 word) Vocabulary. In: IEEE Trans. on Acoustics, Speech, and Signal Processing, 1979, vol.
27, n. 6, p. 583-587.

Umesh, S.; Sanand, D. R.; Praveen, G. Speaker-Invariant Features for Automatic Speech

Recognition. In: Proc. of the International Joint Conference on Artificial Intelligence, Hyderabad
(India), 2007, p. 1738-1743.

• Bibliography on other speech classification problems (speech/non-

speech discrimination, emotion recognition and accent and language

recognition)

Alexandre, E.; Cuadra, L.; Álvarez, L.; Rosa, M.; López, F. Automatic sound classification for
improving speech intelligibility in hearing aids using a layered structure. In: Corchado, E. et
al. (eds.). Lecture Notes in Computer Science. Berlin/Heidelberg: Springer-Verlag, 2006, vol. 4224,
p. 306-313.

Chu, W.; Champagne, B. A Noise-Robust FFT-Based Auditory Spectrum With Application in

Audio Classification. In: IEEE transactions on audio, speech, and language processing, 2008, vol. 16,
n. 1, p. 137-150.

Levi, S.; Winters, S.; Pisoni, D. Speaker-independent factors affecting the perception of foreign

accent in a second language. In: Journal of the Acoustical Society of America, 2007, vol. 121, p.
2327-2338.

Karnebäck, S. Discrimination between speech and music based on a low frequency modulation

feature. In: Proc. of the European Conference on Speech Communication and Technology, Aalborg
(Denmark), 2001.

Kim, B.-W.; Choi, D.-L. Lee, Y.-J. Speech/Music Discrimination Using Mel-Cepstrum
Modulation Energy. In: Matoušek, V.; Mautner, P. (eds.). Lecture Notes in Computer Science.
Berlin/Heidelberg: Springer-Verlag, 2007, vol. 4629, p. 406-414.

Miranda, E. R. Automatic Sound Identification based on Prosodic Listening. In: Proc. of the 17th

International Congress on Acoustics, Rome (Italy), 2001.

Peeters G.; Rodet, X. Automatically selecting signal descriptors for sound classification. In:

Proceedings of the International Computer Music Conference, Goteborg (Sweden), 2002.

55

Oudeyer, P.-Y. Novel Useful Features and Algorithms for the Recognition of Emotions in
Speech. In: Bel (ed.). Proc. of the 1st International Conference on Prosody, Aix-en-Provence (France),
2002, p. 547-550.

Oudeyer, P.-Y. The production and recognition of emotions in speech: features and algorithms.

International Journal of Human Computer Interaction, 2003, vol. 59, n. 1-2, p.157-183.

Ren, Y.; Kim, S.; Hasegawa-Johnson, M.; Cole, J. Speaker-Independent Automatic Detection of

Pitch Accent. In: Proc. of the International Conference on Speech Prosody, Nara (Japan), 2004.

Scheirer, E.; Slaney, M. Construction and Evaluation of a Robust Multifeature Speech/Music

Discriminator. In: Proc. of the IEEE International Conference on Acoustics, Speech, and Signal
Processing, Munich (Germany), 1997.

Schuller, B.; Schmitt, B. J. B.; Arsic, D.; Reiter, S.; Lang, M.; Rigoll, G. Feature Selection and

Stacking for Robust Discrimination of Speech, Monophonic Singing, and Polyphonic Music.
In: Proc. of the IEEE International Conference on Multimedia and Expo, Amsterdam (The
Netherlands), 2005, p. 840-843.

• Bibliography on automatic information extraction of non-speech

audio signals

Aucouturier, J.-J.; Pachet F. Improving Timbre Similarity: How high is the sky? Journal of Negative
Results in Speech and Audio Sciences, 2004, vol. 1, n. 1.

Li, T.; Ogihara, M. Towards Intelligent Music Retrieval. In: IEEE Transactions on Multimedia,

2006, vol. 8, n. 3, p. 564-574.

Tzanetakis, G.; Essl, G.; Cook, P. Audio Analysis using the Discrete Wavelet Transform. In: Proc.

of the WSEAS International Conference on Acoustics and Music: Theory and Applications, Skiathos
(Greece), 2001.

• Bibliography on general audio signal processing and modelling for

automatic recognition tasks

Nossair, Z. B.; Silsbee, P. L.; Zahorian, S. A. Signal Modeling Enhancements for Automatic
Speech Recognition. In: Proc. of the 20th IEEE International Conference on Acoustics, Speech, and
Signal Processing, Detroit (USA), 1995, p. 824-827.

Picone, J. W. Signal Modeling Techniques in Speech Recognition. In: Proc. of the IEEE,

1993, vol. 81, n. 9, p. 1215-1247.

Tsao, C.; Gray, R. M. An Endpoint Detector for LPC Speech Using Residual Error Look-ahead

for Vector Quantization Applications. In: Proc. of the IEEE International Conference on Acoustics,
Speech, and Signal Processing, San Diego (USA), 1984.

Bibliography

56

• Computer programs and associated online resources

Boersma, P.; Weenink, D. Praat [Computer program]: doing phonetics by computer. Version 5.0.30.
Amsterdam (The Netherlands): University of Amsterdam, 2008. [Consulted: 27 July 2008].
Available at: <http://www.praat.org>.

Tzanetakis, G. Marsyas [Computer program]: Music Analysis, Retrieval and Synthesis for Audio Signals.

Version 0.2. [Consulted: 27 July 2008]. Available at: <http://marsyas.sness.net>.

The Mathworks. Documentation for MathWorks products, R2008a [on line]. Natick, MA, 2008.

[Consulted: 6 June 2008]. Available at:
<http://www.mathworks.com/access/helpdesk/help/helpdesk.html>.

Witten, I. H.; Frank, E. Data Mining: Practical machine learning tools and techniques. 2nd ed. San

Francisco: Morgan Kaufmann, 2005.

Young, S.; Woodland, P.; Byrne, W. HTK [Computer program]: Hidden Markov Model Toolkit.

Version 3.4. Cambride (UK): Cambridge University, 2008. Available at:
<http://htk.eng.cam.ac.uk>.

57

Appendices

Appendix I – List of the EDS Operators

This is the list of the 107 basic operators used by EDS in this study, including the new 23.

Abs HarmonicSpectralDeviation
AddWhiteNoise HarmonicSpectralSpread
Arcsin HarmonicSpectralVariation
AttackTime HDerivation
Autocorrelation Hfc
Bandwidth HFPreemphasis
BarkBands HKurtosis
Bartlett HMax
Blackman HMean
BpFilter HMeanNormalization
Centroid HMedian
Chroma HMin
Correlation HNorm
Crrm HPercentile
Db HpFilter
Derivation HRms
Division HSkewness
Envelope HSum
Fft HVariance
FilterBank HZCRR
Flatness Integration
FormantSplitPraat Inverse
Hamming Iqr
Hann Kurtosis
Hanning Length
HarmonicitySplitPraat Log10
HarmonicSpectralCentroid LPCCovarianceSplitPraat

Appendices

58

LPCResidualError PointProcessPraat
LpFilter Power
LRMSR Range
LSTER RegressionCoeffs
LtasPCPraat RemoveSilentFrames
LtasPraat Rhf
Max Rms
MaxPos Skewness
Mean SpectralCentroid
Median SpectralDecrease
MelBands SpectralFlatness
MelFilterBank SpectralKurtosis
Mfcc SpectralRolloff
Mfcc0 SpectralSkewness
Min SpectralSpread
ModulationEnergy Split
Multiplication SplitOverlap
Norm Sqrt
Normalize Square
Nth Sum
NthColumns Triangle
PeakPos TwelveTones
Peaks Variance
Percentile VMeanNormalization
Pitch VRegressionCoeffs
PitchBands Zcr
PitchSplitPraat

Erreur ! Utilisez l'onglet Accueil pour appliquer Títol 2 au texte que vous souhaitez faire apparaître

ici.

59

Appendix II – Results of the First Experiment

Results of the experiment described in Section 3.3.

TestDB48-1
=== Evaluation on test set ===

Correctly Classified Instances 37 30.8333 %

Incorrectly Classified Instances 83 69.1667 %

Kappa statistic 0.2455

Mean absolute error 0.1447

Root mean squared error 0.2663

Relative absolute error 94.6832 %

Root relative squared error 96.3483 %

Total Number of Instances 120

=== Detailed Accuracy By Class ===

TP Rate FP Rate Precision Recall F-Measure ROC Area Class

 0.1 0.045 0.167 0.1 0.125 0.844 black

 0.8 0.045 0.615 0.8 0.696 0.888 blue

 0.8 0.118 0.381 0.8 0.516 0.81 brown

 0 0.045 0 0 0 0.838 cyan

 0.3 0.018 0.6 0.3 0.4 0.875 green

 0.2 0.018 0.5 0.2 0.286 0.784 grey

 0.3 0.1 0.214 0.3 0.25 0.669 orange

 0.6 0.036 0.6 0.6 0.6 0.91 pink

 0.2 0.145 0.111 0.2 0.143 0.732 red

 0 0.045 0 0 0 0.711 violet

 0 0.027 0 0 0 0.779 white

 0.4 0.109 0.25 0.4 0.308 0.752 yellow

=== Confusion Matrix ===

 a b c d e f g h i j k l <-- classified as

 1 0 1 0 0 0 1 0 2 0 1 4 | a = black

 0 8 0 0 0 0 1 0 0 0 0 1 | b = blue

 0 0 8 0 0 0 2 0 0 0 0 0 | c = brown

 0 0 5 0 0 0 1 0 4 0 0 0 | d = cyan

 0 1 0 0 3 0 0 3 1 0 0 2 | e = green

 1 0 0 0 2 2 0 0 3 0 0 2 | f = grey

 1 0 2 2 0 0 3 0 2 0 0 0 | g = orange

 0 2 0 0 0 2 0 6 0 0 0 0 | h = pink

 1 1 1 1 0 0 0 0 2 1 0 3 | i = red

 1 0 3 0 0 0 3 0 1 0 2 0 | j = violet

 1 0 0 2 0 0 2 0 3 2 0 0 | k = white

 0 1 1 0 0 0 1 1 0 2 0 4 | l = yellow

TestDB48-2
=== Evaluation on test set ===

Correctly Classified Instances 106 29.4444 %

Incorrectly Classified Instances 254 70.5556 %

Kappa statistic 0.2303

Mean absolute error 0.1457

Root mean squared error 0.2683

Relative absolute error 95.3994 %

Root relative squared error 97.0833 %

Appendices

60

Total Number of Instances 360

=== Detailed Accuracy By Class ===

TP Rate FP Rate Precision Recall F-Measure ROC Area Class

 0.167 0.073 0.172 0.167 0.169 0.824 black

 0.467 0.115 0.269 0.467 0.341 0.833 blue

 1 0.094 0.492 1 0.659 0.958 brown

 0.033 0.003 0.5 0.033 0.063 0.931 cyan

 0.133 0.024 0.333 0.133 0.19 0.758 green

 0 0.012 0 0 0 0.649 grey

 0 0 0 0 0 0.631 orange

 1 0.133 0.405 1 0.577 0.935 pink

 0.733 0.236 0.22 0.733 0.338 0.817 red

 0 0.009 0 0 0 0.806 violet

 0 0.003 0 0 0 0.845 white

 0 0.067 0 0 0 0.568 yellow

=== Confusion Matrix ===

 a b c d e f g h i j k l <-- classified as

 5 0 0 0 0 0 0 0 3 2 0 20 | a = black

 0 14 0 0 3 0 0 13 0 0 0 0 | b = blue

 0 0 30 0 0 0 0 0 0 0 0 0 | c = brown

 9 0 3 1 0 0 0 1 13 1 1 1 | d = cyan

 0 7 0 0 4 0 0 12 7 0 0 0 | e = green

 0 6 0 0 1 0 0 0 23 0 0 0 | f = grey

 0 1 10 1 4 4 0 0 10 0 0 0 | g = orange

 0 0 0 0 0 0 0 30 0 0 0 0 | h = pink

 0 7 0 0 0 0 0 1 22 0 0 0 | i = red

 2 3 16 0 0 0 0 0 8 0 0 1 | j = violet

 13 1 2 0 0 0 0 0 14 0 0 0 | k = white

 0 13 0 0 0 0 0 17 0 0 0 0 | l = yellow

TestDB48-3
=== Evaluation on test set ===

Correctly Classified Instances 83 69.1667 %

Incorrectly Classified Instances 37 30.8333 %

Kappa statistic 0.6636

Mean absolute error 0.1402

Root mean squared error 0.2579

Relative absolute error 91.7769 %

Root relative squared error 93.315 %

Total Number of Instances 120

=== Detailed Accuracy By Class ===

TP Rate FP Rate Precision Recall F-Measure ROC Area Class

 0.7 0.036 0.636 0.7 0.667 0.952 black

 0.9 0.018 0.818 0.9 0.857 0.991 blue

 1 0.036 0.714 1 0.833 0.978 brown

 0.7 0.018 0.778 0.7 0.737 0.985 cyan

 0.6 0.036 0.6 0.6 0.6 0.947 green

 0.8 0.027 0.727 0.8 0.762 0.979 grey

 0.4 0.018 0.667 0.4 0.5 0.934 orange

 1 0 1 1 1 1 pink

 0.5 0.018 0.714 0.5 0.588 0.881 red

 0.6 0.055 0.5 0.6 0.545 0.91 violet

Erreur ! Utilisez l'onglet Accueil pour appliquer Títol 2 au texte que vous souhaitez faire apparaître

ici.

61

 0.4 0.036 0.5 0.4 0.444 0.882 white

 0.7 0.036 0.636 0.7 0.667 0.949 yellow

=== Confusion Matrix ===

 a b c d e f g h i j k l <-- classified as

 7 0 0 1 0 0 0 0 1 0 1 0 | a = black

 0 9 0 0 1 0 0 0 0 0 0 0 | b = blue

 0 0 10 0 0 0 0 0 0 0 0 0 | c = brown

 0 0 0 7 0 0 0 0 0 0 2 1 | d = cyan

 0 1 0 0 6 3 0 0 0 0 0 0 | e = green

 0 0 0 0 2 8 0 0 0 0 0 0 | f = grey

 0 0 3 0 0 0 4 0 0 2 0 1 | g = orange

 0 0 0 0 0 0 0 10 0 0 0 0 | h = pink

 2 1 1 0 0 0 0 0 5 0 1 0 | i = red

 0 0 0 0 0 0 2 0 1 6 0 1 | j = violet

 2 0 0 1 0 0 0 0 0 2 4 1 | k = white

 0 0 0 0 1 0 0 0 0 2 0 7 | l = yellow

Appendices

62

Appendix III – Matlab® Code of the Endpoint Detector

This is the Matlab® code of the endpoint detector presented in Section 3.4. The code consists of
5 functions: EndpointDetector, LPCdecision, Startpointposition, Findmaxima and Findminima.

function EndpointDetector(filename)

% ENDPOINTDETECTOR

% Given a .wav filename containing an isolated utterance, this function

% finds the start and endpoints of the utterance and creates a new

% .wav file in a folder named "cut"

% with the same utterance without the silence or noises surrounding it,

% even in low SNR conditions.

% Estimation is done thanks to the computation frame per frame of

% the variance of the prediction error of LPC.

%

% If FILENAME is a name of a folder, ENDPOINTDETECTOR computes

% the function recursively on all .wav files contained in the

% folder or subfolders.

%

% Parameters and things to play with:

%

% In variance of the error computation:

% bypassing preemphasis filter

% bypassing hamming windowing

% frame length (Tf)

% AR model order (P)

% overlap percentage (overlap)

% frame normalisation

%

% In the startpoint/endpoint decision:

% upper and lower nominal threshold for the error variance (uTh, lTh)

% smoothing order (sorder)

%

% Gonçal Calvo, July 2008

% Read the audio files

% --------------------

newdir_shortname = 'cut';

if (isdir(filename))

 vectFile = dir(filename);

 for ind = 1 : size(vectFile, 1)

 filen = vectFile(ind).name;

 if (~strcmp(filen(1 : 1), '.')& ~strcmp(filen, newdir_shortname))

 filen = strcat(filename, '\', filen);

 EndpointDetector(filen);

 end

 end

end

if (strcmp(filename(size(filename, 2)-3 : size(filename, 2)), '.wav'))

 fprintf('Treating %s\n', filename);

else

 fprintf('##Not a wavfile %s\n', filename);

 return;

end

Erreur ! Utilisez l'onglet Accueil pour appliquer Títol 2 au texte que vous souhaitez faire apparaître

ici.

63

% save parent directory name, file name, and build a

% name for title in figures

count = 0;

short_filen_fig = filename;

short_filen = filename;

while (~strcmp(short_filen(end-count), '\'))

 if (strcmp(short_filen(end-count), '_'))

 short_filen_fig(end-count) = ' ';

 end

 count = count + 1;

end

short_filen_fig = short_filen_fig(end-count+1 : end-4);

short_filen = short_filen(end-count+1 : end);

parentdir_name = filename(1:end-count-1);

% Input signal

[x,Fs] = wavread(filename); % reading the wav

if (size(x, 2)) == 2 % if signal is stereo, we take one only one channel

 y = x(:, 1);

end

%% PREPROCESSING

% Signal normalization

% --------------------

y = (1/max(abs(x)))*x;

% Preepmhasis filter

% (first-order FIR filter)

% ------------------------

% first way of doing it

precoeff = -0.8;

%y = [x(1); x(2 : end)+precoeff*x(1 : end-1)]; % same length as x;

% second way of doing it

% b = [1 precoeff];

% a = 1;

% yy = filter(b, a, x);

% third way of doing it

% hx = [0 1];

% hy = precoeff.^hx;

% yyy = conv(x, hy);

% yyy = yyy(1 : end-1);

%soundsc(y,Fs); % how it sounds after preemphasis

% Spectrum of the signal

% ----------------------

%n = (0 : L-1)*Fs/L;

%Y = abs(fft(y));

%plot(n(1 : L/2), Y(1 : L/2));

% White noise addition

% --------------------

%wn = 0.001*randn(length(y), 1); % white noise addition

Appendices

64

%y = y + wn;

% Low-pass filtering

% ------------------

[b_lp, a_lp] = ellip(6, 3, 40, 300/Fs, 'high');

y = filter(b_lp, a_lp, y);

%% END OF PREPROCESSING

% Computing decision curve (prediction error variance)

% --

%% Parameters:

Tf = 0.01; % length of a frame in seconds (normally 20ms

% for speech prediction)

Lf = ceil(Tf*Fs); % length of a frame in samples

overlap = 0.75; % amount of frame overlapping

P = 10; % AR model order

R = ceil((1-overlap)*Lf); % frame step (hop size) (in samples)

%% Computing the decision curve for Startpoint

[logvare_v, ep_v] = LPCdecision(y, Lf, overlap, P); % it returns a

%vector with the variance of the prediction error (in log) of each

%analysis frame, and the prediction error vector

%soundsc(ep_v,Fs)

%plot(log(abs(ep_v)))

sorder = 20; % smoothing the curve

a1 = 1;

b1 = (1/sorder)*ones(1, sorder);

logvaref_v = filtfilt(b1, a1, logvare_v); % smoothed logvare_v

%% Computing the decision curve for Endpoint

yrev = y(end : -1 : 1); % first the signal must be reversed

% the computation is then the same as for the Startpoint:

[logvarerev_v, eprev_v] = LPCdecision(yrev, Lf, overlap, P);

logvarerevf_v = filtfilt(b1, a1, logvarerev_v); % smoothed logvarerev_v

% Computation of the Startpoint and Endpoint positions

% --

% Thresholds

% logvaref_v's ceil

mavmax = max(logvaref_v(ceil(sorder/2):floor(end-sorder/2)));

% logvaref_v's floor

mavmin = min(logvaref_v);

% nominal upper threshold for the error variance

uTh = (mavmin-mavmax)*0.1 + mavmax;

% nominal lower threshold for the error variance

lTh = (mavmin-mavmax)*0.25 + mavmax;

%% Startpoint decision

wstart = Startpointposition(logvaref_v, uTh, lTh);

wstartS = wstart*R; % Startpoint position in the signal (in samples)

%wstartT = wstartS/Fs; % Startpoint position in the signal (in seconds)

%% Endpoint decision

wendrev = Startpointposition(logvarerevf_v, uTh, lTh);

Erreur ! Utilisez l'onglet Accueil pour appliquer Títol 2 au texte que vous souhaitez faire apparaître

ici.

65

% Endpoint position in the signal from the end (in samples)

wendrevS = wendrev*R;

% Endpoint position in the signal (in samples)

wendS = length(y) - wendrevS;

%wendT = wendS/Fs; % Endpoint position in the signal (in seconds)

% Write the signal without silence

% ---------------------------------

newdir_name = strcat(parentdir_name, '\', newdir_shortname);

 % to avoid recursion calculating endpoint in resulting wav files

if(~strcmp(parentdir_name(end-length(newdir_shortname)+1 : end), …

…newdir_shortname))

 status = mkdir(parentdir_name, newdir_shortname);

 new_filen = strcat(newdir_name, '\', short_filen(1 : end-4), '- …

…cut.wav');

else

 new_filen = strcat(filename); % to overwrite previous cutted wav file

end

wavwrite(x(wstartS:wendS),Fs, new_filen);

% Plots

% -----

figure;

subplot(2, 1, 1)

plot(x);

axis('tight');

% plot lines

hvaxis = axis;

haxis = hvaxis(1 : 2);

vaxis = hvaxis(3 : 4);

line([wstartS wstartS], vaxis, 'Color', 'red');

line([wendS wendS], vaxis, 'Color', 'red');

set(gcf, 'Name', filename);

title(short_filen_fig);

subplot(2, 1, 2)

hold on;

plot(logvare_v, 'red');

plot(logvaref_v);

axis('tight');

% plot lines

hvaxis = axis;

haxis = hvaxis(1 : 2);

vaxis = hvaxis(3 : 4);

line(haxis, [mavmax mavmax]);

line(haxis, [uTh uTh]);

line(haxis, [lTh lTh], 'Color', 'green');

line([wstart wstart], vaxis, 'Color', 'red');

line([wendS/R wendS/R], vaxis, 'Color', 'red');

hold off;

function [logve_v, e_v] = LPCdecision(signal, Lf, overlap, P)

L = length(signal);

R = ceil((1-overlap)*Lf); % frame step (hop size) (in samples)

Nf = ceil((L-Lf)/R)+1; % number of frames in signal

 %(even incomplete last one)

Appendices

66

for index = 1:Nf

 if index == Nf

 ylframe = signal((index-1)*R+1 : end); % last frame

 Llf = length(ylframe);

 hl = hamming(Llf); % hammnig window for last frame

 ylframew = ylframe.*hl;

 %ylframew = ylframe; % bypass windowing last frame

 num_zeros = Lf-Llf; % number of zeros to add to get the

 % same length as the other frames

 yframew = [ylframew; zeros(num_zeros,1)];

 % normalise last frame

 coeffnorm = max([abs(max(yframew)) abs(min(yframew))]);

 yframew = yframew./coeffnorm;

 else

 % frames other than the last one

 yframe = signal((index-1)*R+1 : (index-1)*R+Lf);

 h = hamming(Lf);

 yframew = yframe.*h;

 %yframew = yframe; % bypass windowing frames

 % normalise frame

 coeffnorm = max([abs(max(yframew)) abs(min(yframew))]);

 yframew = yframew./coeffnorm;

 end

 % AR model parameters for this frame and the variance of the error

 [a, ve] = aryule(yframew, P);

 % AR model prediction error for this frame

 e(:, index) = filter(a, 1, yframew);

 % stores current frame's variance of the error in a vector

 ve_v(index) = ve;

end

 % writes the ep matrix into one single column vector

 e_v = e(:);

 % deletes the zeros added in the last frame to get a signal of the

 % same length as the original signal

 e_v = e_v(1 : end-num_zeros);

 % puts variance of error vector in logarithmic scale

 logve_v = log(ve_v);

function wbgn = Startpointposition (curve, uTh, lTh)

% We work on the first part of the signal

% absolute minimum value -> that defines the signal's first part

[min_val, min_id] = min(curve);

% taking the maximum we suppose to fall in the signal and not in a spurious

% noise

% where does the curve last crosses the uTh before absolute minimum?

id_uTh = max(find(curve(1 : min_id)>=uTh));

if length(id_uTh)~=1

 id_uTh = 1; % if the curve does not cross uTh then id_uTh=1

end

% local minima indexes of the signal's first part

Erreur ! Utilisez l'onglet Accueil pour appliquer Títol 2 au texte que vous souhaitez faire apparaître

ici.

67

localmins_id = Findminima(curve(1 : min_id));

%discart those minima at the left of id_uTh

localmins_idid = find(localmins_id>=id_uTh);

localmins_id = localmins_id(localmins_idid);

% local minima values of the signal's first part

localmins_val = curve(localmins_id);

lower_localmins_idid = find(localmins_val<=lTh);

% indexes of local minima between absolute minimum and id_uTh that are

% lower than the lTh

lower_localmins_id = localmins_id(lower_localmins_idid);

first_lower_localmin_id = lower_localmins_id(1);

upper_localmins_idid = find(localmins_id<first_lower_localmin_id);

upper_localmins_id = localmins_id(upper_localmins_idid);

 % see if there are upper local minima before the first lower local minima

if length(upper_localmins_idid)>0

 % indexes of local maxima between signal beginning and first lower

 % local minimum

 localmaxs_id = Findmaxima(curve(1 : first_lower_localmin_id));

 % we take as wbgn the first local maxima after the first lower local

 % minimum

 wbgn = localmaxs_id(end);

else

 wbgn = id_uTh; % if not, we take the crossing point

end

function maxima = Findmaxima(x)

%FINDMAXIMA Find location of local maxima

% From David Sampson

% See also FINDMINIMA

% Unwrap to vector

x = x(:);

% Identify whether signal is rising or falling

upordown = sign(diff(x));

% Find points where signal is rising before, falling after

maxflags = [upordown(1)<0; diff(upordown)<0; upordown(end)>0];

maxima = find(maxflags);

function minima = Findminima(x)

%FINDMINIMA Find location of local minima

% From David Sampson

% See also FINDMAXIMA

minima = Findmaxima(-x);

Appendices

68

Appendix IV – Results of the Experiment with the Old Operators

Results of the experiment described in Section 3.5.1.

TestDB16-1
=== Evaluation on test set ===

Correctly Classified Instances 59 49.1667 %

Incorrectly Classified Instances 61 50.8333 %

Kappa statistic 0.4455

Mean absolute error 0.1422

Root mean squared error 0.2617

Relative absolute error 93.0854 %

Root relative squared error 94.6946 %

Total Number of Instances 120

=== Detailed Accuracy By Class ===

TP Rate FP Rate Precision Recall F-Measure Class

 0.4 0.018 0.667 0.4 0.5 black

 0.3 0.055 0.333 0.3 0.316 blue

 0.6 0.082 0.4 0.6 0.48 brown

 1 0 1 1 1 cyan

 0.2 0.036 0.333 0.2 0.25 green

 0.5 0.055 0.455 0.5 0.476 grey

 0.6 0.009 0.857 0.6 0.706 orange

 0.7 0.036 0.636 0.7 0.667 pink

 0.1 0.091 0.091 0.1 0.095 red

 0.3 0.082 0.25 0.3 0.273 violet

 0.7 0.045 0.583 0.7 0.636 white

 0.5 0.045 0.5 0.5 0.5 yellow

=== Confusion Matrix ===

 a b c d e f g h i j k l <-- classified as

 4 0 0 0 0 0 0 1 2 1 2 0 | a = black

 0 3 3 0 0 0 0 2 1 0 0 1 | b = blue

 0 1 6 0 2 0 0 0 0 1 0 0 | c = brown

 0 0 0 10 0 0 0 0 0 0 0 0 | d = cyan

 0 2 0 0 2 3 0 0 1 0 0 2 | e = green

 0 0 0 0 0 5 0 0 2 0 1 2 | f = grey

 0 0 0 0 0 1 6 0 0 2 1 0 | g = orange

 0 0 1 0 0 1 0 7 1 0 0 0 | h = pink

 1 1 2 0 1 1 0 0 1 2 1 0 | i = red

 0 0 2 0 0 0 1 1 3 3 0 0 | j = violet

 1 0 0 0 0 0 0 0 0 2 7 0 | k = white

 0 2 1 0 1 0 0 0 0 1 0 5 | l = yellow

TestDB16-2
=== Evaluation on test set ===

Correctly Classified Instances 170 47.2222 %

Incorrectly Classified Instances 190 52.7778 %

Kappa statistic 0.4242

Mean absolute error 0.1418

Root mean squared error 0.261

Relative absolute error 92.8145 %

Root relative squared error 94.42 %

Erreur ! Utilisez l'onglet Accueil pour appliquer Títol 2 au texte que vous souhaitez faire apparaître

ici.

69

Total Number of Instances 360

=== Detailed Accuracy By Class ===

TP Rate FP Rate Precision Recall F-Measure ROC Area Class

 0.6 0.018 0.75 0.6 0.667 0.965 black

 0.267 0.106 0.186 0.267 0.219 0.896 blue

 0.367 0.018 0.647 0.367 0.468 0.973 brown

 0.767 0 1 0.767 0.868 1 cyan

 0.633 0.03 0.655 0.633 0.644 0.937 green

 0.567 0.064 0.447 0.567 0.5 0.919 grey

 0.233 0 1 0.233 0.378 0.991 orange

 0.967 0.103 0.46 0.967 0.624 0.945 pink

 0.467 0.136 0.237 0.467 0.315 0.829 red

 0 0.006 0 0 0 0.723 violet

 0.7 0.082 0.438 0.7 0.538 0.868 white

 0.1 0.012 0.429 0.1 0.162 0.942 yellow

=== Confusion Matrix ===

 a b c d e f g h i j k l <-- classified as

 18 0 0 0 0 0 0 12 0 0 0 0 | a = black

 1 8 0 0 0 0 0 21 0 0 0 0 | b = blue

 0 2 11 0 5 1 0 0 10 0 0 1 | c = brown

 0 0 2 23 0 0 0 0 0 2 0 3 | d = cyan

 0 2 1 0 19 6 0 0 2 0 0 0 | e = green

 0 0 0 0 1 17 0 0 5 0 7 0 | f = grey

 0 0 0 0 0 13 7 0 0 0 10 0 | g = orange

 1 0 0 0 0 0 0 29 0 0 0 0 | h = pink

 0 4 0 0 2 0 0 1 14 0 9 0 | i = red

 0 0 3 0 2 1 0 0 23 0 1 0 | j = violet

 4 0 0 0 0 0 0 0 5 0 21 0 | k = white

 0 27 0 0 0 0 0 0 0 0 0 3 | l = yellow

TestDB16-3
=== Evaluation on test set ===

Correctly Classified Instances 95 79.1667 %

Incorrectly Classified Instances 25 20.8333 %

Kappa statistic 0.7727

Mean absolute error 0.1397

Root mean squared error 0.2569

Relative absolute error 91.4325 %

Root relative squared error 92.9403 %

Total Number of Instances 120

=== Detailed Accuracy By Class ===

TP Rate FP Rate Precision Recall F-Measure ROC Area Class

 0.9 0.018 0.818 0.9 0.857 0.979 black

 0.6 0.018 0.75 0.6 0.667 0.966 blue

 1 0.009 0.909 1 0.952 0.995 brown

 1 0 1 1 1 1 cyan

 0.5 0.036 0.556 0.5 0.526 0.89 green

 0.9 0.036 0.692 0.9 0.783 0.975 grey

 0.6 0 1 0.6 0.75 0.958 orange

 1 0.009 0.909 1 0.952 0.995 pink

 0.6 0.045 0.545 0.6 0.571 0.939 red

 0.6 0 1 0.6 0.75 0.991 violet

 1 0.018 0.833 1 0.909 0.991 white

 0.8 0.036 0.667 0.8 0.727 0.957 yellow

Appendices

70

=== Confusion Matrix ===

 a b c d e f g h i j k l <-- classified as

 9 0 0 0 0 0 0 0 0 0 1 0 | a = black

 0 6 0 0 0 0 0 0 0 0 0 4 | b = blue

 0 0 10 0 0 0 0 0 0 0 0 0 | c = brown

 0 0 0 10 0 0 0 0 0 0 0 0 | d = cyan

 0 2 0 0 5 2 0 0 1 0 0 0 | e = green

 0 0 0 0 0 9 0 0 1 0 0 0 | f = grey

 0 0 0 0 0 1 6 0 3 0 0 0 | g = orange

 0 0 0 0 0 0 0 10 0 0 0 0 | h = pink

 2 0 0 0 0 1 0 0 6 0 1 0 | i = red

 0 0 0 0 3 0 0 1 0 6 0 0 | j = violet

 0 0 0 0 0 0 0 0 0 0 10 0 | k = white

 0 0 1 0 1 0 0 0 0 0 0 8 | l = yellow

Erreur ! Utilisez l'onglet Accueil pour appliquer Títol 2 au texte que vous souhaitez faire apparaître

ici.

71

Appendix V – Results of the Experiment with the Old and New

Operators

Results of the experiment described in Section 3.5.2.

TestDB16-1
=== Evaluation on test set ===

Correctly Classified Instances 68 56.6667 %

Incorrectly Classified Instances 52 43.3333 %

Kappa statistic 0.5273

Mean absolute error 0.1418

Root mean squared error 0.2608

Relative absolute error 92.7824 %

Root relative squared error 94.3745 %

Total Number of Instances 120

=== Detailed Accuracy By Class ===

TP Rate FP Rate Precision Recall F-Measure Class

 0.4 0.018 0.667 0.4 0.5 black

 0.3 0.091 0.231 0.3 0.261 blue

 0.8 0.036 0.667 0.8 0.727 brown

 0.8 0 1 0.8 0.889 cyan

 0.4 0.064 0.364 0.4 0.381 green

 0.4 0.027 0.571 0.4 0.471 grey

 0.8 0.036 0.667 0.8 0.727 orange

 0.8 0 1 0.8 0.889 pink

 0.3 0.018 0.6 0.3 0.4 red

 0.5 0.082 0.357 0.5 0.417 violet

 0.5 0.045 0.5 0.5 0.5 white

 0.8 0.055 0.571 0.8 0.667 yellow

=== Confusion Matrix ===

 a b c d e f g h i j k l <-- classified as

 4 0 1 0 0 0 0 0 0 4 1 0 | a = black

 0 3 3 0 0 0 0 0 0 0 0 4 | b = blue

 0 0 8 0 0 0 0 0 0 0 0 2 | c = brown

 0 0 0 8 2 0 0 0 0 0 0 0 | d = cyan

 0 2 0 0 4 2 0 0 0 2 0 0 | e = green

 0 0 0 0 1 4 0 0 2 2 1 0 | f = grey

 0 0 0 0 0 0 8 0 0 0 2 0 | g = orange

 0 1 0 0 1 0 0 8 0 0 0 0 | h = pink

 2 4 0 0 1 0 0 0 3 0 0 0 | i = red

 0 1 0 0 2 0 1 0 0 5 1 0 | j = violet

 0 0 0 0 0 1 3 0 0 1 5 0 | k = white

 0 2 0 0 0 0 0 0 0 0 0 8 | l = yellow

TestDB16-2
=== Evaluation on test set ===

Correctly Classified Instances 224 62.2222 %

Incorrectly Classified Instances 136 37.7778 %

Kappa statistic 0.5879

Mean absolute error 0.1406

Root mean squared error 0.2586

Appendices

72

Relative absolute error 92.0202 %

Root relative squared error 93.5772 %

Total Number of Instances 360

=== Detailed Accuracy By Class ===

TP Rate FP Rate Precision Recall F-Measure Class

 0.567 0.006 0.895 0.567 0.694 black

 0.833 0.127 0.373 0.833 0.515 blue

 0.967 0 1 0.967 0.983 brown

 1 0 1 1 1 cyan

 0.467 0 1 0.467 0.636 green

 0.133 0.006 0.667 0.133 0.222 grey

 0.933 0 1 0.933 0.966 orange

 1 0 1 1 1 pink

 0 0 0 0 0 red

 0.7 0.173 0.269 0.7 0.389 violet

 0.833 0.1 0.431 0.833 0.568 white

 0.033 0 1 0.033 0.065 yellow

=== Confusion Matrix ===

 a b c d e f g h i j k l <-- classified as

 17 4 0 0 0 0 0 0 0 8 1 0 | a = black

 2 25 0 0 0 0 0 0 0 3 0 0 | b = blue

 0 0 29 0 0 0 0 0 0 0 1 0 | c = brown

 0 0 0 30 0 0 0 0 0 0 0 0 | d = cyan

 0 0 0 0 14 2 0 0 0 13 1 0 | e = green

 0 0 0 0 0 4 0 0 0 9 17 0 | f = grey

 0 0 0 0 0 0 28 0 0 0 2 0 | g = orange

 0 0 0 0 0 0 0 30 0 0 0 0 | h = pink

 0 9 0 0 0 0 0 0 0 19 2 0 | i = red

 0 0 0 0 0 0 0 0 0 21 9 0 | j = violet

 0 0 0 0 0 0 0 0 0 5 25 0 | k = white

 0 29 0 0 0 0 0 0 0 0 0 1 | l = yellow

TestDB16-3
=== Evaluation on test set ===

Correctly Classified Instances 96 80 %

Incorrectly Classified Instances 24 20 %

Kappa statistic 0.7818

Mean absolute error 0.1397

Root mean squared error 0.2569

Relative absolute error 91.4463 %

Root relative squared error 92.9543 %

Total Number of Instances 120

=== Detailed Accuracy By Class ===

TP Rate FP Rate Precision Recall F-Measure Class

 0.6 0 1 0.6 0.75 black

 0.4 0.009 0.8 0.4 0.533 blue

 1 0.045 0.667 1 0.8 brown

 1 0 1 1 1 cyan

 0.7 0 1 0.7 0.824 green

 0.8 0.009 0.889 0.8 0.842 grey

 0.6 0.018 0.75 0.6 0.667 orange

 1 0 1 1 1 pink

 1 0.045 0.667 1 0.8 red

 0.7 0.027 0.7 0.7 0.7 violet

Erreur ! Utilisez l'onglet Accueil pour appliquer Títol 2 au texte que vous souhaitez faire apparaître

ici.

73

 0.9 0.027 0.75 0.9 0.818 white

 0.9 0.036 0.692 0.9 0.783 yellow

=== Confusion Matrix ===

 a b c d e f g h i j k l <-- classified as

 6 0 0 0 0 0 1 0 1 1 1 0 | a = black

 0 4 3 0 0 0 0 0 0 0 0 3 | b = blue

 0 0 10 0 0 0 0 0 0 0 0 0 | c = brown

 0 0 0 10 0 0 0 0 0 0 0 0 | d = cyan

 0 0 0 0 7 1 0 0 2 0 0 0 | e = green

 0 0 0 0 0 8 0 0 0 2 0 0 | f = grey

 0 0 2 0 0 0 6 0 0 0 2 0 | g = orange

 0 0 0 0 0 0 0 10 0 0 0 0 | h = pink

 0 0 0 0 0 0 0 0 10 0 0 0 | i = red

 0 0 0 0 0 0 0 0 2 7 0 1 | j = violet

 0 0 0 0 0 0 1 0 0 0 9 0 | k = white

 0 1 0 0 0 0 0 0 0 0 0 9 | l = yellow

Appendices

74

Appendix VI – Results of the Experiment with the Old and New

Operators and up to 35 Features

Results of the experiment described in Section 3.5.3.

TestDB16-1 (28 features)
=== Evaluation on test set ===

Correctly Classified Instances 81 67.5 %

Incorrectly Classified Instances 39 32.5 %

Kappa statistic 0.6455

Mean absolute error 0.1407

Root mean squared error 0.2587

Relative absolute error 92.0661 %

Root relative squared error 93.598 %

Total Number of Instances 120

=== Detailed Accuracy By Class ===

TP Rate FP Rate Precision Recall F-Measure Class

 0.5 0.009 0.833 0.5 0.625 black

 0.7 0.009 0.875 0.7 0.778 blue

 0.7 0.018 0.778 0.7 0.737 brown

 0.8 0 1 0.8 0.889 cyan

 0.6 0.009 0.857 0.6 0.706 green

 0.8 0.018 0.8 0.8 0.8 grey

 0.9 0.073 0.529 0.9 0.667 orange

 0.9 0 1 0.9 0.947 pink

 0.5 0.018 0.714 0.5 0.588 red

 0.5 0.118 0.278 0.5 0.357 violet

 0.4 0.045 0.444 0.4 0.421 white

 0.8 0.036 0.667 0.8 0.727 yellow

=== Confusion Matrix ===

 a b c d e f g h i j k l <-- classified as

 5 0 0 0 0 0 0 0 1 1 3 0 | a = black

 0 7 0 0 0 0 0 0 0 0 0 3 | b = blue

 0 0 7 0 0 0 1 0 0 2 0 0 | c = brown

 0 0 0 8 0 0 0 0 0 2 0 0 | d = cyan

 0 1 0 0 6 2 0 0 0 0 0 1 | e = green

 0 0 0 0 0 8 0 0 1 1 0 0 | f = grey

 0 0 0 0 0 0 9 0 0 1 0 0 | g = orange

 0 0 0 0 0 0 1 9 0 0 0 0 | h = pink

 1 0 1 0 1 0 0 0 5 2 0 0 | i = red

 0 0 1 0 0 0 2 0 0 5 2 0 | j = violet

 0 0 0 0 0 0 4 0 0 2 4 0 | k = white

 0 0 0 0 0 0 0 0 0 2 0 8 | l = yellow

TestDB16-2 (35 features)
=== Evaluation on test set ===

Correctly Classified Instances 268 74.4444 %

Incorrectly Classified Instances 92 25.5556 %

Kappa statistic 0.7212

Mean absolute error 0.1399

Root mean squared error 0.2574

Erreur ! Utilisez l'onglet Accueil pour appliquer Títol 2 au texte que vous souhaitez faire apparaître

ici.

75

Relative absolute error 91.5932 %

Root relative squared error 93.1138 %

Total Number of Instances 360

=== Detailed Accuracy By Class ===

TP Rate FP Rate Precision Recall F-Measure Class

 0.833 0.003 0.962 0.833 0.893 black

 1 0.067 0.577 1 0.732 blue

 0.833 0 1 0.833 0.909 brown

 0.9 0 1 0.9 0.947 cyan

 0.5 0.006 0.882 0.5 0.638 green

 0.633 0.058 0.5 0.633 0.559 grey

 0.9 0.006 0.931 0.9 0.915 orange

 1 0.006 0.938 1 0.968 pink

 0.767 0.009 0.885 0.767 0.821 red

 0.333 0.009 0.769 0.333 0.465 violet

 0.933 0.109 0.438 0.933 0.596 white

 0.3 0.006 0.818 0.3 0.439 yellow

=== Confusion Matrix ===

 a b c d e f g h i j k l <-- classified as

 25 0 0 0 0 0 0 2 1 0 1 1 | a = black

 0 30 0 0 0 0 0 0 0 0 0 0 | b = blue

 0 0 25 0 0 0 1 0 0 0 4 0 | c = brown

 0 0 0 27 0 0 0 0 0 2 0 1 | d = cyan

 0 0 0 0 15 14 0 0 0 0 1 0 | e = green

 0 0 0 0 0 19 0 0 1 0 10 0 | f = grey

 0 0 0 0 0 0 27 0 0 0 3 0 | g = orange

 0 0 0 0 0 0 0 30 0 0 0 0 | h = pink

 0 1 0 0 2 4 0 0 23 0 0 0 | i = red

 0 0 0 0 0 1 1 0 1 10 17 0 | j = violet

 1 0 0 0 0 0 0 0 0 1 28 0 | k = white

 0 21 0 0 0 0 0 0 0 0 0 9 | l = yellow

TestDB16-3 (23 features)
=== Evaluation on test set ===

Correctly Classified Instances 114 95 %

Incorrectly Classified Instances 6 5 %

Kappa statistic 0.9455

Mean absolute error 0.1391

Root mean squared error 0.2557

Relative absolute error 91.0468 %

Root relative squared error 92.5299 %

Total Number of Instances 120

=== Detailed Accuracy By Class ===

TP Rate FP Rate Precision Recall F-Measure Class

 0.8 0 1 0.8 0.889 black

 0.7 0 1 0.7 0.824 blue

 1 0 1 1 1 brown

 1 0 1 1 1 cyan

 1 0 1 1 1 green

 1 0.009 0.909 1 0.952 grey

 0.9 0.009 0.9 0.9 0.9 orange

 1 0 1 1 1 pink

 1 0 1 1 1 red

 1 0 1 1 1 violet

Appendices

76

 1 0.009 0.909 1 0.952 white

 1 0.027 0.769 1 0.87 yellow

=== Confusion Matrix ===

 a b c d e f g h i j k l <-- classified as

 8 0 0 0 0 0 1 0 0 0 1 0 | a = black

 0 7 0 0 0 0 0 0 0 0 0 3 | b = blue

 0 0 10 0 0 0 0 0 0 0 0 0 | c = brown

 0 0 0 10 0 0 0 0 0 0 0 0 | d = cyan

 0 0 0 0 10 0 0 0 0 0 0 0 | e = green

 0 0 0 0 0 10 0 0 0 0 0 0 | f = grey

 0 0 0 0 0 1 9 0 0 0 0 0 | g = orange

 0 0 0 0 0 0 0 10 0 0 0 0 | h = pink

 0 0 0 0 0 0 0 0 10 0 0 0 | i = red

 0 0 0 0 0 0 0 0 0 10 0 0 | j = violet

 0 0 0 0 0 0 0 0 0 0 10 0 | k = white

 0 0 0 0 0 0 0 0 0 0 0 10 | l = yellow

Erreur ! Utilisez l'onglet Accueil pour appliquer Títol 2 au texte que vous souhaitez faire apparaître

ici.

77

Appendix VII – Results of the Experiment with an MFCC-like

Feature

Results of the experiment described in Section 3.5.4.

TestDB16-1
=== Evaluation on test set ===

Correctly Classified Instances 58 48.3333 %

Incorrectly Classified Instances 62 51.6667 %

Kappa statistic 0.4364

Mean absolute error 0.1431

Root mean squared error 0.2632

Relative absolute error 93.6364 %

Root relative squared error 95.2444 %

Total Number of Instances 120

=== Detailed Accuracy By Class ===

TP Rate FP Rate Precision Recall F-Measure Class

 0.4 0.064 0.364 0.4 0.381 black

 0.6 0.009 0.857 0.6 0.706 blue

 0.8 0.027 0.727 0.8 0.762 brown

 0.6 0.073 0.429 0.6 0.5 cyan

 0.3 0.018 0.6 0.3 0.4 green

 0.5 0.009 0.833 0.5 0.625 grey

 0.5 0.009 0.833 0.5 0.625 orange

 0.8 0.055 0.571 0.8 0.667 pink

 0.1 0.027 0.25 0.1 0.143 red

 0.1 0.055 0.143 0.1 0.118 violet

 0.7 0.182 0.259 0.7 0.378 white

 0.4 0.036 0.5 0.4 0.444 yellow

=== Confusion Matrix ===

 a b c d e f g h i j k l <-- classified as

 4 0 1 1 0 0 0 0 0 0 4 0 | a = black

 0 6 0 0 0 0 0 0 0 2 0 2 | b = blue

 0 0 8 0 0 0 0 0 0 0 2 0 | c = brown

 0 0 1 6 1 0 0 0 0 0 2 0 | d = cyan

 0 0 0 1 3 0 0 4 0 2 0 0 | e = green

 2 0 0 0 1 5 0 0 2 0 0 0 | f = grey

 0 0 0 0 0 0 5 2 0 1 2 0 | g = orange

 1 0 0 0 0 1 0 8 0 0 0 0 | h = pink

 2 0 0 2 0 0 0 0 1 0 4 1 | i = red

 2 0 0 2 0 0 0 0 0 1 4 1 | j = violet

 0 0 0 0 0 0 1 0 1 1 7 0 | k = white

 0 1 1 2 0 0 0 0 0 0 2 4 | l = yellow

TestDB16-2
=== Evaluation on test set ===

Correctly Classified Instances 183 50.8333 %

Incorrectly Classified Instances 177 49.1667 %

Kappa statistic 0.4636

Mean absolute error 0.1421

Root mean squared error 0.2614

Appendices

78

Relative absolute error 93.0211 %

Root relative squared error 94.5737 %

Total Number of Instances 360

=== Detailed Accuracy By Class ===

TP Rate FP Rate Precision Recall F-Measure ROC Area Class

 0.8 0.003 0.96 0.8 0.873 0.996 black

 1 0.039 0.698 1 0.822 0.983 blue

 1 0 1 1 1 1 brown

 0.9 0.303 0.213 0.9 0.344 0.844 cyan

 0.233 0 1 0.233 0.378 0.856 green

 0.033 0.042 0.067 0.033 0.044 0.813 grey

 0.133 0.012 0.5 0.133 0.211 0.752 orange

 1 0.024 0.789 1 0.882 0.989 pink

 0.367 0.085 0.282 0.367 0.319 0.829 red

 0.333 0.012 0.714 0.333 0.455 0.95 violet

 0.267 0.003 0.889 0.267 0.41 0.919 white

 0.033 0.012 0.2 0.033 0.057 0.739 yellow

=== Confusion Matrix ===

 a b c d e f g h i j k l <-- classified as

 24 0 0 3 0 0 0 1 1 0 1 0 | a = black

 0 30 0 0 0 0 0 0 0 0 0 0 | b = blue

 0 0 30 0 0 0 0 0 0 0 0 0 | c = brown

 0 0 0 27 0 0 0 0 0 0 0 3 | d = cyan

 0 1 0 16 7 4 0 1 1 0 0 0 | e = green

 0 0 0 12 0 1 0 0 17 0 0 0 | f = grey

 0 0 0 7 0 8 4 6 4 1 0 0 | g = orange

 0 0 0 0 0 0 0 30 0 0 0 0 | h = pink

 0 0 0 19 0 0 0 0 11 0 0 0 | i = red

 0 0 0 17 0 2 0 0 1 10 0 0 | j = violet

 1 0 0 9 0 0 4 0 4 3 8 1 | k = white

 0 12 0 17 0 0 0 0 0 0 0 1 | l = yellow

TestDB16-3
=== Evaluation on test set ===

Correctly Classified Instances 99 82.5 %

Incorrectly Classified Instances 21 17.5 %

Kappa statistic 0.8091

Mean absolute error 0.1395

Root mean squared error 0.2565

Relative absolute error 91.2948 %

Root relative squared error 92.7896 %

Total Number of Instances 120

=== Detailed Accuracy By Class ===

TP Rate FP Rate Precision Recall F-Measure ROC Area Class

 0.9 0.027 0.75 0.9 0.818 0.988 black

 1 0.018 0.833 1 0.909 0.991 blue

 1 0.018 0.833 1 0.909 0.991 brown

 0.7 0.027 0.7 0.7 0.7 0.979 cyan

 0.9 0.009 0.9 0.9 0.9 0.979 green

 0.8 0 1 0.8 0.889 0.991 grey

 0.8 0.018 0.8 0.8 0.8 0.988 orange

 0.9 0 1 0.9 0.947 0.996 pink

 0.8 0.009 0.889 0.8 0.842 0.953 red

 0.7 0.027 0.7 0.7 0.7 0.962 violet

Erreur ! Utilisez l'onglet Accueil pour appliquer Títol 2 au texte que vous souhaitez faire apparaître

ici.

79

 0.8 0.009 0.889 0.8 0.842 0.987 white

 0.6 0.027 0.667 0.6 0.632 0.93 yellow

=== Confusion Matrix ===

 a b c d e f g h i j k l <-- classified as

 9 0 0 0 0 0 0 0 0 0 1 0 | a = black

 0 10 0 0 0 0 0 0 0 0 0 0 | b = blue

 0 0 10 0 0 0 0 0 0 0 0 0 | c = brown

 1 0 0 7 0 0 0 0 0 0 0 2 | d = cyan

 0 0 0 1 9 0 0 0 0 0 0 0 | e = green

 0 0 0 1 1 8 0 0 0 0 0 0 | f = grey

 0 1 0 0 0 0 8 0 0 0 0 1 | g = orange

 0 0 0 0 0 0 1 9 0 0 0 0 | h = pink

 1 0 0 0 0 0 0 0 8 1 0 0 | i = red

 1 0 0 0 0 0 1 0 1 7 0 0 | j = violet

 0 0 0 0 0 0 0 0 0 2 8 0 | k = white

 0 1 2 1 0 0 0 0 0 0 0 6 | l = yellow

