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Abstract

 
 
 
 
This document reports the research done in the domain of automatic classification of speech 
within a Master’s degree internship in the Sony CSL laboratory. The work explores the potential 
of the EDS system, developed at Sony CSL, to solve speech recognition problems of a small 
number of isolated words, independently of the speaker, and with the presence of background 
noise. EDS automatically builds features for audio classification problems. This is done by 
means of (functional) composition of mathematical and signal processing operators. These 
features are called analytical features and are built by the system specifically for each audio 
classification problem, given under the form of a train and a test database. 
 

In order to adapt EDS to speech classification, since features are generated through 
functional composition of basic operators, a research on specific operators for speech 
classification problems has been done, and new operators have been implemented and added to 
EDS. To test the performance of our approach to the problem, a speech database has been 
created, and experiments before and after adding the new specific operators have been carried 
out. An SVM classifier using EDS analytical features has then been compared to a standard 
HMM-based speech recognizer. 
 

The results of the experiments indicate, on the one hand, that the new operators have 
shown to be useful to improve the speech classification performance. On the other hand, they 
show that EDS performs correctly in a speaker-dependent context, while further 
experimentation has to be done to draw conclusions in a speaker-independent situation. 
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Résumé

 
 
 
 
Ce document est un rapport sur la recherche réalisée dans le domaine de la classification 
automatique de la parole dans le contexte d’un stage de Master au sein du laboratoire Sony CSL. 
Le travail explore les possibilités du système EDS de Sony CSL pour résoudre des problèmes de 
reconnaissances d’un petit nombre de mots isolés, indépendamment du locuteur et en présence 
de bruit de fond. EDS construit des features automatiquement pour des problèmes de 
classification audio. Ceci est fait par composition (fonctionnelle) d’opérateurs mathématiques et 
de traitement du signal. Ces features sont appelées features analytiques et sont construites par le 
système spécifiquement pour chaque problème de classification audio, donné sous la forme 
d’une base de train et de test. 
 
 Pour adapter EDS à la classification de la parole, comme les features sont engendrées par 
composition fonctionnelle d’opérateurs de base, une recherche a été faite pour trouver des 
opérateurs spécifiques aux problèmes de la classification de voix, et de nouveaux opérateurs ont 
été implémentés et ajoutés à EDS. Pour pouvoir tester la performance de notre approche au 
problème, une base de données de voix a été créée, et des expériences avant et après avoir ajouté 
les nouveaux opérateurs spécifiques ont été réalisées. Un classifieur SVM construit avec des 
features analytiques a été ensuite comparé avec un système de reconnaissance vocale standard basé 
sur HMMs. 
 
 Les résultats des expériences indiquent, d’une part, que les nouveaux opérateurs sont 
montrés utiles pour améliorer les résultats de classification vocale. D’autre part, ils montrent que 
l’approche d’EDS est performante dans le contexte speaker-dépendant, tandis qu’il faut effectuer 
encore plus d’expérimentations pour tirer de conclusions concernant les situations speaker-
indépendantes. 
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Chapter 1 

 

Introduction

 
 
 
 

1.1   Background 
 

For its expansive possibilities and direct applications, Automatic Speech Recognition (ASR) has 
become an attractive domain of study in the area of information and communication technology 
for the last five decades. The challenge of building a machine capable to dialog with humans 
using natural language was in the mind of scientists for centuries, but it was not till the second 
half of the 20th century that technological advances made possible significant steps in that 
direction (Juang and Rabiner 2005). 
 
 On the other hand, the increasing amount of information that generates today’s society 
has triggered off the need to create intelligent systems to automatically search, select and classify 
information. This interest has led to many developments in the data mining, information 
retrieval and pattern recognition domains. A key step to the success of classification problems is 
feature extraction. Features are the individual measurable heuristic properties of the phenomena 
being observed and, traditionally, construction and selection of good features has been made by 
hand.  
 
 In the intersection of these two fields starts the idea of this work. Sony CSL is developing 
for some years the EDS (Extractor Discovery System), an original system for the automatic 
extraction of high-level audio descriptors, based on the idea of analytical feature (Zils and Pachet 
2004; Pachet and Roy 2004). Conversely to the classical approach, these features, used for 
supervised classification, are invented by the system and are conceived for being particularly 
adapted to a specific problem, given under the form of a train and a test database. This approach 
has been shown promising for several examples of audio classification (Cabral et al. 2007) like 
urban sounds (Defréville et al. 2006), percussive sounds (Roy et al. 2007), or dog barks (Molnár 
et al. 2008). 
 
 The aim of this work is to study how this technique can be applied to another type of 
sounds: short speech messages. The system should classify a small number of isolated messages, 
in a speaker-independent way, i.e. be able to identify the words uttered by subjects other than the 
ones the system was trained with. The system should be robust enough to work in non-ideal 
conditions, including the presence of background noise or voices of subjects of different ages 
and accents. Lastly, this speech classifier should work leaving aside sophisticated traditional 
techniques which use Hidden Markov Models (HMM). 
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 The hypothesis to verify through this work is that this new approach can be well-adapted 
to speech classification, but that new basic operators must be added to EDS to achieve good 
performances. 
 

1.2   State of the Art in Speech Classification 
 
ASR technologies are present nowadays in infinity of applications used on a daily basis by 
millions of users, from GPS terminals to call centres, from weather information telephonic 
services to domestic speech-to-text software. Although automatic speech recognition and speech 
understanding systems are far from perfect in terms of accuracy, properly developed applications 
can still make good use of the existing technology to deliver real value to the costumer. Which 
are the state-of-the-art tools that make that possible? This is the question that we will try to 
answer in this section. 
 

Juang and Rabiner (2005) revised the milestones in ASR research of the last four decades: 
 

“In the 1960’s we were able to recognize small vocabularies (order of 10-100 words) of 
isolated words, based on simple acoustic-phonetic properties of speech sounds. The key 
technologies that were developed during this time frame were filter-bank analyses, simple time 
normalization methods, and the beginnings of sophisticated dynamic programming 
methodologies. In the 1970’s we were able to recognize medium vocabularies (order of 100-1000 
words) using simple template-based, pattern recognition methods. The key technologies that 
were developed during this period were the pattern recognition models, the introduction of LPC 
methods for spectral representation, the pattern clustering methods for speaker-independent 
recognizers, and the introduction of dynamic programming methods for solving connected word 
recognition problems. In the 1980’s we started to tackle large vocabulary (1000-unlimited 
number of words) speech recognition problems based on statistical methods, with a wide range 
of networks for handling language structures. The key technologies introduced during this period 
were the hidden Markov model (HMM) and the stochastic language model, which together 
enabled powerful new methods for handling virtually any continuous speech recognition 
problem efficiently and with high performance. In the 1990’s we were able to build large 
vocabulary systems with unconstrained language models, and constrained task syntax models for 
continuous speech recognition and understanding. The key technologies developed during this 
period were the methods for stochastic language understanding, statistical learning of acoustic 
and language models, and the introduction of finite state transducer framework (and the FSM 
Library) and the methods for their determination and minimization for efficient implementation 
of large vocabulary speech understanding systems. Finally, in the last few years, we have seen the 
introduction of very large vocabulary systems with full semantic models, integrated with text-to-
speech (TTS) synthesis systems, and multi-modal inputs (pointing, keyboards, mice, etc.). These 
systems enable spoken dialog systems with a range of input and output modalities for ease-of-use 
and flexibility in handling adverse environments where speech might not be as suitable as other 
input-output modalities. During this period we have seen the emergence of highly natural 
concatenative speech synthesis systems, the use of machine learning to improve both speech 
understanding and speech dialogs, and the introduction of mixed-initiative dialog systems to 
enable user control when necessary.” 
 

Despite the comercial exploitation of the ASR technologies is quite recent, major 
advances were brought about in the 1960’s and 1970’s via the introduction of advanced speech 
representations based on LPC analysis and cepstral analysis methods, and in the 1980’s through 
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the introduction of rigorous statistical methods based on hidden Markov models. The main part 
of state-of-the-art speech feature extraction schemes are based on both LPC analysis 
(Hermansky 1990; Hermansky et al. 1991) and cepstral analysis (MFCC) (Acero and Huang 1995; 
Liu et al. 1993; Tyagi et al. 2003), while hidden Markov models have become the prevalent 
representation of speech units for speaker-independent continuous speech recognition (Holmes 
1994).  
 

1.2.1   Speech Feature Extraction 
 
In the feature extraction stage, since the speech signal is considered as a quasi-stationary process, 
speech analysis is performed on a short-term basis. Typically, the speech signal is divided into a 
number of overlapping time windows and a speech feature vector is computed to represent each 
of these frames. The size of the analysis window is usually of 20-30ms. The frame period is set to 
a value between 10 and 15ms.  
 

The goal of front-end speech processing in ASR is to attain a projection of the speech 
signal to a compact parameter space where the information related to speech content can be 
extracted easily. Most parameterization schemes are developed based on the source-filter model 
of speech production mechanism. In this model, speech signal is considered as the output of a 
filter (vocal tract) whose input source is either glottal air pulses or random noise. For voiced 
sounds the glottal excitation is considered as a slowly varying periodic signal. This signal can be 
considered as the output of a glottal pulse filter feed with a periodic impulse train. For unvoiced 
sounds the excitation signal is considered as random noise. 

 
State-of-the-art speech feature extraction schemes (Mel frequency cepstral coefficients 

[Hunt et al. 1980] and perceptual linear prediction [Hermansky 1990]) are based on auditory 
processing on the spectrum of speech signal and cepstral representation of the resulting features. 
The spectral and cepstral analysis is generally performed using Fourier transform. The advantage 
of Fourier transform is that it possesses very good frequency localization properties. 

 
Linear Predictive Coding has been considered one of the most powerful techniques 

for speech analysis. LPC relies on the lossless tube model of the vocal tract. The lossless tube 
model approximates the instantaneous physiological shape of the the vocal tract as a 
concatenation of small cylindrical tubes. The model can be represented with an all pole (IIR) 
filter. LPC coefficients can be estimated using autocorrelation or covariance methods. 
 

Cepstral analysis denote the unusual treatment of frequency domain data as it were 
time domain data. The cepstrum is a measure of the periodicity of a frequency response plot. 
The unit measure in cepstral domain is second but it indicates the variations in the frequency 
spectrum. 

 
One of the powerful properties of cepstrum is the fact that any periodicities or repeated 

patterns in a spectrum will be mapped to one or two specific components in the cepstrum. If a 
spectrum contains several harmonic series, they will be separated in a way similar to the way the 
spectrum separates repetitive time patterns in the waveform. The mel-frequency cepstral 
coefficients proposed by Mermelstein (Hunt et al. 1980) make use of this property to separate 
the excitation and vocal tract frequency components in cepstral domain. The spectrum of 
excitation signal is composed of several peaks at the harmonics of the pitch frequency. This 
constitutes the quickly varying component of the speech spectrum. On the other hand the vocal 
tract frequency response constitutes the slowly varying component of the speech spectrum. 
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Hence a simple low pass liftering (i.e. filtering in cepstral domain) operation eliminates the 
excitation component. 

 
 As said in the beginning of this section, a feature vector is extracted for each frame. 
Typically, state-of-the-art recognition systems use feature vectors based on LPC or MFCC of 
length between 10 and 40. That means, that these systems need to extract between 1000 and 
4000 values per second (with a usual frame period set to 10ms) from the speech signal (Bernal-
Chaves et al. 2005). 
 

1.2.2   State-of-the-art Systems for Similar Problems 
 
ASR technologies face very different levels of complexity depending on the characteristics of the 
problem they are tackling. These problems can range from classifying a small size vocabulary of 
noise-free isolated words in a speaker-dependent context to recognize thousands of different 
words in a noisy continuous speech in speaker-independent situations. 
 

In order to take some state-of-the-art solutions as a reference for the performances of 
our experiments, only systems that face similar problems to ours have to be taken into account. 
In particular, the characteristics that define our problem are the following: 

• small vocabulary (10-20 words) 
• isolated words 
• speaker-independent context 
• presence of background noise 

Research on systems thought to cope with problems of similar characteristics has being 
done for the last 30 years, and different performances have been reported depending on the 
proposed approach, though results are difficult to compare since they depend strongly on the 
database used in each experiment. For the same reason, a direct comparison of previous works 
with our system is not possible. 

Rabiner and Wilpon (1979) reported a recognition accuracy of 95% on a classification 
problem with a moderate size vocabulary (54 words), using statistical clustering techniques to 
provide a set of word reference templates for a speaking-independent classifier, and dynamic 
time warping to align these templates with the tested words. Nevertheless, tests with subjects 
with foreign accents led to poor recognition accuracies of 50%. 

More recently, the greatest advances have been achieved thanks to the development of 
complex statistical techniques based on hidden Markov models, though systems are still far from 
being perfect. These techniques were introduced because of the time dimension of the speech 
signal, which prevents to pose ASR as a simple static classification problem that could be solved 
using straightforward SVM classifiers using traditional feature vectors. In a problem with 10 
classes of clean isolated words, Bernal-Chaves et al. (2005) reported a recognition accuracy of 
99.67% of an HMM-based ASR system developed using the HTK package (Young et al. 2008) 
that needed a 26 elements long feature vector every 10ms. These feature vectors were made of 
the MFCCs and energy of each signal frame. When the clean speech was corrupted with 
background noise (SNR = 12 dB), performances fell down up to accuracies of 33.36%. 

The great majority of the state-of-the-art ASR systems are more or less complex 
variations of this last example, trying to solve robustness issues by improvements in the 
preprocessing of the speech signals, in the feature extraction stage or tuning better the HMMs. 
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Finally, it is important to note that, contrary to these traditional techniques, our approach 

extracts only a feature vector per word (not one per signal frame), reducing notably the 
computational costs of the system and saving about 50 times more data storage (considering that 
the average word length is about 500ms). It does not use HMMs or dynamic time warping either, 
but a straightforward SVM classification algorithm. Thus, we want EDS to find features that are 
robust to time dealignments produced by different speaking speeds. 
 
 

1.3   The Extractor Discovery System (EDS) 
 

The Extractor Discovery System started to be developed in 2003 thanks to the work of Aymeric Zils 
(Zils and Pachet  2004) at Sony CSL. As described by Cabral et al. (2007), the Extractor Discovery 
System is a heuristic-based generic approach for automatically extracting high-level audio 
descriptors from acoustic signals. EDS uses Genetic Programming (Koza 1992) to build 
extraction functions as compositions of basic mathematical and signal processing operators, such 
as Log, Variance, FFT, HanningWindow. A specific composition of such operators is called an 
analytical feature (e.g. Log (Variance (Min (FFT (Hanning (Signal)))))), and a 
combination of features forms a descriptor.  
 

1.3.1   General Overview 
 

Given a database of audio signals with their associated perceptive values, EDS is capable of 
generalizing a descriptor. Such descriptor is built by running a genetic search in order to find 
relevant features matching the description problem, and then using machine learning algorithms 
to combine those features into a general descriptor model. The genetic search performed by the 
system is intended to generate functions that may eventually be relevant to the problem. The 
best functions in a population are selected and iteratively transformed (by means of 
reproduction, i.e. constant variations, mutations, and/or cross-overs), respecting a pattern 
chosen by the user. The default pattern is !_x(Signal), which means a function presenting any 
number of operations but a single value as result (for more information about EDS syntax, look 
at [Zils and Pachet 2004]). The populations of functions keep reproducing until no improvement 
is achieved, or until the user intervenes. At this point, the best functions are available to be 
combined. A selection can be made both manually or automatically. The final step is to choose 
and compute a model (linear regression, model trees, k-NN, locally weighted regression, neural 
networks, etc.) that combines all features. The set of features can be exported in a format 
readable by Weka (Witten and Frank 2005), a machine learning tool, where a classifier can be 
built and tested using any of the methods available. In short, the user needs to 1) create the 
database, in which each recording is labelled with the correspondent class; 2) write a set of 
general patterns for construction of the features; 3) launch the genetic search; 4) select the 
appropriate features; 5) choose a model to combine the features. Some of the choices taken in 
these steps are crucial to the process. They delimit how the user can interfere in the search for 
features, as explained next. 
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Figure 1.1: A screenshot of EDS. Loading a database. 
 
 

1.3.2   Data Types and Patterns 
 

To ensure that the generated features are syntactically correct functions, the system uses data 
typing. Types in EDS are thought to let the program know both the “programming” type and 
the physical dimension of the data. The physical dimension indicates while the data belongs to 
time (t), to frequency (f), to amplitude or non-dimensional data (a), or to a functional relation of 
the previous: amplitude evolving in time (t:a), frequency evolving in time (f:a). Types also allow 
to express if the data is a vector of atomic values (Va, Vt, Vf), a vector of functional relations 
(Vt:a, Vf:a), or a vector of vectors of atomic values (VVa, VVt, VVf). For each operator, there 
are typing rules that determine the type of its output data depending on the types of its input 
data. This way, heuristics can be expressed in terms of physical dimensions, and not only in 
terms of programming types, avoiding physically invalid functions. 
 

On the other hand, patterns are specified in the EDS algorithm in order to represent 
specific search strategies and guide the search of functions. The pattern encapsulates the 
architecture of the feature, and is a regular expression denoting subsets of features 
corresponding to a particular strategy for building them. Syntactically, it is expressed like an 
analytical feature, with the addition of regular expression operators, such as “!”, “?” and “*”. 
Patterns make use of types to specify the collections of targeted features in a generic way. More 
precisely: 
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• “?_τ” stands for one operator whose type is τ 
• “*_τ” stands for a composition of several operators whose types are all τ (for each of 

them) 
• “!_τ” stands for several operators whose final type is τ (the types of the other operators 

are arbitrary) 

For example, the pattern: 
?_a(!_Va(Split(*_t:a(x)))) 

 
can be instantiated by the following concrete analytical features: 
 

Sum_a(Square_Va(Mean_Va(Split_Vt:a(HpFilter_t:a(x_t:a, 1000Hz), 100)))) 

 
Log10_a(Variance_a(Npeaks_Va(Split_Vt:a(Autocorrelation_t:a(x_t:a), 100), 

10))) 

 

1.3.3   Genetic Search 
 

Given a set of patterns, a genetic search is launched. It means that a population of features is 
created, and the capacity of each feature to separate (i.e. correctly classify) the samples in the 
training database is evaluated. The best features are selected as seeds for the next population. 
This process evolves the features until no improvement is found. 

 
Although the genetic search can be performed fully automatically, the user can supervise 

and interfere in the search. This intervention is even desired, since the space of possibilities is 
enormous, and heuristics are hard to express in most cases. Therefore, the user can lead the 
system through some specific paths by 1) stopping and restarting the search if it is following a 
bad path; 2) selecting specific features for future populations; 3) removing ineffective features 
from the search. Additionally, the stop condition itself is an important factor frequently left to 
the user. 

 
The choice of the population size may also influence the search, since larger populations 

may hold a bigger variety of features (which will converge slower), whereas smaller populations 
will perform a more in depth (faster) search (which will be most likely to terminate at local 
maxima). At last, the user can optimize features, finding the values for their arguments which 
maximize the class separation. For example, the split function (which divides a signal in sub-
signals) has the size of the sub-signals as a parameter. Depending on the case, a tiny value can be 
notably better than large values, for example. 

 

1.3.3.1   Genetic Operations 

 
New populations are created by applying genetic transformations on the most relevant functions 
of the current population. These operations are relatively standard in genetic programming. Five 
transformations are used in EDS: cloning, mutation, substitution, addition and crossover: 
 
• Cloning consists in keeping the tree structure of a function and applying variations on its 
constant parameters, such as the cut-off frequencies of filters or the computation window sizes. 
For example:  
 

Sum(Square(FFT(LpFilter(Signal, 1000Hz)))) 
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can be cloned as: 
 

Sum(Square(FFT(LpFilter(Signal, 800Hz)))) 

 
• Mutation consists in cutting a branch of a function, and replacing it by another composition of 
operators of the same type. For example: 
 

Sum(Square(FFT(LpFilter(Signal, 1000Hz)))) 

 

can be mutated into: 
 

Sum(Square(FFT(BpFilter(Normalize(Signal), 1100Hz, 2200Hz)))) 
 

• Substitution is a special case of mutation in which a single operator is replaced by a type-wise 
compatible one. For instance: 
 

Sum(Square(FFT(LpFilter(Signal, 1000Hz)))) 

 

can be replaced by: 
 

Sum(Square(FFT(BpFilter(Signal, 1100Hz, 2200Hz)))) 
 

• Addition consists in adding an operator as the new root of the feature. For instance: 
 

Sum(Square(FFT(Signal)) 

is an addition of: 
Square(FFT(Signal)) 

 
• Crossover consists in cutting a branch from a function and replacing it by a branch cut from 
another function. For example: 
 

Sum(Square(FFT(Autocorrelation(Signal)))) 

 

is a crossover between: 
 
Sum(Square(FFT(LpFilter(Signal, 1000Hz)))) and Sum(Autocorrelation(Signal)) 

 
In addition to the genetically transformed functions, the new population is completed 

with a set of new randomly generated analytical features to ensure its diversity and introduce new 
operations in the population evolution. 

 

1.3.3.2   Feature and Feature Set Evaluation 

 
The evaluation of features is a delicate issue in feature generation. It is now well-known that 
good individual features do not necessarily form good feature sets when they are considered 
together (feature interaction). In principle, only feature sets should be considered during search, 
as there is no principled way to guarantee that a good individual feature will be good once it is in 
a given feature set. However, this induces a risk to narrow the search, as well as a high evaluation 
cost. 
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That is the reason why another option is chosen in EDS, based on our experiments with 
large-scale feature generation, in which exploration of large areas of the analytical features’ space 
is favoured. Within a feature population, features are evaluated individually. Feature interaction is 
considered during the selection step for creating new populations. 

 
Individual feature evaluation 
 

There are several ways to assess the fitness of a feature. For classification problems, the 
Fischer Discriminant Ratio is often used because it is simple to compute and reliable for binary 
classification problems. However it is notoriously not adapted to multi-class problems, in 
particular for non convex distributions of data. To improve feature evaluation, a wrapper 
approach to feature selection has been chosen: features are evaluated using an SVM classifier 
built during the feature search with a 5-fold cross-validation on the training database. The fitness 
is the performance of the classifier built with this unique feature. As we often deal with multi-
class classification (and not binary), the average F-measure is recommended to assess the classifier’s 
performance. However, as training databases are not necessarily balanced class-wise, the average 
F-measure can be artificially good. Therefore, the fitness in EDS is finally given by an F-measure 
vector (one F-measure per class) of the wrapper classifier. For regression problems, the Pearson 
correlation coefficient is used, but other methods could be applied, such as a wrapper approach 
with a regression SVM. 
 
Feature set evaluation: taking advantage of the syntactic form of analytical features 
 

After a population has been created and each feature has been individually evaluated, a 
number of features need to be selected to be retained for the next population. In principle, such 
a feature selection process could be done using any feature selection algorithm, such as 
InfoGain. But feature selection algorithms usually require the computation of redundancy, 
which, in turn, implies the computation of correlations of feature’s values across samples. As our 
features are all analytical features, we take advantage of their syntactic expression to compute a 
rougher but efficient redundancy measure. This can be done thanks to the observation that 
syntactically similar analytical features have (statistically) correlated value series (Barbieri 2008). 
Additionally, our algorithm considers the performance of features on each class, and not globally 
for all classes. 
 
 Finding an optimal solution would require a costly multi-criteria optimization. Instead, a 
low-complexity algorithm as a one-pass selection loop is proposed: we first select the best 
feature, and then iteratively select the next best feature not redundant with any of the selected 
ones, until we have the required number of features. Its particularity is to cycle through each 
class of the problem, and to take into account the redundancy between a feature and the 
currently built feature set using the syntactic structure of the feature. The algorithm is as follows: 
 

FS � {}; the feature set to build 

For each class C of the classification problem 

S � {non-selected features, sorted by decreasing performance wrt C}; 

For each feature F in S 

If (F is not s-correlated to any feature in FS) 

FS � FS + {F}; Break; 

If (FS contains enough features) Return FS; 

Return FS; 

 
 The syntactic correlation (s-correlation) between 2 features is computed on the basis of 
their syntactic form. This not only speeds up the selection, but also forces the search algorithm 
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to find features with a great diversity of operators. S-correlation is defined as a specific distance 
between two analytical features, using specific edit operations costs and taking into account 
analytical features’ types. More precisely, the cost of replacing operator Op1 by Op2 in an 
analytical feature is: 
 

if Op1 = Op2 return 0 

else if (Op1 != Op2) return 1 

else return 2 

 
In order to yield a Boolean s-correlation function, the edit distance for all pairs of features 

in the considered set (the analytical feature population in our case) is computed and the 
maximum (Max-s-distance) values for these distances are got. S-Correlation is finally defined as: 
 

S-correlation (F, G): 

Return tree-edit-distance (f, g) >= ½ * Min-S-Correlation 

 

 As a consequence, our mechanism allows 1) to speed up the evaluation of individual 
features, thereby exploring a larger feature space, while 2) ensuring a syntactic diversity within 
feature populations. 
 

 

 

Figure 1.2: A screenshot of EDS. A genetic search. On the left, the pattern set used for the search; on the 
right, a feature population generated by EDS. 
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1.3.4   Feature Selection 
 

After many features were found, possibly in different genetic searches, they can be combined to 
create the final descriptor (possibly with a single feature). The selection of which features to 
combine is left to the user, even if one useful tool is available: the feature selection tool picks up 
the features that have better fitness than a user-defined threshold and are less correlated with 
one another than a second user-defined threshold. Both fitness and correlation are assessed 
using the same methods described in the previous section for the feature and feature set 
evaluation in the genetic searching algorithms. That is maybe the point at which the quality of 
the result is more dependent on the user, since the result may vary notably depending on the 
number of features that are going to be used for building a descriptor, as well as the level of 
correlation between them. 
 
 

 

Figure 1.3: A screenshot of EDS. The feature selector. 
 
 

1.3.5   Descriptor Creation and Evaluation 
 

Finally, in order to create a descriptor, the selected features must be exported to Weka, where a 
supervised learning method is chosen, and features are combined. The resultant descriptor is 
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then evaluated on a test database, and Weka presents a summary with the results class per class, 
along with the precision rates. 
 

 
 

 

Figure 1.4: A screenshot of Weka. Summary of the test results of a classifier. 
 
 
 

1.4   Working Plan 
 
To accomplish the objectives set by the project, the work was divided into four different parts: 

 First of all, a familiarization with EDS and a rapid initiation to analytical feature 
techniques. 

Secondly, a documentation task with the aim of identifying the state-of-the-art features 
used in ASR. Due to the nature of our problem, attention was also paid to audio classification 
studies other than ASR, such as speech/music discrimination, emotion recognition or accent and 
language recognition. The reason is that nowadays ASR is generally oriented to large or unlimited 
vocabulary in a continuous speech environment, while we were concerned with small vocabulary 
and isolated-word problems, and approaches to this other audio classification topics could be 
also useful. 
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The third part of the work entailed identifying the basic operators needed by EDS to 
automatically generate specific analytical features adapted to speech problems. These operators 
were deduced from the observation of the characteristics of the speech signals and from the 
classical features identified in the previous stage. At this point, all the identified missing 
operators were implemented in EDS. 

 
Finally, a series of experiments were carried out on a previously built database to test the 

performance of EDS before and after adding the new basic operators to the system. Taking the 
features with best fitness that EDS had generated based on a training data base, some classifiers 
were built using Weka and were tested in various test sets. The last part of the work was 
analysing the results, comparing them to those obtained with a standard system, and proposing 
future work from the conclusions drawn. 

 
 

1.5   Thesis Structure 
 
This work has been divided into four chapters: 
 
 Chapter 1 introduces the framework in which the thesis has been developed. First, the 
state of the art in automatic speech recognition is presented, and then the EDS system is 
described.  
 

Chapter 2 presents, first, the most relevant features used in speech recognition and other 
related domains. Next, it describes the 23 new EDS operators that have been designed in order 
to adapt EDS to speech classification, taking into account the features previously introduced. 
Finally, the last section describes the limitations of the system that have been found when 
carrying out this adaptation. 

 
Chapter 3 contains the experimental work of the thesis. It presents the database used in 

the experiments, along with an endpoint detector designed for cleaning the samples. It also 
describes the most interesting experiments that were carried out in order to study the 
performance of our approach, with and without the new operators.  

 
Chapter 4 makes a summary and discusses the results obtained in the experiments. Then, 

a comparison between our approach and a standard speech classifier is offered. Finally, the most 
important conclusions are extracted, and future work directions are suggested. 
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Chapter 2 

 

Adapting EDS to Speech Classification

 
 
 
 
As described in the previous chapter, EDS builds new analytical features adapted to a specific 
problem, given under the form of a train and a test database. The construction of these features 
is made by means of the composition of basic operators. 
 

The key issue of the work, discussed in this chapter, is finding the basic operators that 
must be added to the existing set of operators of EDS so that the system is able to produce good 
analytical features for speech classification problems. For this purpose, an extensive 
bibliographic research on ASR and other audio classification and recognition problems has been 
done to identify the features used classically (see next Section 2.1). For each feature in Section 
2.1, it has been studied if EDS would be able to build it by means of the composition of the pre-
existent operators. When that has been considered not possible, new operators have been 
described. Section 2.2 contains the description of the 23 new operators that have been 
implemented to EDS  
 
 After the implementation of the additional operators, EDS is able to reach the features 
used classically if they are appropriate for the given problem. Moreover, it is able to improve 
their performance by applying to them genetic modifications, discovering new features well 
adapted to the problem. 
 
 On the other hand, due to the particular characteristics of EDS, certain features can not 
be built with this approach. Section 2.3 explains the limitations of this analytical feature 
technique. 
 
 

2.1   Classical Features for Speech Classification Problems 
 
There exists an extensive literature that discusses about features used in speech recognition. 
Next, there is a list of the most interesting ones that can contribute to the definition of specific 
operators for speech classification problems. A brief comment accompanies the feature when 
necessary. Since is not the aim of this document to give a deep description of these features, 
there is a bibliographic reference next to them to know more about their characteristics. 

 
LPC (Linear Predictive Coding) 
(Huang et al. 2001) 
Its values represent the spectral envelope of a digital signal of speech in compressed form, using 
the information of a linear predictive model. 
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MFCC (Mel-frequency cepstral coefficients) 
(Hunt et al. 1980) 
This set of perceptual parameters provides a compact representation of the spectral envelope, 
such that most of the signal energy is concentrated in the first coefficients. To represent speech, 
13 coefficients are commonly used, although it has been demonstrated that for classification 
tasks, it is enough to take into account only the first five coefficients. 
 
Cepstral Mean Normalization (CMN) 
(Liu et al. 1993) 
This feature is useful for normalizing the cepstral feature space. It can be built using the operator 
Horizontal Mean Normalization, described in the next section. 
 
Cepstrum Resynthesis Residual Magnitude 
(Scheirer and Slaney 1997) 
The output of this feature is higher for voiced speech or music than for unvoiced speech. 
 

 

Figure 2.1: CRRM gives higher values for voiced speech than for unvoiced speech. 
 
For a description of this feature see the next section, where an operator with the same name 
Cepstrum Resynthesis Residual Magnitude is presented. 
 
Spectral Flux 
(Scheirer and Slaney 1997) 
The output of this feature, also known as Delta Spectrum Magnitude, is associated with the 
amount of spectral local changes. It is lower for speech, particularly voiced speech, than it is for 
music or unvoiced speech. The Spectral Flux is defined as the 2-norm of the frame-to-frame 
spectral amplitude difference vector, �|��| � |����|�. 
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Percentage of “Low-Energy” Frames 
(Scheirer and Slaney 1997) 
This measure will be higher for unvoiced speech than for voiced speech or music. It represents 
the proportion of frames with RMS power less than 50% of the mean RMS power within a one-
second window. 
 
Spectral Centroid 
(Scheirer and Slaney 1997) 
This measure gives different results for voiced and unvoiced speech. It can be associated with 
the measure of brightness of a sound, and is obtained by evaluating the center of gravity of the 
spectrum: 

�	
 � ∑ 
 � |�
�
�|����∑ |�
�
�|����  

 
where �
�
� represents the k-th frequency bin of the spectrum at frame t, and N is the number 
of frame samples. 
 
Spectral Roll-off Point 
(Scheirer and Slaney 1997) 
This measure will be higher for unvoiced speech than for voiced speech or music. It is the n-th 
percentile of the power spectral distribution, giving the frequency bin below which an n% of the 
magnitude distribution is concentrated. The feature gives an idea of the shape of the spectrum. 
 
Zero-Crossing Rate (ZCR) 
(Scheirer and Slaney 1997) 
This feature takes higher values for noise and unvoiced speech than for voiced speech. It is the 
number of time-domain zero-crossings within a speech frame. 
 
High Zero Crossing Rate Ratio 
(Alexandre et al. 2006) 
It takes higher values for speech than for music since speech is usually composed by alternating 
voiced and unvoiced fragments. This feature, computed from the ZCR, is defined as the number 
of frames whose ZCR is 1.5 times above the mean ZCR on a window containing M frames. 
 
Low Short-Time Energy Ratio 
(Alexandre et al. 2006) 
This measure will be higher for unvoiced speech than for voiced speech or music. Similarly to 
the High Zero Crossing Rate Ratio, it is obtained from the Short-Time Energy (i.e. the mean 
energy of the signal within each analysis frame), and defined as the ratio of frames whose Short-
Time Energy is 0.5 times below the mean Short-Time Energy on a window that contains M 
frames. 
 
Standard Deviation of the Spectral Centroid + AWGN 
(Minematsu et al. 2006) 
The addition of white Gaussian noise (AWGN) only increases (slightly) the centroid value of the 
unvoiced segments. More generally, the addition of white Gaussian noise helps to reduce speaker 
differences in speech. 
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Voicing Rate 
(Kitaoka et al. 2002) 
It gives higher values for segments of voiced speech than for unvoiced speech. This feature can 
be calculated as follows: 

� � log �����
�
�

� 
 
where ���� is a sequence of LPC residual errors. An LPC model smoothes the spectral fine 
structure and the LPC residual error contains this information. This corresponds to the vibration 
of the glottal source. 
 
Normalized Pitch 
(Kitaoka et al. 2002) 
It normalizes the pitch, smoothing speaker-dependent variations. It is defined as: 
 

 !"#$,
 �  
 � 1'� �
�

���
 

 
where � �� is a sequence of log fundamental frequencies and N is the length of � ��. 
 
Pitch Regression Coefficients 
(Kitaoka et al. 2002) 
Another way to reduce the speaker-dependent factor present in the pitch: 
 

∆ 
 � ∑ 
 
��)��*)∑ 
�)��*)  

 
where  � represents the log fundamental frequency and K is the window length to calculate the 
coefficients. 
 
Power Regression Coefficients 
(Kitaoka et al. 2002) 
It normalizes the power values, smoothing speaker-dependent and environment variations. This 
feature is calculated using the same formula as in Pitch Regression Coefficients, where  � 
represents, in this case, power (i.e. the logarithm of the square sum of the speech waveform). 
 
Delta MFCC 
(Deemagarn and Kawtrakul 2004) 
It measures the change in MFCC over time, in terms of velocity. This feature can be calculated 
using the same formula as in Pitch Regression Coefficients, where  � represents, in this case, the 
MFCC. 
 
Delta-Delta MFCC 
(Deemagarn and Kawtrakul 2004) 
It measures the change in MFCC over time, as well. It gives information about the acceleration 
of the coefficients. This second-order delta MFCC is usually defined from the first-order one as: 
 ∆∆ � � ∆ ��� � ∆ �*� 
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Some operators can also act as signal preprocessing functions when they are placed in the 

beginning of the chain of operators in an analytical feature. Apart from the well-known 
normalization and windowing functions, here they are some other usual ones for speech:  
 
High-Frequency Preemphasis 
(Nossair 1995) 
This tends to whiten the speech spectrum as well as emphasizing those frequencies to which the 
human auditory system is most sensitive. For a description of this filter see the next section, 
where an operator with the same name High-Frequency Preemphasis is presented. 
 
2 kHz cut-off Low-Pass Filtering 
(Minematsu et al. 2006) 
It smoothes inter-speaker differences. It consists of applying a common low-pass filter to the 
signal, with a cut-off frequency of 2 kHz. 
 
 

2.2   New Operators for EDS 
 

A total of 23 new operators have been implemented in EDS. Most of them have appeared trying 
to adapt ideas of the classical features described in the previous section. In some cases, some of 
these classical features have become basic operators themselves due to the technical impossibility 
of building them through the composition of several simpler operators. Other operators – the 
horizontal ones – have been created after the observation of how EDS works, trying to cope 
with some typing characteristics inherent in the system. 
 
In the following lines, there is the description of the new operators. Some remarks: 

• The names of the operators used in the EDS interface appear in brackets next to the 
operator’s name. 

• The input arguments are also specified, and their default value and possible range are 
indicated whenever they are a parameter, following this format: (default value [min. 
value, max. value]). 

• At the end of each description, there are the typing rules followed by EDS with the 
operator. 

 
Horizontal Sum (HSum) 
arguments: input matrix 
It returns a matrix which elements are the sums of the rows of the input matrix. 
For each row of the input matrix, +� � �,��  ,�� … ,�.�, it returns the single value: 
 /� � ,�� 0 ,�� 010 ,�� 
 
HSum is the analogue operator of the existing Sum for the computation by rows. 
 
Typing rules: atom_1 > NULL 
  F?any_1:?any_2 > NULL! 
  VF?any_1:?any_2 > Fany_1:any_2! 
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  V?atom_1 > NULL 
  VV?atom_1 > Vatom_1 
 
 
Norm (Norm) 
arguments: input matrix 
It returns a matrix which elements are the norms of the columns of the input matrix. 

For each column of the input matrix, +2 � 3,2�  ,2� … ,2456, it returns the single value: 
 

/2 � 7+27 8� 9,2�� 0 ,2�� 010 ,24�  

 
Although EDS could find this result with the composition Sqrt (Sum (Power (x, 2))), 
Norm has been implemented since it is a frequently used basic operation. This is an operator 
associated with the energy of the input signal. 
 
Typing rules: atom_1 > NULL 
  F?any_1:?any_2 > any_2 
  VF?any_1:?any_2 > Vany_2! 
  V?atom_1 > atom_1 
  VV?atom_1 > Vatom_1 
 
 
Horizontal Norm (HNorm) 
arguments: input matrix 
It returns a matrix which elements are the norms of the rows of the input matrix. 
For each row of the input matrix, +� � �,��  ,�� … ,�.�, it returns the single value: 
 

/� � �+�� 8� 9,��� 0 ,��� 010 ,���  

 
HNorm is the analogue operator of Norm for the computation by rows. EDS can also reach it 
by doing Sqrt (HSum (Power (x, 2))) but, like Norm, it has been implemented to simplify 
its construction. This is an operator associated with the energy of the signal.  
 
Typing rules: atom_1 > NULL 
  F?any_1:?any_2 > NULL! 
  VF?any_1:?any_2 > Fany_1:any_2! 
  V?atom_1 > NULL 
  VV?atom_1 > Vatom_1 
 
 
Horizontal Root Mean Square (HRms) 
arguments: input matrix 
It returns a matrix which elements are the RMS of the rows of the input matrix. 
For each row of the input matrix, +� � �,��  ,�� … ,�.�, it returns the single value: 
 

/� � ,� #$: 8� ;,��� 0 ,��� 010 ,���'  
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HRms is the analogue operator of the existing Rms for the computation by rows. This is an 
operator associated with the power of the input signal.  
 
Typing rules: atom_1 > NULL 
  F?any_1:?any_2 > NULL! 
  VF?any_1:?any_2 > Fany_1:any_2! 
  V?atom_1 > NULL 
  VV?atom_1 > Vatom_1 
 
 
Horizontal Percentile (HPercentile) 
arguments: input matrix, percentage (50 [1, 100]) 
It returns a column matrix where each row element is greater than a constant percentage 
(between 0 and 100) of the elements in the corresponding row of the input matrix. 
 
HPercentile is the analogue operator of the existing Percentile for the computation by rows. 
 
Typing rules: atom_1, n > NULL 
  F?any_1:?any_2, n > NULL! 
  VF?any_1:?any_2, n > Fany_1:any_2! 
  V?atom_1, n > NULL 
  VV?atom_1, n > Vatom_1 
 
 
Horizontal Derivation (HDerivation) 
arguments: input matrix 
It returns a matrix which rows are the first derivative of the rows of the input matrix. 
For each row of the input matrix, +� � �,��  ,�� … ,�.�, it returns the vector: 
 <� � �/��  /�� … /�.� � �,�� � ,��  ,�= � ,�� … ,�� � ,��*� 0� 

 
HDerivation is the analogue operator of the existing Derivation for the computation by rows. 
It is useful to compute the Spectral Flux, which can be computed in EDS as: 
 

HNorm(HDerivation(Fft(SplitOverlap(x, window_size, overlap_percent)))) 

 
And for computing an approximation of the Delta and Delta-Delta MFCCs: 
 

HDerivation(Mfcc(SplitOverlap(x, window_size, overlap_percent), 

number_coeffs)) 

HDerivation(HDerivation(Mfcc(SplitOverlap(x, window_size, overlap_percent), 

number_coeffs))) 

 
Typing rules: V?atom_1 > NULL 
  F?atom_1:?atom_2 > NULL 
  VF?atom_1:?atom_2 > VFatom_1:atom_2 
  VV?atom_1 > VVatom_1 
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Horizontal Regression Coefficients (RegressionCoeffs) 
arguments: input matrix, regression order (1 [1, 3]) 
It returns a matrix which rows are the regression coefficients of the rows of the input matrix. 
 
For each row of the input matrix, +�, it returns the vector: 
 

∆,�2 8� ∑ �?@ ABCDCEFD∑ �GDCEFD   ∀ H 
 

The regression order K is a parameter that varies usually between 1 and 3. This operator is 
similar to HDerivation, and is very useful for capturing temporal information. If its input matrix 
is a matrix of MFCCs, we obtain the Delta MFCCs. In the syntax of EDS: 
 
RegressionCoeffs(Mfcc(SplitOverlap(x, 20ms, 50%), num_coeffs), reg_order) 

 
Typing rules: V?atom_1, n > NULL 
  F?atom_1:?atom_2, n > NULL 
  VF?atom_1:?atom_2, n > VFatom_1:atom_2 
  VV?atom_1, n > VVatom_1 
 
 
Vertical Regression Coefficients (VRegressionCoeffs) 
arguments: input matrix, regression order (1 [1, 3]) 
It returns a matrix which columns are the regression coefficients of the columns of the input 
matrix. 
 
VRegressionCoeffs is the analogue operator of RegressionCoeffs for the computation by 
columns. Thus, the formula is applied this time to each column of the input matrix. Similar to 
Derivation, this is a very useful operator for capturing temporal information. If the input matrix 
is a matrix of powers or pitches, we obtain the power and pitch regression coefficients. In the 
syntax of EDS: 
 

VRegressionCoeffs(Log10(Norm(SplitOverlap(Normalize(x), 20ms, 50%))), 

reg_order) 

VRegressionCoeffs(Pitch(SplitOverlap(x, 20ms, 50%))), reg_order) 

 
Typing rules: V?atom_1, n > Vatom_1 
  F?atom_1:?atom_2, n > Fatom_1:atom_2 
  VF?atom_1:?atom_2, n > VFatom_1:atom_2 
  VV?atom_1, n > VVatom_1 
 
 
Horizontal Mean Normalization (HMeanNormalization) 
arguments: input matrix 
It returns a matrix where each element is the corresponding element of the input matrix minus 
the average value of the corresponding row. 
 
Let’s call A the input matrix that contains N column vectors. A mean is computed for all the 
elements of each row of the input matrix, obtaining a column vector of means, let’s call it B. 

That is: I� � �� · �K�� 0 K�� 010 K���  ∀ i 
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Then, all the elements of each row of the input matrix are subtracted by their corresponding 
mean of the column vector, obtaining the normalised values in C:  
  �2 � K�2 � I�  ∀ i, j 

 
This operator is useful to compute the Cepstral Mean Normalization, which is the Horizontal 
Mean Normalization when the input matrix is made of MFCC column vectors. In the syntax of 
EDS: 
 

HMeanNormalization(Mfcc(SplitOverlap(x, 20ms, 50%), num_coeffs)) 

 
It is also useful in Normalised Formants, if the input matrix is a matrix of formants: 
 

HMeanNormalization(FormantSplitPraat(x)) 

 
Typing rules: VV?any_1 > VVany_1! 
  VF?any_1:?any_2 > VFany_1:any_2! 
 
 
Vertical Mean Normalization (VMeanNormalization) 
arguments: input matrix 
It returns a matrix where each element is the corresponding element of the input matrix minus 
the average value of the corresponding column. 
 
VMeanNormalization is the analogue operator of HMeanNormalization for the 
computation by columns. 
This operator is useful to compute the Normalised Pitch: 
 

VMeanNormalization(Pitch(SplitOverlap(x, 20ms, 50%))) 

VMeanNormalization(PitchSplitPraat(x)) 

 
Typing rules: V?atom_1 > Vatom_1! 
  F?atom_1:?atom_2 > Fatom_1:atom_2! 
  VV?atom_1 > VVatom_1! 
  VF?atom_1:?atom_2 > VFatom_1:atom_2! 
 
 
White Noise Addition (AddWhiteNoise) 
arguments: input matrix, noise mean (0 [-1, 1]), noise variance (0.005 [0, 0.01]) 
It returns a matrix which columns are the sum of the columns of the input matrix with a white 
Gaussian noise of same length, of mean and variance specified by the input arguments. For each 
column of the input matrix, +2 , it returns the vector: 
 <2�L� � +2�L� 0 M2�L� � +2�L� 0 �N�KL 0 OPQR�SKQTKL �� · UVWXW2�L�� 

 UVWXW�n� is a function that generates arrays of random numbers whose elements are normally 
distributed with mean 0, and variance 1.  

 
This operator is useful for dithering techniques and for reducing speaker differences in speech: 
 

SpectralCentroid(AddWhiteNoise(Normalize(x), mean, variance)) 
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It is important to normalise the input signal before applying this operator, in order to keep 
coherence along the entire data base.  
  
Typing rules: Ft:a, n, n > Ft:a! 
  VFt:a, n, n > VFt:a! 
 
 

 

Figure 2.2: Plotted in red an utterance of the word black, and in blue the output of the AddWhiteNoise 
operator with mean=0 and variance=0.005 as parameters, after normalising the signal. 

 
 
High-Frequency Preemphasis (HFPreemphasis) 
arguments: input matrix, preemphasis coefficient (0.97 [0.9, 1]) 
It returns a matrix which columns are the result of filtering the columns of the input matrix with 
a second-order FIR filter which two elements are [1 -precoeff]. For each column of the input 
matrix, +2 , it returns the vector: 
 <2�L� � +2�L� � ZQ� [�\\ · +2�L � 1� 
 
The relation between precoeff and the preemphasis frequency is: 
 

ZQ� [�\\ � �*�]·^#__$`a:�:b#_c:a$^d�!eb#_c  
 

Thus, the preemphasis coefficient depends on the sampling frequency. For around 16 kHz it is 
between 0.9 and 1, and usually between 0.95 and 0.98, yielding a cut-off frequency between 50 
and 130 Hz. 
 
Typing rules: Ft:a, n > Ft:a! 
  VFt:a, n > VFt:a! 
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Cepstrum Resynthesis Residual Magnitude (Crrm) 
arguments: input matrix, number of mel band filters (27 [2, 40]), order of the smoothing filter (3 
[2, 10]). 
It returns a matrix which contains the Cepstrum Resynthesis Residual Magnitude (CRRM) of the 
input matrix, taken as a temporal signal. 
The CRRM is defined as the norm of the difference between the magnitude of its spectrum and 
the magnitude of the same spectrum smoothed in the MFCC domain, both in the mel scale, i.e.: 
 

	ffg 8� ;����
� � h�
���
�

 

 
where X[k] is the magnitude of the input signal’s spectrum in the Mel scale and Y[k] is the 
magnitude of the same spectrum smoothed in the Mel Frequency Cepstral Coefficients (MFCC) 
domain, also in the mel scale. 
In more detail, Y[k] is obtained first by calculating the MFCC of the input matrix, using as many 
mel band filters as in X[k], and then applying a moving average in order to smooth the results 
before returning to the spectral domain by applying the inverse Discrete Cosine Transform 
(iDCT) and taking its exponential. These two last operations are the inverse operations used in 
the computation of the MFCC, the DCT and the natural logarithm. 
The moving average of Nth order (normally order 2 or 3) is the convolution of its input vector 

with a vector of N+1 components and constant value I� � ����, for T � 0, 1, … ,'. 

 
Typing rules: ?atom_1, n, n > NULL! 
  F?atom_1:?atom_2, n, n > atom_2! 
  VF?atom_1:?atom_2, n, n > Vatom_2! 
  V?atom_1, n, n > atom_1! 
  VV?atom_1, n, n > Vatom_1! 
 
 
Mel-Filterbank (MelFilterBank) 
arguments: input matrix, number of bands (10 [2, 40]) 
It returns a matrix which columns contain copies of the input matrix filtered through different 
mel-frequency bands. 
 
It uses a modified implementation of the yet existing FilterBank, where calculated filter 
bandwidths are passed as an argument to the modified FilterBank function. All the filters have 
the same bandwidth in the mel-frequency scale, and frequency scale values can be calculated 
using: 
 \ � 700 · j�$ ���k.m�mno⁄ � 1q 

 
Typing rules: F?atom_1:?atom_2, n > VFatom_1:atom_2! 
  V?atom_1, n > VVatom_1! 
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LPC Residual Error (LPCResidualError) 
arguments: input matrix, order (10 [5, 40]) 
It returns a matrix which columns are the Linear Predictive Coding residual error sequences of 
the columns of the input matrix. 
 
This sequence can be calculated in Matlab® with the functions aryule and filter as follows (The 
Mathworks 2008): 
 
a = aryule (input_signal, m); % AR model parameters a of the signal input_signal for a m-order 
model. 
e = filter (a, 1, input_signal); % AR model prediction error sequence e. 
 
The order m is often between 10 and 20, and the input signal should be a normalized and 
Hamming-windowed frame of about 20ms: 
 

LPCResidualError(Hamming(Normalize(SplitOverlap(x, 20ms, 50%))),10) 

 
This operator is useful for EDS to build a feature that measures the voicing rate:  
 � � log �∑ ����� , where ���� is a sequence of LPC residual errors. 

 
Log10(Norm(LPCResidualError(Hamming(Normalize(SplitOverlap(x, 20ms, 

50%))),10)) 

 
Typing rules: Ft:a, n > Ft:a! 
  VFt:a, n > VFt:a! 
 
 
Low Short-Time Energy Ratio (LSTER) 
arguments: input matrix, threshold (0.15 [0, 1]), window size (1024), overlap percent (0.5 [0.2, 0.8]) 
It returns a matrix which elements are the ratio of low short-time energy frames of the columns 
of the input matrix. 
 
Algorithm: 

� for each column +2 of the input matrix 
begin for 

• calculate total energy: rs2 � ∑ ,2�L��!  
• split the signal into frames of size window size and overlap overlap percent 
• for each of these frames +2� 

begin for 
o calculate frame energy: ts2� � ∑ ,2��L��!  
o if ts2� u RvQ�Ov[wx · rs2 

then number of low-energy frames increases: yst2 00 
end for 

• calculate the ratio of low energy frames in the column:  y�rsf2 � yst2 'zNI�Q [\ \QKN�O⁄  
 end for 
 

The usual values for threshold, window size and overlap percent are: 0.15, 20 ms (the number of 
samples depends on the sampling rate) and 0.5 respectively. 
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Applying this operator directly to a whole audio file is not very useful. In order to obtain good 
results, making it robust to silence, this operator should have as input matrix the audio file 
previously split into windows of approximately 250 ms with an overlap of 50%. Then, the global 
LSTER can be obtained by computing its mean. It is also interesting to obtain its variance: 

 
Mean(LSTER(SplitOverlap(x, 250ms, 50%), 0.15, 20ms, 50%)) 

Variance(LSTER(SplitOverlap(x, 250ms, 50%), 0.15, 20ms, 50%)) 

 
Typing rules: F?atom_1:?atom_2, n, n, n > atom_2 
  VF?atom_1:?atom_2, n, n, n > Vatom_2! 
 
 
Low RMS Ratio (LRMSR) 
arguments: input matrix, threshold (0.5 [0, 1]), window size (1024), overlap percent (0.5 [0.2, 0.8]) 
It returns a matrix which elements are the ratio of low RMS frames of the columns of the input 
matrix. 
 
The algorithm is very similar to the one for LSTER, only changing few things. 
Algorithm: 

� for each column +2 of the input matrix 
begin for 

• calculate total RMS: rfg�2 � OPQR�∑ ,2�L���! OPQR�g�⁄ , where M is the 
number of elements of the column 

• split the signal into frames of size window size and overlap overlap percent 
• for each of these frames +2� 

begin for 
o calculate frame RMS: tfg�2� � OPQR�∑ ,2��L���! OPQR�'�⁄ , where N 

is the number of elements of the frame 
o if tfg�2� u RvQ�Ov[wx · rfg�2 

then number of low RMS frames increases: yfg�t2 0 0 
end for 

• calculate the ratio of low RMS frames in the column:  yfg�f2 � yfg�t2 'zNI�Q [\ \QKN�O⁄  

end for 
 

The usual values for threshold, window size and overlap percent are: 0.5, 20 ms (the number of samples 
depends on the sampling rate) and 0.5 respectively. 

Applying this operator directly to a whole audio file is not very useful. In order to obtain good 
results, making it robust to silence, this operator should have as input matrix the audio file 
previously split into windows of approximately 250 ms with an overlap of 50%. Then, the global 
LRMSR can be obtained by computing its mean. It is also interesting to obtain its variance: 
 

Mean(LRMSR(SplitOverlap(x, 250ms, 50%), 0.5, 20ms, 50%)) 

Variance(LRMSR(SplitOverlap(x, 250ms, 50%), 0.5, 20ms, 50%)) 

 
Typing rules: F?atom_1:?atom_2, n, n, n > atom_2 
  VF?atom_1:?atom_2, n, n, n > Vatom_2! 
 
 



Adapting EDS to Speech Classification 

 

28 

High Zero Crossing Rate Ratio (HZCRR) 
arguments: input matrix, threshold (1.5 [0, 4]), window size (1024), overlap percent (0.5 [0.2, 0.8]) 
It returns a matrix which elements are the ratio of frames with high Zero Crossing Rate of the 
columns of the input matrix. 
 
The algorithm is very similar to the one for LSTER, only changing few things.  
Algorithm: 

� for each column +2 of the input matrix 
begin for 

• calculate total ZCR: r{	f2 
• split the signal into frames of size window size and overlap overlap percent 
• for each of these frames +2� 

begin for 
o calculate frame ZCR: t{	f2� 
o if t{	f2� | RvQ�Ov[wx · r{	f2 

then number of high RMS frames increases: }{	ft2 0 0 
end for 

• calculate the ratio of frames with high ZCR in the column:  }{	ff2 � }{	ft2 'zNI�Q [\ \QKN�O⁄  

 end for 
 

The usual values for threshold, window size and overlap percent are: 1.5, 20 ms (the number of samples 
depends on the sampling rate) and 0.5 respectively. 

Applying this operator directly to a whole audio file is not very useful. In order to obtain good 
results, making it robust to silence, this operator should have as input matrix the audio file 
previously split into windows of approximately 250 ms with an overlap of 50%. Then, the global 
HZCRR can be obtained by computing its mean. It is also interesting to obtain its variance: 
 

Mean(HZCRR(SplitOverlap(x, 250ms, 50%), 0.5, 20ms, 50%)) 

Variance(HZCRR(SplitOverlap(x, 250ms, 50%), 0.5, 20ms, 50%)) 

 
Typing rules: Ft:a, n, n, n > a 
  VFt:a, n, n, n > Va! 
 
 
Praat Library: 

To complete the list of new operators specifically thought for speech classification 
problems, we used part of Praat, a free computer program for speech analysis, synthesis and 
manipulation, connecting it to EDS for being the core of the calculus of some new interesting 
operators. Next, there is a brief explanation of them. The parameters used are always the default 
ones proposed by Praat. More precise information of the following operators can be found on 
its online documentation (Boersma and Weenink 2008).  
 
 
Harmonicity (HarmonicitySplitPraat) 
arguments: input matrix 
It returns a matrix which elements are the degree (in dB) of acoustic periodicity of the frames of 
the input matrix, taken as a temporal signal. 
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This short-term acoustic periodicity detection, on the basis of an accurate autocorrelation 
method, it is also called Harmonics-to-Noise Ratio (HNR). 
 
Typing rules: Ft:a > Va! 
 
 
Pitch (PitchSplitPraat) 
arguments: input matrix 
It returns a matrix which elements are frequencies (in Hz) of the pitches of the frames of the 
input matrix, taken as a temporal signal. 
The algorithm performs an acoustic periodicity detection, optimized for speech, on the basis of 
an accurate autocorrelation method. 

 
Typing rules: VFt:a > Vf! 
 
 
Formants (FormantSplitPraat) 
arguments: input matrix 
It returns a matrix which columns are the frequencies (in Hz) of the formants of the frames of 
the input matrix, taken as a temporal signal. 
It performs a short-term spectral analysis, approximating the spectrum of each analysis frame by 
a number of formants, using an algorithm by Burg. 
 
Typing rules: Ft:a > VVf! 
 
 
LPC (LPCCovarianceSplitPraat) 
It returns a matrix which columns are the Linear Predictive Coding coefficients of the frames of 
the input matrix, taken as a temporal signal. 
This algorithm uses the covariance method. 
 
Typing rules: Ft:a > VVa! 
 
 

2.3   Limitations of EDS 
 
Despite being a powerful tool, EDS presents, by construction, some limitations which 
sometimes are not possible to overcome. Here it is a description of those we have found during 
the work. 
 
 The first drawback is the fact that the output argument of an operator is limited to a two-
dimensional matrix. This dimension is enough for a great number of computations, but it 
prevents from the implementation of operators that work with three-dimensional matrix, which 
are quite usual in audio processing. A clear case is described next: EDS allows to work with 
signal frames (using the operators Split or SplitOverlap), and with filter banks (using FilterBank), 
having both a two-dimensional output matrix. Nevertheless, the combination of both 
(Split(FilterBank(x, 16), 1024)) is not possible, since the dimension of the output 
matrix would be greater than two. The described limitation made impossible the implementation 
of some possibly interesting operators, derived from the following features: Spectral Balance-
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Based Cepstral Coefficients (Ren et al. 2004), Subband Spectral Centroids Histograms (Gajic and 
Paliwal 2001). 
 
 Derived from the previous limitation, one can deduce that operators can only work with 
real numbers. This is caused by the fact that if the output matrix of an operator would be 
complex, it would be necessary an extra dimension to store the imaginary part, leading to some 
situations of three-dimensional output matrix. The implications of that observation are that an 
operator like Fft is not able to give its entire complex output, but only its magnitude. Once in the 
frequency domain, there is no way to return to the temporal domain through an inverse Fourier 
transform, because the phase information is not kept through the calculations. So, no iFFT 
operator can be implemented in the system. 
 
 Another type of limitation is the impossibility of implementing operators that need more 
than one element of the database to make the calculation. Typical operators of that kind are 
those which normalize through the entire database. So, operators derived from this idea, like the 
Augmented Cepstral Normalisation (Acero and Huang 1995), are not implementable. 
 
 In another direction, a big constraint appears when trying to make genetic searches with 
vectorial features (i.e. features that give as output a vector, as in the case of MFCCs). There is no 
way to define the maximum length of a vectorial feature that EDS should explore, and this poses 
a problem: since longer vectorial features have better fitness than shorter ones, EDS always 
rejects by natural selection those vectorial features of short lengths. Thus, it is very difficult, even 
impossible, to explore and keep good vectorial features of short lengths for next generations, 
forcing to draw aside the exploration of genetic modifications of classical MFCC-like or LPC-like 
features, which have typical lengths between 10 and 25. 
 
 Lastly, the typing rules EDS works with present some limitations that appear in the 
attempt of simplifying their complexity. This way, there exist some operators which take as input 
matrix a temporal signal [t:a] that cannot take an array of amplitudes [Va] because the temporal 
information has been lost. EDS is unable to build, then, a feature like the following: 
BpFilter(Rms(Split(x))). The output of Split(x) is an array of temporal signals [Vt:a], but 
in the next step, Rms(Split(x)) gives as output a vector of amplitudes [Va] that cannot be used 
as input for the filtering operator BpFilter, because BpFilter only accepts temporal signals. This 
fact makes that theoretically well-formed features, which are semantically correct, are not 
accepted because of their syntax. 
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Chapter 3 

 

Experimental Work

 
 
 
 
In order to explore whether EDS and the analytical feature technique can be applied with 
success to speech classification problems, a series of experiments were carried out. For this 
purpose, a speech database – described in Section 3.1 – was built, in parallel to the 
implementation on the system of the new operators defined in Chapter 2. Section 3.2 details the 
feature patterns that were used in the genetic searches, before a first experiment is presented in 
Section 3.3. On the basis of the results of the preliminary experiment, an endpoint detector was 
designed (see Section 3.4) and the experiment was repeated using a modified database. The effect 
of the new operators are analysed from the experiments detailed in Sections 3.5.2 and 3.5.3, and 
finally an experiment explores the EDS potential to build analytical vectorial features.  
 
 

3.1   The Databases 

 
The particular problem EDS has to face is defined under the form of a training database. The 
characteristics of this database will set the characteristics of the problem. To test the 
performance of the classifier, some test databases are needed. Since no suitable pre-existent 
databases were found for the purpose of our experiments, new ones were built with the 
characteristics described in the following sections. 
 

3.1.1   The Training Database 
 

The training set, named TrainDB48, presents the following characteristics: 
 

• Since possible applications of these speech classifiers are toys or low-cost technology 
used in informal environments, sounds were recorded with a domestic desktop 
microphone in a desktop computer, in an office environment with background noise. 

• The samples were recorded in a Microsoft WAV PCM format at a sampling rate of 48 
kHz, and a bit depth of 16 bits, mono. 

• The samples consist of isolated words with the presence of silence at the beginning and 
the end of each utterance. 

• There are 12 different words (12 classes): black, blue, brown, cyan, green, grey, orange, pink, red, 
violet, white and yellow. 

• 6 adult subjects: 4 males (AL, GB, GC, PR) and 2 females (MN, SB), with foreign 
accents: Catalan, Dutch, French and Italian. 
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• Each subject recorded each word 40 times, obtaining 240 samples per class, and a total 
of 2880 samples. 
 

3.1.2   The Test Databases 
 
Three different databases to test the performance of the classifier were created. The recording 
method and audio format, as well as the classes, were the same as in the training database. The 
two first databases are to test the speaker-independent performance of the classifier, since 
samples are recorded by different subjects from the training database. On the other hand, the 
third database was build for testing the performance under speaker-dependent environments.  
 
 
 First Test Database (TestDB48-1) 

• 5 subjects: 3 adult males (FP, MS, V1), 1 adult female (V2) and 1 female child (CP), with 
foreign accents: Chinese, Dutch, and French. 

• Each subject recorded each word 2 times, obtaining 10 samples per class, and a total of 
120 samples. 
 

Second Test Database (TestDB48-2) 

• 1 adult male (FP) with French accent. 
• The subject recorded each word 30 times, obtaining 30 samples per class, and a total of 

360 samples. 
 

Third Test Database (TestDB48-3) 

• 5 adult subjects: 3 males (AL, GB, PR), and 2 females (MN, SB), with foreign accents: 
Dutch, French and Italian. 

• Each subject recorded each word 2 times, obtaining 10 samples per class, and a total of 
120 samples. 
 
 

3.2   Pattern Sets 

 
To make the genetic search of the features more efficient and exhaustive, it was divided in three 
parts, using three different sets of patterns. The idea was to launch three genetic searches in 
parallel, focusing each one on a specific type of feature. 
 

EDS tries always to move from one type of signal to another in the simplest and shortest 
way. Thus, a long list of highly specified patterns was set in order to use the greatest number of 
operator combinations. In that sense, for example, the pattern expression [...!_f  (!_t:a ...)] would 
not be enough to make the FormantSplitPraat operator to appear. A more specific pattern 
expression is necessary: [...!_f (!_VVf (!_t:a ...)]. 
 

First, a set of 25 patterns that allowed EDS to explore those features that do not split 
either in time or in frequency: 



Erreur ! Utilisez l'onglet Accueil pour appliquer Títol 2 au texte que vous souhaitez faire apparaître 

ici. 

33 

 
!_a (x) 

!_a (!_t:a (x)) 

!_a (!_Va (x)) 

!_a (!_Va (!_t:a (x))) 

!_t (x) 

!_t (!_t:a (x)) 

!_t (!_Vt (x)) 

!_t (!_Vt (!_t:a (x))) 

!_f (x) 

!_f (!_f:a (x)) 

!_f (!_Vf (x)) 

!_f (!_Vf (!_f:a (x))) 

!_f (!_t:a (x)) 

!_a (!_f:a (!_t:a (x))) 

!_f (!_f:a (!_t:a (x))) 

!_a (!_Va (!_f:a (!_t:a (x)))) 

!_f (!_Vf (!_f:a (!_t:a (x)))) 

!_a (!_t:a (!_f:a (x))) 

!_t (!_t:a (!_f:a (x))) 

!_a (!_Va (!_t:a (!_f:a (x)))) 

!_t (!_t:a (!_f:a (x))) 

!_t (!_Vt (!_t:a (!_f:a (x)))) 

!_f (!_VVf (!_t:a(x))) 

!_f (!_Vf (!_t:a (x))) 

!_a (!_VVa (!_t:a (x))) 
 
Second, a set of 15 patterns that allowed EDS to explore those features that split in time: 
 
!_a (Hamming (SplitOverlap (!_t:a (x), 1024.0, 0.5))) 

!_t (Hamming (SplitOverlap (!_t:a (x), 1024.0, 0.5))) 

!_f (Hamming (SplitOverlap (!_t:a (x), 1024.0, 0.5))) 

!_a (!_Vt:a (Hamming (SplitOverlap (!_t:a (x), 1024.0, 0.5)))) 

!_t (!_Vt:a (Hamming (SplitOverlap (!_t:a (x), 1024.0, 0.5)))) 

!_f (!_Vt:a (Hamming (SplitOverlap (!_t:a (x), 1024.0, 0.5)))) 

!_a (!_VVa (Hamming (SplitOverlap (!_t:a (x), 1024.0, 0.5)))) 

!_a (!_Vf:a (Hamming (SplitOverlap (!_t:a (x), 1024.0, 0.5)))) 

!_f (!_Vf:a (Hamming (SplitOverlap (!_t:a (x), 1024.0, 0.5)))) 

!_a (!_VVa (!_Vf:a (Hamming (SplitOverlap (!_t:a (x), 1024.0, 

0.5))))) 

!_f (!_VVf (Hamming (SplitOverlap (!_t:a (x), 1024.0, 0.5)))) 

!_a (!_t:a (Hamming (SplitOverlap (!_t:a (x), 1024.0, 0.5)))) 

!_t (!_t:a (Hamming (SplitOverlap (!_t:a (x), 1024.0, 0.5)))) 

!_f (!_t:a (Hamming (SplitOverlap (!_t:a (x), 1024.0, 0.5)))) 

!_a (!_Va (!_t:a (Hamming (SplitOverlap (!_t:a (x), 1024.0, 0.5))))) 

 
Note that before the temporal split, there is a degree of freedom left to EDS to use an 

operator that preprocesses the samples. The length and overlap of the window frames are 
specified by the arguments of SplitOverlap (in that case 1024, to get frames of about 20 ms at 48 
kHz, and 0.5, for an overlap of 50%). After the temporal split, a Hamming windowing is applied 
to each frame. 

 
Third, a set of 12 patterns that allowed EDS to explore those features that split mainly in 

the frequency domain: 
 
!_a (!_Vf:a (!_f:a (x))) 

!_f (!_Vf:a (!_f:a (x))) 

!_t (!_Vf:a (!_f:a (x))) 
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!_a (!_VVa (!_Vf:a (!_f:a (x)))) 

!_f (!_VVf (!_Vf:a (!_f:a (x)))) 

!_t (!_Vf:a (!_f:a (x))) 

!_a (!_Vf:a (!_f:a (!_t:a (x))))) 

!_f (!_Vf:a (!_f:a (!_t:a (x))))) 

!_t (!_Vf:a (!_f:a (!_t:a (x))))) 

!_a (!_t:a (!_Vf:a (!_f:a (!_t:a (x)))))) 

!_a (!_VVa (!_Vf:a (!_f:a (!_t:a (x))))) 

!_f (!_VVf (!_Vf:a (!_f:a (!_t:a (x))))) 

 
 

3.3   The First Experiment 

 
Using the training database, three genetic searches (one for each set of patterns) were launched 
with only the old operators enabled. After putting together the three sets of features explored by 
EDS, corresponding to the three independent searches, the feature selection tool of EDS was 
used to select the 10 best features: 
 

Percentile (HMedian (Mfcc0 (Hamming (SplitOverlap (Normalize (x), 

1024.0, 0.5)), 10.0)), 50.0) 

Log10 (Kurtosis (LtasPCPraat (x))) 

Power (Iqr (Mfcc0 (LpFilter (x, 100.0), 12.0)), 0.6) 

Square (SpectralSpread (Triangle (x))) 

Power (Abs (Iqr (Mfcc0 (Arcsin (x), 6.0))), 1.6) 

Min (HSkewness (BarkBands (Fft (Hamming (SplitOverlap (Bartlett (x), 

1024.0, 0.5))), 5.0))) 

Iqr (MelBands (Normalize (x), 10.0)) 

Percentile (Mfcc (x, 10.0), 86.0) 

Square (MaxPos (LtasPraat (BpFilter (x, 857.0, 411.0)))) 

Iqr (Nth (MelBands (SplitOverlap (Fft (Normalize (x)), 32.0, 0.5), 

5.0), 1.0)) 

 
A classifier was built with Weka, using SMO (Sequential Minimal Optimization), a fast 

method to speed up the training of the Support Vector Machines (SVM). The results of the 
correctly classified instances of the three test databases are as follows (detailed results can be 
found in the Appendix II): 

 
TestDB48-1: 30.83 % 
TestDB48-2: 29.44 % 
TestDB48-3: 69.17 % 
 
Note that the results in the third case are much better than in the other two. This is 

because the third test is in a speaker-dependent context. That means, then, that the features 
found in this experiment by EDS work much better in a speaker-dependent context than in a 
speaker-independent one. 

 
Not surprisingly, the classification rates are quite low, though, because the new operators 

were not added at this point yet. Nevertheless, they seem worst than it should be expected. After 
analysing the situation we got to the conclusion that the reason was that the samples of the 
database had a variable amount of leading and trailing silence (with background noise). To 
improve the classifier performance, the solution was to cut off these useless noisy frames. 
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3.4   The Endpoint Detector 
 
In order to cut off the useless frames present at the beginning and the end of the samples of the 
entire database, a Matlab® script was designed for doing it automatically and in batch 
processing. 
 

Tsao’s and Gray’s method and algorithm (1984) were used as inspiration for creating an 
LPC-based method that detected the starting and ending points of an isolated utterance in the 
audio samples, even in the presence of high-level Gaussian-like background noise. The detector 
is also immune to short, transient pulses and low-level noises such as those generated by 
breathing and small microphone movements, as it can be observed in Figs. 3.1, 3.2 and 3.3. 
While Tsao’s and Gray’s method directly uses the LPC residual prediction error, our detector 
uses the variance of the prediction error. 

 

 

Figure 3.1: An example of how the endpoint detector works. On the top, the wave representation of an 
utterance of the word white. Note how the detector preserves the semi-isolated /t/. On the bottom, the 
plot of the logarithm of the variance of the prediction error, with its corresponding decision thresholds. 

 
 

Some preprocessing is made to the signals before computing the variance of the 
prediction error frame by frame: signal normalization, preemphasis filtering and low-pass 
filtering. Once the signal has been preprocessed, the logarithm of the variance of the prediction 
error is calculated (red signal of the bottom plot in the figures), and a moving average is 
computed in order to smooth its behaviour (blue signal of the bottom plot in the figures). This is 
taken as the decision curve, which is more robust to noise and transient pulses than the classical 
energy + ZCR curves used in endpoint detectors. The start and end points are fixed with the aid 
of a couple of thresholds, whose values are different for each speech sample (blue and green 
lines of the bottom plot in the figures). For further details regarding the algorithm implemented 
as well as the specific operations involved in our endpoint detector, the code of the Matlab® 
script can be found in Appendix III. 
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Figure 3.2: The endpoint detector applied to another sample, corresponding to black. Note how the 
algorithm rejects the noise at the end of the utterance, produced by the lips of the speaker. 

 
 

 

Figure 3.3: A last example of the endpoint detector, corresponding to an utterance of blue. Note how the 
algorithm rejects, in this case, the low-frequency noise at the beginning of the sample, produced by a 

microphone vibration. 
 
 
 

3.5   The Experiments 
 
All the samples of both train and test bases were processed with the endpoint detector. Before 
going on with further experiments, another processing to the databases was made: 
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 Samples were recorded at 48 kHz, and they were used in the first experiment without 
downsampling. One can fast remark that this high sampling frequency is unnecessary for speech. 
The frequency range of speech signals is from about 100 Hz in adult males to about 5 kHz for a 
female. That means that a sampling frequency of 16 kHz would be enough, as the Nyquist 
frequency (8 kHz, i.e. half the sampling frequency) would be over the highest frequency. Having 
that in mind, all the database was downsampled from 48 kHz to 16 kHz, making it 3 times 
lighter and allowing EDS to make computations quicker. 
 
 The databases, clean of spurious silence and downsampled, are renamed in order to 
differentiate them from their old versions: TrainDB16, TestDB16-1, TestDB16-2, and 
TestDB16-3. 
 

3.5.1   Experiment with the Old Operators 
 
Following the same procedure as described in the first experiment (see Section 3.3), a new 
experiment was carried out, this time using the new training database TrainDB16. Three genetic 
searches (one for each set of patterns) were launched with only the old operators enabled. After 
putting together the three sets of features explored by EDS, corresponding to the three 
independent searches, the feature selection tool of EDS was used to select the 10 best features: 

 
Skewness (Integration (PeakPos (Integration (BpFilter (x, 2205.0, 

752.0))))) 

Skewness (Abs (PeakPos (LpFilter (Hann (Arcsin (x)), 441.0)))) 

Power (Abs (Centroid (Variance (BarkBands (Fft (Arcsin (SplitOverlap 

(Power (Hamming (x), 3.0), 320.0, 0.8))), 5.0)))), -1.0) 

Skewness (PeakPos (Hanning(x))) 

Centroid (SpectralSkewness (Hamming (SplitOverlap (Normalize (x), 

4410.0, 0.3)))) 

Power (Abs (Centroid (Iqr (BarkBands (Fft (Arcsin (SplitOverlap 

(Power (HpFilter (x, 100.0), 3.0), 320.0, 0.8))), 5.0)))), -

1.0) 

Rms (Zcr (SplitOverlap (Power (Hamming(x), 3.0), 320.0, 0.8))) 

Power (Centroid (Peaks (Integration (BpFilter (Derivation (Hamming 

(x)), 766.0, 98.0)))), -0.7) 

Power (Abs (Centroid (Peaks (Abs (BpFilter (x, 766.0, 98.0))))), -

2.1) 

Power (Abs (Centroid (Peaks (Blackman (Normalize (x))))), -0.4) 

 
A classifier was built with Weka, using SMO. The results of the correctly classified 

instances of the three test databases are as follows (detailed results can be found in the Appendix 
IV): 

 
TestDB16-1: 49.17 % 
TestDB16-2: 47.22 % 
TestDB16-3: 79.17 % 
 
Note that, again, the results in the third case are much better than the other two. This is 

because the third test is in a speaker-dependent context. That means, then, that the features 
found in this experiment by EDS work much better in a speaker-dependent context than in a 
speaker-independent one. 
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As expected, the results are sensibly better than before cleaning the database with the 
endpoint detector: the performance has improved 18.34, 17.78 and 10 points respectively. 
 

3.5.2   Experiment with the Old and New Operators 
 
In order to test the suitability of the new operators (described in Section 2.2) for speech 
classification problems, the next experiment lay in repeating the previous one but adding the new 
operators to the system. To succeed, the results of this experiment should be sensibly better. 
Using the training database TrainDB16, three genetic searches (one for each set of patterns) were 
launched with all operators enabled this time. After putting together the three sets of features 
explored by EDS, corresponding to the three independent searches, the feature selection tool of 
EDS was used to select the 10 best features: 

 
Skewness (PeakPos (BpFilter (VmeanNormalization (VmeanNormalization 

(x)), 2205.0, 706.0))) 

Power (Zcr (HFPreemphasis (BpFilter (Power (HFPreemphasis 

(Multiplication (x, 2.11), 5.0), 3.0), 2205.0, 706.0), 

0.9709857365633688)), -0.3) 

Skewness (PeakPos (BpFilter (HFPreemphasis (Derivation (Hamming 

(HFPreemphasis (x, 5.0))), 5.0), 2205.0, 706.0))) 

Skewness (PeakPos (Integration (BpFilter (LPCResidualError 

(HFPreemphasis (x, 0.9945909981191632), 5.0), 676.0, 89.0)))) 

Skewness (PeakPos (Integration (Bartlett(x)))) 

Skewness (PeakPos (Abs (Integration (BpFilter (LPCResidualError 

(Hamming (x), 5.0), 676.0, 89.0))))) 

Power (SpectralCentroid (HFPreemphasis (BpFilter (HFPreemphasis 

(HFPreemphasis (x, 5.0), 5.0), 1764.0, 706.0), 

0.980802238935936)), -0.3) 

Skewness (PeakPos (Arcsin (Multiplication (x, 5.0)))) 

Power (Zcr (HFPreemphasis (BpFilter (Power (HFPreemphasis 

(HFPreemphasis (x, 0.9305338823473828), 5.0), 3.0), 2205.0, 

706.0), 0.930205069958596)), -0.3) 

Skewness (PeakPos (Integration (BpFilter (VregressionCoeffs (Triangle 

(Integration (VregressionCoeffs (x, 3.0))), 5.0), 676.0, 

89.0)))) 

 
A classifier was built with Weka, using SMO. The results of the correctly classified 

instances of the three test databases are as follows (detailed results can be found in the Appendix 
V): 

 
TestDB16-1: 56.67 % 
TestDB16-2: 62.22 % 
TestDB16-3: 80.00 % 
 
The speaker-dependent case (TestDB16-3) yields, as expected, the best results. 
 
Comparing these results with the ones of the previous experiment, we can see that there 

is an improvement in all three cases: 7.5 points in the first, 15 in the second, and 0.84 in the last 
one. The improvement in the speaker-independent situations is notable, while in the speaker-
dependent case, results are roughly the same. That leads to the idea that the new operators help 
to classify speaker-independent speech, while it seems difficult to improve the speaker-
dependent speech recognition performance by adding more operators to the system. 
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Something that has to be observed is that 8 out of 10 features have at least one new 
operator. On the other hand, only 4 out of 23 new operators were used: HFPreemphasis (x11), 
LPCResidualError (x2), VMeanNormalization (x2), VRegressionCoeffs (x2). 

 

3.5.3   Experiment with the Old and New Operators and up to 35 Features 
 
All the experiments carried out till that point were done taking a relatively small number of 
features, taking into account the complexity of the problem. 
 

To test the behaviour of our approach when increasing the number of features, a new 
experiment was performed. Starting from exactly the same situation than the previous 
experiment, the best 35 analytical features were selected using the feature selection tool of EDS: 

 
Skewness (PeakPos (BpFilter (VmeanNormalization (VmeanNormalization 

(x)), 2205.0, 706.0))) 

Power (Zcr (HFPreemphasis (BpFilter (Power (HFPreemphasis 

(Multiplication (x, 2.11), 5.0), 3.0), 2205.0, 706.0), 

0.9709857365633688)), -0.3) 

Skewness (PeakPos (BpFilter (HFPreemphasis (Derivation (Hamming 

(HFPreemphasis (x, 5.0))), 5.0), 2205.0, 706.0))) 

Skewness (PeakPos (Integration (BpFilter (LPCResidualError 

(HFPreemphasis (x, 0.9945909981191632), 5.0), 676.0, 89.0)))) 

Skewness (PeakPos (Integration (Bartlett(x)))) 

Skewness (PeakPos (Abs (Integration (BpFilter (LPCResidualError 

(Hamming (x), 5.0), 676.0, 89.0))))) 

Power (SpectralCentroid (HFPreemphasis (BpFilter (HFPreemphasis 

(HFPreemphasis (x, 5.0), 5.0), 1764.0, 706.0), 

0.980802238935936)), -0.3) 

Skewness (PeakPos (Arcsin (Multiplication (x, 5.0)))) 

Power (Zcr (HFPreemphasis (BpFilter (Power (HFPreemphasis 

(HFPreemphasis (x, 0.9305338823473828), 5.0), 3.0), 2205.0, 

706.0), 0.930205069958596)), -0.3) 

Skewness (PeakPos (Integration (BpFilter (VregressionCoeffs (Triangle 

(Integration (VregressionCoeffs (x, 3.0))), 5.0), 676.0, 

89.0)))) 

Log10 (Norm (Zcr (Hamming (SplitOverlap (HFPreemphasis 

(VmeanNormalization (x), -1.0), 320.0, 0.5))))) 

Sqrt (Centroid (PeakPos (Integration (BpFilter (VregressionCoeffs 

(Triangle (VmeanNormalization (x)), 5.0), 676.0, 89.0))))) 

Skewness (PeakPos (Square (BpFilter (VregressionCoeffs (Bartlett (x), 

5.0), 676.0, 89.0)))) 

Skewness (PeakPos (BpFilter (VregressionCoeffs (Hamming (Abs (x)), 

3.0), 2205.0, 706.0))) 

Skewness (PeakPos (Abs (VmeanNormalization (VregressionCoeffs 

(BpFilter (Integration (VregressionCoeffs (x, 2.0)), 2205.0, 

706.0), 5.0))))) 

Power (Abs (SpectralSpread (Abs (BpFilter (LPCResidualError 

(HFPreemphasis (Triangle (x), 0.9692254851728542), 5.0), 676.0, 

89.0)))), 4.6) 

Sqrt (Centroid (PeakPos (Integration (BpFilter (VregressionCoeffs 

(Multiplication (Hann (x), 5.9), 5.0), 7938.0, 89.0))))) 

Power (Skewness (PeakPos (Abs (VmeanNormalization (VregressionCoeffs 

(Derivation (Hamming (x)), 5.0))))), 3.0) 

Power (SpectralCentroid (Fft (Fft (x))), 3.0) 

Abs (Skewness (PeakPos (Integration (BpFilter (LPCResidualError 

(HFPreemphasis (Triangle (Normalize (x)), 0.9945909981191632), 

5.0), 676.0_89.0))))) 



 

Log10 (SpectralFlatness (x))

Abs (Skewness (PeakPos (BpFilter (VmeanNormalization (HFPreemphasis 

(HFPreemphasis (Triangle (x), 5.0), 5.0)), 2205.0, 706.0))))

Power (Zcr (HFPreemphasis 

2205.0, 1764.0), 0.9982319335180304)), 

Abs (Skewness (PeakPos (BpFilter (Blackman (Hanning (x)), 2205.0, 

706.0)))) 

Power (Zcr (Peaks (Derivation (x))), 1.8)

MaxPos (Peaks (Hamming (x)))

Bandwidth (BpFilter (x, 2

Power (Kurtosis (PeakPos (Derivation (Fft (Blackman (Derivation 

(x)))))), -0.4)

Sqrt (SpectralSpread (BpFilter (x, 981.0, 556.0)))

Skewness (PeakPos (BpFilter (Arcsin (Derivation (x)), 2205.0, 

706.0))) 

Skewness (PeakPos (Power (x, 3.0))

Skewness (PeakPos (Integration (Bartlett (x))))

Skewness (PeakPos (BpFilter (x, 13.0, 6615.0)))

Zcr (HFPreemphasis (BpFilter (VMeanNormalization (x), 2205.0, 706.0), 

0.996102293973963))

Skewness (Integration (PeakPos (Integration (BpFilter (x, 2205.0, 

752.0))))) 

 
The performance of the classification system

tested with the three databases TestDB16
classification rates with the increase
 
 

Figure 3.4: Evolution of the classification rates with the increase of the number of features used in an 
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Log10 (SpectralFlatness (x)) 

Abs (Skewness (PeakPos (BpFilter (VmeanNormalization (HFPreemphasis 

(HFPreemphasis (Triangle (x), 5.0), 5.0)), 2205.0, 706.0))))

Power (Zcr (HFPreemphasis (BpFilter (VregressionCoeffs (x, 3.0), 

2205.0, 1764.0), 0.9982319335180304)), -3.9) 

Abs (Skewness (PeakPos (BpFilter (Blackman (Hanning (x)), 2205.0, 

Power (Zcr (Peaks (Derivation (x))), 1.8) 

MaxPos (Peaks (Hamming (x))) 

Bandwidth (BpFilter (x, 234.0, 648.0), 50.0) 

Power (Kurtosis (PeakPos (Derivation (Fft (Blackman (Derivation 

0.4) 

Sqrt (SpectralSpread (BpFilter (x, 981.0, 556.0))) 

Skewness (PeakPos (BpFilter (Arcsin (Derivation (x)), 2205.0, 

Skewness (PeakPos (Power (x, 3.0))) 

Skewness (PeakPos (Integration (Bartlett (x)))) 

Skewness (PeakPos (BpFilter (x, 13.0, 6615.0))) 

Zcr (HFPreemphasis (BpFilter (VMeanNormalization (x), 2205.0, 706.0), 

0.996102293973963)) 

Skewness (Integration (PeakPos (Integration (BpFilter (x, 2205.0, 

of the classification system (again, built using the Weka’s SMO)
with the three databases TestDB16-1, TestDB16-2 and TestDB16-3. The evolution of the 

se of the number of used features can be observed in Fig. 3.4:

Figure 3.4: Evolution of the classification rates with the increase of the number of features used in an 
SVM classifier, for each test set. 
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Experimental Work 

Abs (Skewness (PeakPos (BpFilter (VmeanNormalization (HFPreemphasis 

(HFPreemphasis (Triangle (x), 5.0), 5.0)), 2205.0, 706.0)))) 

(BpFilter (VregressionCoeffs (x, 3.0), 

Abs (Skewness (PeakPos (BpFilter (Blackman (Hanning (x)), 2205.0, 

Power (Kurtosis (PeakPos (Derivation (Fft (Blackman (Derivation 

Skewness (PeakPos (BpFilter (Arcsin (Derivation (x)), 2205.0, 

Zcr (HFPreemphasis (BpFilter (VMeanNormalization (x), 2205.0, 706.0), 

Skewness (Integration (PeakPos (Integration (BpFilter (x, 2205.0, 

(again, built using the Weka’s SMO) was 
The evolution of the 

can be observed in Fig. 3.4: 

 

Figure 3.4: Evolution of the classification rates with the increase of the number of features used in an 
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 All three curves tend to follow a logarithmic law, by which the increase of the 
improvement of the classification rate gets lower as the number of features increases. In some 
cases, due to the machine learning algorithm employed or due to imprecisions in the feature 
selection step, the classification rate can even locally decrease. This law remains valid as long as 
there is no overfitting (i.e. when the classifier does not have to adjust to very specific random 
features of the training data, which have no causal relation to the target function), when the 
classification rate of the tests begins to decrease considerably. In our case, it does not seem that a 
situation of overfitting has been reached yet with 35 features, since the curves still present an 
upward trend. 
 

The best classification rates achieved with the minimum number of features, using a 
maximum of 35, are the following (detailed results can be found in the Appendix VI): 

 
 TestDB16-1 (28 features): 67.50 % 
TestDB16-2 (35 features): 74.44 % 
TestDB16-3 (23 features): 95.00 % 

 
As it can be observed, the improvement in the results of all three cases with the use 35 

features is very interesting. The speaker-dependent case presents almost a perfect performance. 
 
In this experiment, like in the previous one, there is a numerous presence of new 

operators: 20 out of 35 features have at least one new operator. Nevertheless, only 5 out of 23 
new operators were used: HFPreemphasis (x18), VRegressionCoeffs (x10), VMeanNormalization (x8), 
LPCResidualError (x4) and Norm (x1), the same ones as in the last experiment plus Norm. This, 
among other reasons, can appear due to the way EDS explores the feature space and also the 
feature selection technique used by the system. 
 

3.5.4   Experiment with an MFCC-like Feature 
 
The last experiment was a little bit different from the others. The idea was to let EDS find a 
feature derived from the MFCC. This vectorial MFCC-like feature should be of length 10 in 
order to compare the results with the ones of the other experiments described in Sections 3.5.1 
and 3.5.2.  
 

In order to let EDS explore the MFCC-like feature space, a special set of patterns was 
created: 

 
Mfcc0 (!_t:a (x), 10) 

Mfcc0 (!_t:a (!_Vt:a (!_t:a (x))), 10.0) 

Mfcc0 (!_t:a (Hamming (SplitOverlap (!_t:a (x), 320.0, 0.5)))), 10) 

Mfcc0 (!_t:a (!_Vt:a (Hamming (SplitOverlap (!_t:a (x), 320.0, 

0.5)))), 10) 

 
The particular architecture of EDS does not allow doing a detailed genetic search of 

vectorial features, as explained in the section Limitations of EDS (2.3). The patterns have to limit 
EDS to build analytical features that have Mfcc0 as last operator, because adding a vectorial “wild 
card” (Va, Vt or Vf) after Mfcc0 would give EDS freedom to explore vectorial features without 
any size limit. Despite these restrictions, the proposed pattern set allows EDS to explore a 
subspace of the vectorial features we are interested in. 
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Using the training database TrainDB16, a genetic search was launched with all operators 
enabled. The best feature of size 10 that EDS found, with the previous pattern set, was: 
 

Mfcc0 (Hmean (Arcsin (Blackman (SplitOverlap (x, 8820.0, 0.5)))), 

10.0) 
 
A classifier was built with Weka, using SMO. The results of the correctly classified 

instances of the three test databases are as follows (detailed results can be found in the Appendix 
VII): 

 
TestDB16-1: 48.33 % 
TestDB16-2: 50.83 % 
TestDB16-3: 82.50 % 
 
These results reveal that this vectorial MFCC-like feature is well adapted to the speaker-

dependent case, better than no other in the previous experiments with 10 features (in Section 
3.5.2 the percentage of correctly classified was 80.00%). On the other hand, the results for 
TestDB16-1 and TestDB16-2 do not beat the ones achieved in the experiment of Section 3.5.2. 
This leads to the idea that this MFCC-like feature keeps the information of the speaker and 
performs worst in a speaker-independent context. 
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Chapter 4 

 

Discussion and Conclusions

 
 
 
 
This chapter gathers and discusses the main results of the experiments described along the work. 
Then, a comparison between our approach and a standard speech classifier is offered. Finally, 
the most significant conclusions are extracted from the analysis of the experiments, and future 
work directions are suggested, among which the idea of the combination of the analytical feature 
technique with HMMs stands out. 
 
 

4.1   Results Discussion 
 
At this point, it is important to make an overview of the main results of all the experiments 
carried out in the study, shown in Table 4.1.  
 

 Experiment 1 
(cf. 3.3) 

Experiment 2 
(cf. 3.5.1) 

Experiment 3 
(cf. 3.5.2) 

Experiment 4 
(cf. 3.5.3) 

Experiment 5 
(cf. 3.5.4) 

 
TrainDB48 
old ops. 
10 feats. 

TrainDB16 
old ops. 
10 feats. 

TrainDB16 
old+new ops. 

10 feats. 

TrainDB16 
old+new ops. 

35 feats. 

 

TrainDB16 
old+new ops. 
10 MFCC-like 

Test 1 
(spk-indep.) 30.83 % 49.17 % 56.67 % 65.83 % 48.33 % 

Test 2 
(spk-indep.) 29.44 % 47.22 % 62.22 % 74.44 % 50.83 % 

Test 3 
(spk-dep.) 69.16 % 79.16 % 80.00 % 93.33 % 82.50 % 

Table 4.1: Summary of all the main results. The percentages show the amount of correctly classified 
instances (the classification rate) of each classifier with each test set. 

 
 
Besides those results, in Experiment 4 it was found that the best classification rates 

achieved with the minimum number of features, using a maximum of 35, were 67.5% for Test 
1(with 28 features), 74.44% for Test 2 (with 35 features) and 95% for Test 3 (with 23 features). 
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The results of each experiment have been discussed in its corresponding section. Let’s sum 
up here the most relevant ideas: 

• The great improvement between Experiment 1 and 2 is thanks to the cleaning made by the 
endpoint detector processing. Non-speech frames at the beginning and the end of the 
samples should be always removed. We understand that this preprocessing is something 
crucial in order to improve the classifier performance. 
 

• The new operators appear to be useful for improving the performance in the speaker-
independent cases, although not in the speaker-dependent one. On the other hand, despite 
the important presence of new operators in the best features built by EDS, only few of them 
were used. This does not necessarily mean that the other operators are not suitable for 
speech classification. We can ascribe this behaviour, to a certain extent, to a bias of the 
genetic search algorithm. 
 

• When the number of features increases, the results improve following a logarithmic law. 
They improve substantially when adding more features to the only 10 used in Experiment 3. 
It has been shown that with 23 features a correct classification of the 95% is achieved in the 
speaker-dependent case, compared to the 80% that yielded the classifier built with 10 
features. 
 

• The best vectorial MFCC-like feature of length 10 performs worst than the 10 features built 
by EDS in the Experiment 3 for the speaker-independent cases, while its performance in the 
speaker-dependent case is slightly better. 
 

• Observing the F-measures of the different classes, we can note that there are words that tend 
to be easier to classify through all the experiments (e.g. pink), while other are harder (e.g. red). 
This confirms the great variability existing in the pronunciation of certain words, and how 
hard it is to find features that help to classify them. 
 

• As a general remark, as it was expected, the results in the speaker-dependent situation are 
always better than in the speaker-independent cases, since these ones present a more difficult 
challenge. 

 
 

4.2   Comparison with a Standard Speech Classifier 
 
It is interesting to compare the results of our approach with those of a standard reference, using 
the same speech database as in our experiments. This standard ASR system has been built with a 
widely known and discussed software toolkit developed by the Cambridge University 
Engineering Department (CUED), the Hidden Markov Model Toolkit (HTK), used for speech 
recognition research to create state-of-the-art ASR systems (Young et al. 2008). 
 

HTK provides sophisticated tools for building and manipulating hidden Markov models, 
with facilities for speech analysis, testing and results analysis. Although the tool is often 
employed to create complex large vocabulary continuous speech recognition systems, it can be 
also used to build small vocabulary isolated word speech recognisers, as in our case. 
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Using HTK, an HMM-based standard isolated word classifier has been created. These are 
its characteristics: 

 
The system dictionary consists of a list of the 12 colours, and the task grammar is the 

simplest: one word per input. The raw speech database is parameterised into sequences of 
MFCC vectors. The feature vector is defined to contain 13 MFCC coefficients, 13 delta 
coefficients and 13 acceleration coefficients (39 coefficients altogether), extracted each 10 ms of 
a 25 ms window. The FFT uses a Hamming window and the signal has first order preemphasis 
applied using a coefficient of 0.97. 

 
The system is designed as a whole-word recogniser, which refers to a technique whereby 

each individual word in the system vocabulary is modelled by a single HMM. The chosen 
topology for the HMMs (the same for all) is shown in Fig. 4.1. Each HMM consists of 4 “active” 
states {��, �=, �n, �~}. The first and the last ones (�� and ��) are “non emitting” states (with no 
observation function), only used by HTK for some implementation facility reasons. The 
observation functions I� are single Gaussian distributions with diagonal matrices. The transition 
probabilities are quoted K�2. 
 
 
   K��           K==          Knn        K~~ 
 

    K��     K�=    K=n  Kn~  K~� 
    
 
 
      K�=     K�n     K=~     K~� 
 

Figure 4.1: Topology of the HMMs. 
 
 

The system is trained with the parameterised version of the database TrainDB16, and 
then tested with the three sets TestDB16-1, TestDB16-2, and TestDB16-3. The percentages of 
correctly classified instances, along with the best results of our approach, are presented in Table 
4.2: 

 

 
Test 1 

(spk-indep.) 
Test 2 

(spk-indep.) 

 

Test 3 
(spk-dep.) 

HTK 72.50 % 96.39 % 99.17 % 

EDS + SVM 67.50 % 74.44 % 95.00 % 

Table 4.2: Classification rate of the HMM-based speech recogniser built with HTK and comparison with 
the results achieved with the analytical feature technique and an SVM-based classifier. 

 
 
 While HTK offers a good performance in both Test 2 and 3, it is not able to give so 
satisfying results in the first test, due to the complexity of this test set (TestDB16-1), which 
includes voices of very different subjects with different ages and accents. 

�� �� �� �� �� �� 
I� I= In I~ 
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When comparing the results with those of our approach, they show that the standard 

system performs better in all three tests, especially in the second one, where the difference is 
bigger than 20%. However, the comparison should not be taken as definitive, since the results 
achieved with our system can be improved by increasing the number of features used – here they 
were fixed to a maximum of 35 in order to work with a reasonable number –. Moreover, the 
structural differences between the two approaches make it impossible to compare their 
performances for a fixed number of features. While the standard HMM-based system needs a 
feature vector (here of length 39) to be extracted each 10ms, the SVM-based approach only takes 
1 value per feature (here a maximum of 35) per word. To achieve those better results, the 
standard technique is using much more data to feed a more complex system. 
 
 

4.3   Conclusions 
 
The objectives of this study have been accomplished. Although further experimentation is 
necessary, a series of preliminary experiments have shown that the approach of the analytical 
feature technique can bring its advantages to speech classification issues. 
 
 First, the comparison between the results of the experiments shows that EDS is able to 
discover better features after the incorporation into the system of the 23 new operators.  
 
 While there is no doubt that in a speaker-dependent context the results have been 
satisfying, there is still some work to do for trying to improve the results in the speaker-
independent context. Nevertheless, it is important to note that the difficult problem we are 
facing is being solved by a much simpler approach than the traditional one, which uses more 
complex methods, like HMMs. 
 
 The speech database that served as the reference problem for the experimentation, built 
ad hoc for this study, has turned out a complicated problem for an approach of this type: the 
database contains voices with very different accents (there is no native English speaker among 
the subjects that collaborated with the database, but Catalan, Chinese, Dutch, French, and 
Italian), presence of background noise, bad quality of the recording equipment, and a great 
number of classes made of monosyllabic words pretty similar one to another. It may be a good 
idea to repeat some experiences reducing the initial difficulties, and increasing them as the 
experimentations progress. 
 

Finally, as a consequence of the work day by day with EDS, the study has been useful to 
improve the system itself, solving an important number of software bugs and including some 
improvements. Examples of improved aspects of the system are the feature selection tool, the 
genetic mutations in the genetic search, the interaction between the system and the Praat 
software, or the concurrence of more than one instance of EDS running on the same machine. 

 
 

4.4   Future Work 
 
This work makes an initial assertive step towards the study of the potential of EDS in the 
domain of speech recognition. During the execution of the thesis, some interesting ideas have 
been set out in order to continue with the research. 
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The experiments carried out in the thesis have been only a preliminary approach to the 

problem. More experimentation is needed in order to come to solid conclusions. It is necessary 
to work with other databases and assess the performance of the system in other situations. 
During this study, another database was being created, of 20 classes (this time with the names of 
20 different musical genres). 

 
In order to improve the performance of the analytical feature technique, other specific 

operators could be implemented, derived from well-known features thought for speech: 
Daubechies Wavelet Coefficient Histogram (DWCH) (Li and Ogihara 2006), Rasta-PLP 
(Hermansky et al. 1991), 4 Hz Modulation (Sheirer and Slaney 1997), which have not been finally 
implemented because of time constraints and complexity. 

 
Lastly, there is an interesting idea of incorporating the EDS analytical features to an 

HMM-based recogniser through HTK, which could be the topic of a next study on the 
adaptation of EDS to speech recognition. In Section 4.2, a comparison was made between a 
standard speech recogniser (based on HMMs and MFCC) and the system that we designed (an 
SVM classifier that takes as features the analytical features built by EDS). The results showed 
that even a state-of-the-art system has problems with certain test sets. On the other hand, one of 
the biggest drawbacks of the SVM-based technique is that it lacks time alignment, which is well 
solved by the standard system. The idea is to combine the two approaches, replacing the generic 
MFCC features of the HMM-based system with analytical features adapted to the problem. To 
do so, EDS has to be modified so that it produces features for an HMM-based recogniser, which 
can be achieved by evaluating the analytical features in the genetic search step with a classifier 
created with HTK. These modifications are technically feasible, as our first attempts indicate, but 
they are not straightforward, since they affect a part of the central mechanism of EDS. The 
combination of the EDS with HTK can yield very satisfying results.  

 
There is still a long way to run. 
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Appendices

 
 
 
 

Appendix I – List of the EDS Operators 
 
This is the list of the 107 basic operators used by EDS in this study, including the new 23. 
 
 

Abs HarmonicSpectralDeviation 
AddWhiteNoise HarmonicSpectralSpread 
Arcsin HarmonicSpectralVariation 
AttackTime HDerivation 
Autocorrelation Hfc 
Bandwidth HFPreemphasis 
BarkBands HKurtosis 
Bartlett HMax 
Blackman HMean 
BpFilter HMeanNormalization 
Centroid HMedian 
Chroma HMin 
Correlation HNorm 
Crrm HPercentile 
Db HpFilter 
Derivation HRms 
Division HSkewness 
Envelope HSum 
Fft HVariance 
FilterBank HZCRR 
Flatness Integration 
FormantSplitPraat Inverse 
Hamming Iqr 
Hann Kurtosis 
Hanning Length 
HarmonicitySplitPraat Log10 
HarmonicSpectralCentroid LPCCovarianceSplitPraat 
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LPCResidualError PointProcessPraat 
LpFilter Power 
LRMSR Range 
LSTER RegressionCoeffs 
LtasPCPraat RemoveSilentFrames 
LtasPraat Rhf 
Max Rms 
MaxPos Skewness 
Mean SpectralCentroid 
Median SpectralDecrease 
MelBands SpectralFlatness 
MelFilterBank SpectralKurtosis 
Mfcc SpectralRolloff 
Mfcc0 SpectralSkewness 
Min SpectralSpread 
ModulationEnergy Split 
Multiplication SplitOverlap 
Norm Sqrt 
Normalize Square 
Nth Sum 
NthColumns Triangle 
PeakPos TwelveTones 
Peaks Variance 
Percentile VMeanNormalization 
Pitch VRegressionCoeffs 
PitchBands Zcr 
PitchSplitPraat 
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Appendix II – Results of the First Experiment 

 
Results of the experiment described in Section 3.3. 
 
TestDB48-1 
=== Evaluation on test set === 

 

Correctly Classified Instances          37               30.8333 % 

Incorrectly Classified Instances        83               69.1667 % 

Kappa statistic                          0.2455 

Mean absolute error                      0.1447 

Root mean squared error                  0.2663 

Relative absolute error                 94.6832 % 

Root relative squared error             96.3483 % 

Total Number of Instances              120      

 

=== Detailed Accuracy By Class === 

 

TP Rate   FP Rate   Precision   Recall  F-Measure   ROC Area  Class 

  0.1       0.045      0.167     0.1       0.125      0.844    black 

  0.8       0.045      0.615     0.8       0.696      0.888    blue 

  0.8       0.118      0.381     0.8       0.516      0.81     brown 

  0         0.045      0         0         0          0.838    cyan 

  0.3       0.018      0.6       0.3       0.4        0.875    green 

  0.2       0.018      0.5       0.2       0.286      0.784    grey 

  0.3       0.1        0.214     0.3       0.25       0.669    orange 

  0.6       0.036      0.6       0.6       0.6        0.91     pink 

  0.2       0.145      0.111     0.2       0.143      0.732    red 

  0         0.045      0         0         0          0.711    violet 

  0         0.027      0         0         0          0.779    white 

  0.4       0.109      0.25      0.4       0.308      0.752    yellow 

 

=== Confusion Matrix === 

 

 a b c d e f g h i j k l   <-- classified as 

 1 0 1 0 0 0 1 0 2 0 1 4 | a = black 

 0 8 0 0 0 0 1 0 0 0 0 1 | b = blue 

 0 0 8 0 0 0 2 0 0 0 0 0 | c = brown 

 0 0 5 0 0 0 1 0 4 0 0 0 | d = cyan 

 0 1 0 0 3 0 0 3 1 0 0 2 | e = green 

 1 0 0 0 2 2 0 0 3 0 0 2 | f = grey 

 1 0 2 2 0 0 3 0 2 0 0 0 | g = orange 

 0 2 0 0 0 2 0 6 0 0 0 0 | h = pink 

 1 1 1 1 0 0 0 0 2 1 0 3 | i = red 

 1 0 3 0 0 0 3 0 1 0 2 0 | j = violet 

 1 0 0 2 0 0 2 0 3 2 0 0 | k = white 

 0 1 1 0 0 0 1 1 0 2 0 4 | l = yellow 

 
 
TestDB48-2 
=== Evaluation on test set === 

 

Correctly Classified Instances         106               29.4444 % 

Incorrectly Classified Instances       254               70.5556 % 

Kappa statistic                          0.2303 

Mean absolute error                      0.1457 

Root mean squared error                  0.2683 

Relative absolute error                 95.3994 % 

Root relative squared error             97.0833 % 
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Total Number of Instances              360      

 

=== Detailed Accuracy By Class === 

 

TP Rate   FP Rate   Precision   Recall  F-Measure   ROC Area  Class 

  0.167     0.073      0.172     0.167     0.169      0.824    black 

  0.467     0.115      0.269     0.467     0.341      0.833    blue 

  1         0.094      0.492     1         0.659      0.958    brown 

  0.033     0.003      0.5       0.033     0.063      0.931    cyan 

  0.133     0.024      0.333     0.133     0.19       0.758    green 

  0         0.012      0         0         0          0.649    grey 

  0         0          0         0         0          0.631    orange 

  1         0.133      0.405     1         0.577      0.935    pink 

  0.733     0.236      0.22      0.733     0.338      0.817    red 

  0         0.009      0         0         0          0.806    violet 

  0         0.003      0         0         0          0.845    white 

  0         0.067      0         0         0          0.568    yellow 

 

=== Confusion Matrix === 

 

  a  b  c  d  e  f  g  h  i  j  k  l   <-- classified as 

  5  0  0  0  0  0  0  0  3  2  0 20 |  a = black 

  0 14  0  0  3  0  0 13  0  0  0  0 |  b = blue 

  0  0 30  0  0  0  0  0  0  0  0  0 |  c = brown 

  9  0  3  1  0  0  0  1 13  1  1  1 |  d = cyan 

  0  7  0  0  4  0  0 12  7  0  0  0 |  e = green 

  0  6  0  0  1  0  0  0 23  0  0  0 |  f = grey 

  0  1 10  1  4  4  0  0 10  0  0  0 |  g = orange 

  0  0  0  0  0  0  0 30  0  0  0  0 |  h = pink 

  0  7  0  0  0  0  0  1 22  0  0  0 |  i = red 

  2  3 16  0  0  0  0  0  8  0  0  1 |  j = violet 

 13  1  2  0  0  0  0  0 14  0  0  0 |  k = white 

  0 13  0  0  0  0  0 17  0  0  0  0 |  l = yellow 

 
 
TestDB48-3 
=== Evaluation on test set === 

 

Correctly Classified Instances          83               69.1667 % 

Incorrectly Classified Instances        37               30.8333 % 

Kappa statistic                          0.6636 

Mean absolute error                      0.1402 

Root mean squared error                  0.2579 

Relative absolute error                 91.7769 % 

Root relative squared error             93.315  % 

Total Number of Instances              120      

 

=== Detailed Accuracy By Class === 

 

TP Rate   FP Rate   Precision   Recall  F-Measure   ROC Area  Class 

  0.7       0.036      0.636     0.7       0.667      0.952    black 

  0.9       0.018      0.818     0.9       0.857      0.991    blue 

  1         0.036      0.714     1         0.833      0.978    brown 

  0.7       0.018      0.778     0.7       0.737      0.985    cyan 

  0.6       0.036      0.6       0.6       0.6        0.947    green 

  0.8       0.027      0.727     0.8       0.762      0.979    grey 

  0.4       0.018      0.667     0.4       0.5        0.934    orange 

  1         0          1         1         1          1        pink 

  0.5       0.018      0.714     0.5       0.588      0.881    red 

  0.6       0.055      0.5       0.6       0.545      0.91     violet 
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  0.4       0.036      0.5       0.4       0.444      0.882    white 

  0.7       0.036      0.636     0.7       0.667      0.949    yellow 

 

=== Confusion Matrix === 

 

  a  b  c  d  e  f  g  h  i  j  k  l   <-- classified as 

  7  0  0  1  0  0  0  0  1  0  1  0 |  a = black 

  0  9  0  0  1  0  0  0  0  0  0  0 |  b = blue 

  0  0 10  0  0  0  0  0  0  0  0  0 |  c = brown 

  0  0  0  7  0  0  0  0  0  0  2  1 |  d = cyan 

  0  1  0  0  6  3  0  0  0  0  0  0 |  e = green 

  0  0  0  0  2  8  0  0  0  0  0  0 |  f = grey 

  0  0  3  0  0  0  4  0  0  2  0  1 |  g = orange 

  0  0  0  0  0  0  0 10  0  0  0  0 |  h = pink 

  2  1  1  0  0  0  0  0  5  0  1  0 |  i = red 

  0  0  0  0  0  0  2  0  1  6  0  1 |  j = violet 

  2  0  0  1  0  0  0  0  0  2  4  1 |  k = white 

  0  0  0  0  1  0  0  0  0  2  0  7 |  l = yellow 
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Appendix III – Matlab® Code of the Endpoint Detector 
 
This is the Matlab® code of the endpoint detector presented in Section 3.4. The code consists of 
5 functions: EndpointDetector, LPCdecision, Startpointposition, Findmaxima and Findminima. 
 
 
function EndpointDetector(filename) 

% ENDPOINTDETECTOR 

% Given a .wav filename containing an isolated utterance, this function 

% finds the start and endpoints of the utterance and creates a new  

% .wav file in a folder named "cut" 

% with the same utterance without the silence or noises surrounding it, 

% even in low SNR conditions. 

% Estimation is done thanks to the computation frame per frame of  

% the variance of the prediction error of LPC. 

% 

% If FILENAME is a name of a folder, ENDPOINTDETECTOR computes  

% the function recursively on all .wav files contained in the  

% folder or subfolders. 

% 

% Parameters and things to play with: 

% 

%   In variance of the error computation: 

%       bypassing preemphasis filter 

%       bypassing hamming windowing 

%       frame length (Tf) 

%       AR model order (P) 

%       overlap percentage (overlap) 

%       frame normalisation 

%        

%   In the startpoint/endpoint decision: 

%       upper and lower nominal threshold for the error variance (uTh, lTh) 

%       smoothing order (sorder) 

% 

% Gonçal Calvo, July 2008 

 

 

 

% Read the audio files 

% -------------------- 

newdir_shortname = 'cut'; 

if (isdir(filename))  

    vectFile = dir(filename); 

    for ind = 1 : size(vectFile, 1) 

        filen = vectFile(ind).name; 

        if (~strcmp(filen(1 : 1), '.')& ~strcmp(filen, newdir_shortname))  

            filen = strcat(filename, '\', filen); 

            EndpointDetector(filen); 

        end 

         

    end 

end 

if (strcmp(filename(size(filename, 2)-3 : size(filename, 2)), '.wav')) 

    fprintf('Treating %s\n', filename); 

else 

    fprintf('##Not a wavfile %s\n', filename); 

    return; 

end 

 



Erreur ! Utilisez l'onglet Accueil pour appliquer Títol 2 au texte que vous souhaitez faire apparaître 

ici. 

63 

% save parent directory name, file name, and build a  

% name for title in figures 

count = 0; 

short_filen_fig = filename; 

short_filen = filename; 

while (~strcmp(short_filen(end-count), '\')) 

    if (strcmp(short_filen(end-count), '_')) 

        short_filen_fig(end-count) = ' '; 

    end 

    count = count + 1; 

end 

short_filen_fig = short_filen_fig(end-count+1 : end-4);  

short_filen = short_filen(end-count+1 : end); 

parentdir_name = filename(1:end-count-1); 

 

% Input signal 

[x,Fs] = wavread(filename); % reading the wav 

if (size(x, 2)) == 2    % if signal is stereo, we take one only one channel 

    y = x(:, 1); 

end 

 

 

%% PREPROCESSING 

 

% Signal normalization 

% -------------------- 

y = (1/max(abs(x)))*x; 

 

 

% Preepmhasis filter 

% (first-order FIR filter) 

% ------------------------ 

 

% first way of doing it 

precoeff = -0.8; 

%y = [x(1); x(2 : end)+precoeff*x(1 : end-1)]; % same length as x; 

 

% second way of doing it 

% b = [1 precoeff]; 

% a = 1; 

% yy = filter(b, a, x); 

 

% third way of doing it 

% hx = [0 1]; 

% hy = precoeff.^hx; 

% yyy = conv(x, hy); 

% yyy = yyy(1 : end-1); 

 

%soundsc(y,Fs); % how it sounds after preemphasis 

 

 

% Spectrum of the signal 

% ---------------------- 

%n = (0 : L-1)*Fs/L; 

%Y = abs(fft(y)); 

%plot(n(1 : L/2), Y(1 : L/2)); 

 

 

% White noise addition 

% -------------------- 

%wn = 0.001*randn(length(y), 1); % white noise addition 
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%y = y + wn; 

 

 

% Low-pass filtering 

% ------------------ 

[b_lp, a_lp] = ellip(6, 3, 40, 300/Fs, 'high'); 

y = filter(b_lp, a_lp, y); 

 

%% END OF PREPROCESSING 

 

 

% Computing decision curve (prediction error variance) 

% ---------------------------------------------------- 

%% Parameters: 

Tf = 0.01; % length of a frame in seconds (normally 20ms 

%                                   for speech prediction) 

Lf = ceil(Tf*Fs); % length of a frame in samples 

overlap = 0.75; % amount of frame overlapping 

P = 10; % AR model order 

 

R = ceil((1-overlap)*Lf); % frame step (hop size) (in samples) 

 

%% Computing the decision curve for Startpoint 

[logvare_v, ep_v] = LPCdecision(y, Lf, overlap, P); % it returns a  

%vector with the variance of the prediction error (in log) of each  

%analysis frame, and the prediction error vector 

 

%soundsc(ep_v,Fs) 

%plot(log(abs(ep_v))) 

 

sorder = 20; % smoothing the curve 

a1 = 1;  

b1 = (1/sorder)*ones(1, sorder); 

logvaref_v = filtfilt(b1, a1, logvare_v); % smoothed logvare_v 

 

%% Computing the decision curve for Endpoint 

yrev = y(end : -1 : 1); % first the signal must be reversed 

% the computation is then the same as for the Startpoint: 

[logvarerev_v, eprev_v] = LPCdecision(yrev, Lf, overlap, P); 

 

logvarerevf_v = filtfilt(b1, a1, logvarerev_v); % smoothed logvarerev_v 

 

 

% Computation of the Startpoint and Endpoint positions 

% ---------------------------------------------------- 

% Thresholds 

% logvaref_v's ceil 

mavmax = max(logvaref_v(ceil(sorder/2):floor(end-sorder/2))); 

% logvaref_v's floor 

mavmin = min(logvaref_v);  

% nominal upper threshold for the error variance 

uTh = (mavmin-mavmax)*0.1 + mavmax;  

% nominal lower threshold for the error variance 

lTh = (mavmin-mavmax)*0.25 + mavmax;  

%% Startpoint decision 

wstart = Startpointposition(logvaref_v, uTh, lTh); 

wstartS = wstart*R; % Startpoint position in the signal (in samples) 

%wstartT = wstartS/Fs; % Startpoint position in the signal (in seconds) 

 

%% Endpoint decision 

wendrev = Startpointposition(logvarerevf_v, uTh, lTh); 
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% Endpoint position in the signal from the end (in samples) 

wendrevS = wendrev*R;  

% Endpoint position in the signal (in samples) 

wendS = length(y) - wendrevS;  

%wendT = wendS/Fs; % Endpoint position in the signal (in seconds) 

 

 

% Write the signal without silence 

% --------------------------------- 

newdir_name = strcat(parentdir_name, '\', newdir_shortname); 

 % to avoid recursion calculating endpoint in resulting wav files 

if(~strcmp(parentdir_name(end-length(newdir_shortname)+1 : end), … 

…newdir_shortname)) 

    status = mkdir(parentdir_name, newdir_shortname); 

    new_filen = strcat(newdir_name, '\', short_filen(1 : end-4), '- … 

…cut.wav'); 

else 

    new_filen = strcat(filename); % to overwrite previous cutted wav file 

end 

wavwrite(x(wstartS:wendS),Fs, new_filen); 

 

 

% Plots 

% ----- 

figure; 

subplot(2, 1, 1) 

plot(x); 

axis('tight'); 

% plot lines 

hvaxis = axis; 

haxis = hvaxis(1 : 2); 

vaxis = hvaxis(3 : 4);     

line([wstartS wstartS], vaxis, 'Color', 'red'); 

line([wendS wendS], vaxis, 'Color', 'red'); 

set(gcf, 'Name', filename); 

title(short_filen_fig); 

 

subplot(2, 1, 2) 

hold on; 

plot(logvare_v, 'red'); 

plot(logvaref_v); 

axis('tight'); 

% plot lines 

hvaxis = axis; 

haxis = hvaxis(1 : 2); 

vaxis = hvaxis(3 : 4);     

line(haxis, [mavmax  mavmax]); 

line(haxis, [uTh uTh]); 

line(haxis, [lTh lTh], 'Color', 'green'); 

line([wstart wstart], vaxis, 'Color', 'red'); 

line([wendS/R wendS/R], vaxis, 'Color', 'red'); 

hold off; 

 

--------------------------------------------------------------------- 

 

function [logve_v, e_v] = LPCdecision(signal, Lf, overlap, P) 

L = length(signal); 

R = ceil((1-overlap)*Lf); % frame step (hop size) (in samples) 

Nf = ceil((L-Lf)/R)+1; % number of frames in signal  

                        %(even incomplete last one) 
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for index = 1:Nf 

    if index == Nf 

        ylframe = signal((index-1)*R+1 : end); % last frame 

        Llf = length(ylframe); 

        hl = hamming(Llf); % hammnig window for last frame 

         

        ylframew = ylframe.*hl;  

        %ylframew = ylframe; % bypass windowing last frame 

      

        num_zeros = Lf-Llf; % number of zeros to add to get the  

                            % same length as the other frames 

        yframew = [ylframew; zeros(num_zeros,1)]; 

         

        % normalise last frame  

        coeffnorm = max([abs(max(yframew)) abs(min(yframew))]);  

        yframew = yframew./coeffnorm; 

    else 

        % frames other than the last one 

        yframe = signal((index-1)*R+1 : (index-1)*R+Lf);  

        h = hamming(Lf); 

           

        yframew = yframe.*h;  

        %yframew = yframe; % bypass windowing frames 

         

        % normalise frame  

        coeffnorm = max([abs(max(yframew)) abs(min(yframew))]);  

        yframew = yframew./coeffnorm; 

    end 

    % AR model parameters for this frame and the variance of the error 

    [a, ve] = aryule(yframew, P);  

    % AR model prediction error for this frame 

    e(:, index) = filter(a, 1, yframew);  

     

     % stores current frame's variance of the error in a vector 

    ve_v(index) = ve; 

end 

    % writes the ep matrix into one single column vector 

    e_v = e(:);  

    % deletes the zeros added in the last frame to get a signal of the 

    % same length as the original signal 

    e_v = e_v(1 : end-num_zeros); 

    % puts variance of error vector in logarithmic scale 

    logve_v = log(ve_v); 

 

--------------------------------------------------------------------- 

 

function wbgn = Startpointposition (curve, uTh, lTh) 

     

% We work on the first part of the signal  

% absolute minimum value -> that defines the signal's first part 

[min_val, min_id] = min(curve);   

% taking the maximum we suppose to fall in the signal and not in a spurious 

% noise 

 

% where does the curve last crosses the uTh before absolute minimum? 

id_uTh = max(find(curve(1 : min_id)>=uTh));  

if length(id_uTh)~=1 

    id_uTh = 1; % if the curve does not cross uTh then id_uTh=1 

end 

 

% local minima indexes of the signal's first part 
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localmins_id = Findminima(curve(1 : min_id));  

%discart those minima at the left of id_uTh 

localmins_idid = find(localmins_id>=id_uTh);  

localmins_id = localmins_id(localmins_idid); 

% local minima values of the signal's first part 

localmins_val = curve(localmins_id);  

lower_localmins_idid = find(localmins_val<=lTh); 

% indexes of local minima between absolute minimum and id_uTh that are 

% lower than the lTh 

lower_localmins_id = localmins_id(lower_localmins_idid); 

 

first_lower_localmin_id = lower_localmins_id(1); 

upper_localmins_idid = find(localmins_id<first_lower_localmin_id); 

upper_localmins_id = localmins_id(upper_localmins_idid); 

 

 % see if there are upper local minima before the first lower local minima 

if  length(upper_localmins_idid)>0 

    % indexes of local maxima between signal beginning and first lower 

    % local minimum 

    localmaxs_id = Findmaxima(curve(1 : first_lower_localmin_id));   

    % we take as wbgn the first local maxima after the first lower local 

    % minimum 

    wbgn = localmaxs_id(end);  

else 

    wbgn = id_uTh; % if not, we take the crossing point 

end 

 

--------------------------------------------------------------------- 

 

function maxima = Findmaxima(x) 

%FINDMAXIMA  Find location of local maxima 

%  From David Sampson 

%  See also FINDMINIMA 

 

% Unwrap to vector 

x = x(:); 

% Identify whether signal is rising or falling 

upordown = sign(diff(x)); 

% Find points where signal is rising before, falling after 

maxflags = [upordown(1)<0; diff(upordown)<0; upordown(end)>0]; 

maxima   = find(maxflags); 

 

--------------------------------------------------------------------- 

 

function minima = Findminima(x) 

%FINDMINIMA  Find location of local minima 

%  From David Sampson 

%  See also FINDMAXIMA 

 

minima = Findmaxima(-x); 

 

 

 

  



Appendices 

 

68 

Appendix IV – Results of the Experiment with the Old Operators 

 

Results of the experiment described in Section 3.5.1. 
 
TestDB16-1 
=== Evaluation on test set === 

 

Correctly Classified Instances          59               49.1667 % 

Incorrectly Classified Instances        61               50.8333 % 

Kappa statistic                          0.4455 

Mean absolute error                      0.1422 

Root mean squared error                  0.2617 

Relative absolute error                 93.0854 % 

Root relative squared error             94.6946 % 

Total Number of Instances              120      

 

=== Detailed Accuracy By Class === 

 

TP Rate   FP Rate   Precision   Recall  F-Measure   Class 

  0.4       0.018      0.667     0.4       0.5      black 

  0.3       0.055      0.333     0.3       0.316    blue 

  0.6       0.082      0.4       0.6       0.48     brown 

  1         0          1         1         1        cyan 

  0.2       0.036      0.333     0.2       0.25     green 

  0.5       0.055      0.455     0.5       0.476    grey 

  0.6       0.009      0.857     0.6       0.706    orange 

  0.7       0.036      0.636     0.7       0.667    pink 

  0.1       0.091      0.091     0.1       0.095    red 

  0.3       0.082      0.25      0.3       0.273    violet 

  0.7       0.045      0.583     0.7       0.636    white 

  0.5       0.045      0.5       0.5       0.5      yellow 

 

=== Confusion Matrix === 

 

  a  b  c  d  e  f  g  h  i  j  k  l   <-- classified as 

  4  0  0  0  0  0  0  1  2  1  2  0 |  a = black 

  0  3  3  0  0  0  0  2  1  0  0  1 |  b = blue 

  0  1  6  0  2  0  0  0  0  1  0  0 |  c = brown 

  0  0  0 10  0  0  0  0  0  0  0  0 |  d = cyan 

  0  2  0  0  2  3  0  0  1  0  0  2 |  e = green 

  0  0  0  0  0  5  0  0  2  0  1  2 |  f = grey 

  0  0  0  0  0  1  6  0  0  2  1  0 |  g = orange 

  0  0  1  0  0  1  0  7  1  0  0  0 |  h = pink 

  1  1  2  0  1  1  0  0  1  2  1  0 |  i = red 

  0  0  2  0  0  0  1  1  3  3  0  0 |  j = violet 

  1  0  0  0  0  0  0  0  0  2  7  0 |  k = white 

  0  2  1  0  1  0  0  0  0  1  0  5 |  l = yellow 

 
TestDB16-2 
=== Evaluation on test set === 

 

Correctly Classified Instances         170               47.2222 % 

Incorrectly Classified Instances       190               52.7778 % 

Kappa statistic                          0.4242 

Mean absolute error                      0.1418 

Root mean squared error                  0.261  

Relative absolute error                 92.8145 % 

Root relative squared error             94.42   % 
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Total Number of Instances              360      

 

=== Detailed Accuracy By Class === 

 

TP Rate   FP Rate   Precision   Recall  F-Measure   ROC Area  Class 

  0.6       0.018      0.75      0.6       0.667      0.965    black 

  0.267     0.106      0.186     0.267     0.219      0.896    blue 

  0.367     0.018      0.647     0.367     0.468      0.973    brown 

  0.767     0          1         0.767     0.868      1        cyan 

  0.633     0.03       0.655     0.633     0.644      0.937    green 

  0.567     0.064      0.447     0.567     0.5        0.919    grey 

  0.233     0          1         0.233     0.378      0.991    orange 

  0.967     0.103      0.46      0.967     0.624      0.945    pink 

  0.467     0.136      0.237     0.467     0.315      0.829    red 

  0         0.006      0         0         0          0.723    violet 

  0.7       0.082      0.438     0.7       0.538      0.868    white 

  0.1       0.012      0.429     0.1       0.162      0.942    yellow 

 

=== Confusion Matrix === 

 

  a  b  c  d  e  f  g  h  i  j  k  l   <-- classified as 

 18  0  0  0  0  0  0 12  0  0  0  0 |  a = black 

  1  8  0  0  0  0  0 21  0  0  0  0 |  b = blue 

  0  2 11  0  5  1  0  0 10  0  0  1 |  c = brown 

  0  0  2 23  0  0  0  0  0  2  0  3 |  d = cyan 

  0  2  1  0 19  6  0  0  2  0  0  0 |  e = green 

  0  0  0  0  1 17  0  0  5  0  7  0 |  f = grey 

  0  0  0  0  0 13  7  0  0  0 10  0 |  g = orange 

  1  0  0  0  0  0  0 29  0  0  0  0 |  h = pink 

  0  4  0  0  2  0  0  1 14  0  9  0 |  i = red 

  0  0  3  0  2  1  0  0 23  0  1  0 |  j = violet 

  4  0  0  0  0  0  0  0  5  0 21  0 |  k = white 

  0 27  0  0  0  0  0  0  0  0  0  3 |  l = yellow 
 
TestDB16-3 
=== Evaluation on test set === 

 

Correctly Classified Instances          95               79.1667 % 

Incorrectly Classified Instances        25               20.8333 % 

Kappa statistic                          0.7727 

Mean absolute error                      0.1397 

Root mean squared error                  0.2569 

Relative absolute error                 91.4325 % 

Root relative squared error             92.9403 % 

Total Number of Instances              120      

 

=== Detailed Accuracy By Class === 

 

TP Rate   FP Rate   Precision   Recall  F-Measure   ROC Area  Class 

  0.9       0.018      0.818     0.9       0.857      0.979    black 

  0.6       0.018      0.75      0.6       0.667      0.966    blue 

  1         0.009      0.909     1         0.952      0.995    brown 

  1         0          1         1         1          1        cyan 

  0.5       0.036      0.556     0.5       0.526      0.89     green 

  0.9       0.036      0.692     0.9       0.783      0.975    grey 

  0.6       0          1         0.6       0.75       0.958    orange 

  1         0.009      0.909     1         0.952      0.995    pink 

  0.6       0.045      0.545     0.6       0.571      0.939    red 

  0.6       0          1         0.6       0.75       0.991    violet 

  1         0.018      0.833     1         0.909      0.991    white 

  0.8       0.036      0.667     0.8       0.727      0.957    yellow 
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=== Confusion Matrix === 

 

  a  b  c  d  e  f  g  h  i  j  k  l   <-- classified as 

  9  0  0  0  0  0  0  0  0  0  1  0 |  a = black 

  0  6  0  0  0  0  0  0  0  0  0  4 |  b = blue 

  0  0 10  0  0  0  0  0  0  0  0  0 |  c = brown 

  0  0  0 10  0  0  0  0  0  0  0  0 |  d = cyan 

  0  2  0  0  5  2  0  0  1  0  0  0 |  e = green 

  0  0  0  0  0  9  0  0  1  0  0  0 |  f = grey 

  0  0  0  0  0  1  6  0  3  0  0  0 |  g = orange 

  0  0  0  0  0  0  0 10  0  0  0  0 |  h = pink 

  2  0  0  0  0  1  0  0  6  0  1  0 |  i = red 

  0  0  0  0  3  0  0  1  0  6  0  0 |  j = violet 

  0  0  0  0  0  0  0  0  0  0 10  0 |  k = white 

  0  0  1  0  1  0  0  0  0  0  0  8 |  l = yellow 
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Appendix V – Results of the Experiment with the Old and New 

Operators 

 

Results of the experiment described in Section 3.5.2. 
 
TestDB16-1 
=== Evaluation on test set === 

 

Correctly Classified Instances          68               56.6667 % 

Incorrectly Classified Instances        52               43.3333 % 

Kappa statistic                          0.5273 

Mean absolute error                      0.1418 

Root mean squared error                  0.2608 

Relative absolute error                 92.7824 % 

Root relative squared error             94.3745 % 

Total Number of Instances              120      

 

=== Detailed Accuracy By Class === 

 

TP Rate   FP Rate   Precision   Recall  F-Measure   Class 

  0.4       0.018      0.667     0.4       0.5      black 

  0.3       0.091      0.231     0.3       0.261    blue 

  0.8       0.036      0.667     0.8       0.727    brown 

  0.8       0          1         0.8       0.889    cyan 

  0.4       0.064      0.364     0.4       0.381    green 

  0.4       0.027      0.571     0.4       0.471    grey 

  0.8       0.036      0.667     0.8       0.727    orange 

  0.8       0          1         0.8       0.889    pink 

  0.3       0.018      0.6       0.3       0.4      red 

  0.5       0.082      0.357     0.5       0.417    violet 

  0.5       0.045      0.5       0.5       0.5      white 

  0.8       0.055      0.571     0.8       0.667    yellow 

 

=== Confusion Matrix === 

 

 a b c d e f g h i j k l   <-- classified as 

 4 0 1 0 0 0 0 0 0 4 1 0 | a = black 

 0 3 3 0 0 0 0 0 0 0 0 4 | b = blue 

 0 0 8 0 0 0 0 0 0 0 0 2 | c = brown 

 0 0 0 8 2 0 0 0 0 0 0 0 | d = cyan 

 0 2 0 0 4 2 0 0 0 2 0 0 | e = green 

 0 0 0 0 1 4 0 0 2 2 1 0 | f = grey 

 0 0 0 0 0 0 8 0 0 0 2 0 | g = orange 

 0 1 0 0 1 0 0 8 0 0 0 0 | h = pink 

 2 4 0 0 1 0 0 0 3 0 0 0 | i = red 

 0 1 0 0 2 0 1 0 0 5 1 0 | j = violet 

 0 0 0 0 0 1 3 0 0 1 5 0 | k = white 

 0 2 0 0 0 0 0 0 0 0 0 8 | l = yellow 

 
TestDB16-2 
=== Evaluation on test set === 

 

Correctly Classified Instances         224               62.2222 % 

Incorrectly Classified Instances       136               37.7778 % 

Kappa statistic                          0.5879 

Mean absolute error                      0.1406 

Root mean squared error                  0.2586 
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Relative absolute error                 92.0202 % 

Root relative squared error             93.5772 % 

Total Number of Instances              360      

 

=== Detailed Accuracy By Class === 

 

TP Rate   FP Rate   Precision   Recall  F-Measure   Class 

  0.567     0.006      0.895     0.567     0.694    black 

  0.833     0.127      0.373     0.833     0.515    blue 

  0.967     0          1         0.967     0.983    brown 

  1         0          1         1         1        cyan 

  0.467     0          1         0.467     0.636    green 

  0.133     0.006      0.667     0.133     0.222    grey 

  0.933     0          1         0.933     0.966    orange 

  1         0          1         1         1        pink 

  0         0          0         0         0        red 

  0.7       0.173      0.269     0.7       0.389    violet 

  0.833     0.1        0.431     0.833     0.568    white 

  0.033     0          1         0.033     0.065    yellow 

 

=== Confusion Matrix === 

 

  a  b  c  d  e  f  g  h  i  j  k  l   <-- classified as 

 17  4  0  0  0  0  0  0  0  8  1  0 |  a = black 

  2 25  0  0  0  0  0  0  0  3  0  0 |  b = blue 

  0  0 29  0  0  0  0  0  0  0  1  0 |  c = brown 

  0  0  0 30  0  0  0  0  0  0  0  0 |  d = cyan 

  0  0  0  0 14  2  0  0  0 13  1  0 |  e = green 

  0  0  0  0  0  4  0  0  0  9 17  0 |  f = grey 

  0  0  0  0  0  0 28  0  0  0  2  0 |  g = orange 

  0  0  0  0  0  0  0 30  0  0  0  0 |  h = pink 

  0  9  0  0  0  0  0  0  0 19  2  0 |  i = red 

  0  0  0  0  0  0  0  0  0 21  9  0 |  j = violet 

  0  0  0  0  0  0  0  0  0  5 25  0 |  k = white 

  0 29  0  0  0  0  0  0  0  0  0  1 |  l = yellow 
 
TestDB16-3 
=== Evaluation on test set === 

 

Correctly Classified Instances          96               80      % 

Incorrectly Classified Instances        24               20      % 

Kappa statistic                          0.7818 

Mean absolute error                      0.1397 

Root mean squared error                  0.2569 

Relative absolute error                 91.4463 % 

Root relative squared error             92.9543 % 

Total Number of Instances              120      

 

=== Detailed Accuracy By Class === 

 

TP Rate   FP Rate   Precision   Recall  F-Measure   Class 

  0.6       0          1         0.6       0.75     black 

  0.4       0.009      0.8       0.4       0.533    blue 

  1         0.045      0.667     1         0.8      brown 

  1         0          1         1         1        cyan 

  0.7       0          1         0.7       0.824    green 

  0.8       0.009      0.889     0.8       0.842    grey 

  0.6       0.018      0.75      0.6       0.667    orange 

  1         0          1         1         1        pink 

  1         0.045      0.667     1         0.8      red 

  0.7       0.027      0.7       0.7       0.7      violet 
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  0.9       0.027      0.75      0.9       0.818    white 

  0.9       0.036      0.692     0.9       0.783    yellow 

 

=== Confusion Matrix === 

 

  a  b  c  d  e  f  g  h  i  j  k  l   <-- classified as 

  6  0  0  0  0  0  1  0  1  1  1  0 |  a = black 

  0  4  3  0  0  0  0  0  0  0  0  3 |  b = blue 

  0  0 10  0  0  0  0  0  0  0  0  0 |  c = brown 

  0  0  0 10  0  0  0  0  0  0  0  0 |  d = cyan 

  0  0  0  0  7  1  0  0  2  0  0  0 |  e = green 

  0  0  0  0  0  8  0  0  0  2  0  0 |  f = grey 

  0  0  2  0  0  0  6  0  0  0  2  0 |  g = orange 

  0  0  0  0  0  0  0 10  0  0  0  0 |  h = pink 

  0  0  0  0  0  0  0  0 10  0  0  0 |  i = red 

  0  0  0  0  0  0  0  0  2  7  0  1 |  j = violet 

  0  0  0  0  0  0  1  0  0  0  9  0 |  k = white 

  0  1  0  0  0  0  0  0  0  0  0  9 |  l = yellow 
 
 

  



Appendices 

 

74 

Appendix VI – Results of the Experiment with the Old and New 

Operators and up to 35 Features 

 

Results of the experiment described in Section 3.5.3. 
 
TestDB16-1 (28 features) 
=== Evaluation on test set === 

 

Correctly Classified Instances          81               67.5    % 

Incorrectly Classified Instances        39               32.5    % 

Kappa statistic                          0.6455 

Mean absolute error                      0.1407 

Root mean squared error                  0.2587 

Relative absolute error                 92.0661 % 

Root relative squared error             93.598  % 

Total Number of Instances              120      

 

=== Detailed Accuracy By Class === 

 

TP Rate   FP Rate   Precision   Recall  F-Measure   Class 

  0.5       0.009      0.833     0.5       0.625    black 

  0.7       0.009      0.875     0.7       0.778    blue 

  0.7       0.018      0.778     0.7       0.737    brown 

  0.8       0          1         0.8       0.889    cyan 

  0.6       0.009      0.857     0.6       0.706    green 

  0.8       0.018      0.8       0.8       0.8      grey 

  0.9       0.073      0.529     0.9       0.667    orange 

  0.9       0          1         0.9       0.947    pink 

  0.5       0.018      0.714     0.5       0.588    red 

  0.5       0.118      0.278     0.5       0.357    violet 

  0.4       0.045      0.444     0.4       0.421    white 

  0.8       0.036      0.667     0.8       0.727    yellow 

 

=== Confusion Matrix === 

 

 a b c d e f g h i j k l   <-- classified as 

 5 0 0 0 0 0 0 0 1 1 3 0 | a = black 

 0 7 0 0 0 0 0 0 0 0 0 3 | b = blue 

 0 0 7 0 0 0 1 0 0 2 0 0 | c = brown 

 0 0 0 8 0 0 0 0 0 2 0 0 | d = cyan 

 0 1 0 0 6 2 0 0 0 0 0 1 | e = green 

 0 0 0 0 0 8 0 0 1 1 0 0 | f = grey 

 0 0 0 0 0 0 9 0 0 1 0 0 | g = orange 

 0 0 0 0 0 0 1 9 0 0 0 0 | h = pink 

 1 0 1 0 1 0 0 0 5 2 0 0 | i = red 

 0 0 1 0 0 0 2 0 0 5 2 0 | j = violet 

 0 0 0 0 0 0 4 0 0 2 4 0 | k = white 

 0 0 0 0 0 0 0 0 0 2 0 8 | l = yellow 

 
TestDB16-2 (35 features) 
=== Evaluation on test set === 

 

Correctly Classified Instances         268               74.4444 % 

Incorrectly Classified Instances        92               25.5556 % 

Kappa statistic                          0.7212 

Mean absolute error                      0.1399 

Root mean squared error                  0.2574 
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Relative absolute error                 91.5932 % 

Root relative squared error             93.1138 % 

Total Number of Instances              360      

 

=== Detailed Accuracy By Class === 

 

TP Rate   FP Rate   Precision   Recall  F-Measure   Class 

  0.833     0.003      0.962     0.833     0.893    black 

  1         0.067      0.577     1         0.732    blue 

  0.833     0          1         0.833     0.909    brown 

  0.9       0          1         0.9       0.947    cyan 

  0.5       0.006      0.882     0.5       0.638    green 

  0.633     0.058      0.5       0.633     0.559    grey 

  0.9       0.006      0.931     0.9       0.915    orange 

  1         0.006      0.938     1         0.968    pink 

  0.767     0.009      0.885     0.767     0.821    red 

  0.333     0.009      0.769     0.333     0.465    violet 

  0.933     0.109      0.438     0.933     0.596    white 

  0.3       0.006      0.818     0.3       0.439    yellow 

 

=== Confusion Matrix === 

 

  a  b  c  d  e  f  g  h  i  j  k  l   <-- classified as 

 25  0  0  0  0  0  0  2  1  0  1  1 |  a = black 

  0 30  0  0  0  0  0  0  0  0  0  0 |  b = blue 

  0  0 25  0  0  0  1  0  0  0  4  0 |  c = brown 

  0  0  0 27  0  0  0  0  0  2  0  1 |  d = cyan 

  0  0  0  0 15 14  0  0  0  0  1  0 |  e = green 

  0  0  0  0  0 19  0  0  1  0 10  0 |  f = grey 

  0  0  0  0  0  0 27  0  0  0  3  0 |  g = orange 

  0  0  0  0  0  0  0 30  0  0  0  0 |  h = pink 

  0  1  0  0  2  4  0  0 23  0  0  0 |  i = red 

  0  0  0  0  0  1  1  0  1 10 17  0 |  j = violet 

  1  0  0  0  0  0  0  0  0  1 28  0 |  k = white 

  0 21  0  0  0  0  0  0  0  0  0  9 |  l = yellow 

 
TestDB16-3 (23 features) 
=== Evaluation on test set === 

 

Correctly Classified Instances         114               95      % 

Incorrectly Classified Instances         6                5      % 

Kappa statistic                          0.9455 

Mean absolute error                      0.1391 

Root mean squared error                  0.2557 

Relative absolute error                 91.0468 % 

Root relative squared error             92.5299 % 

Total Number of Instances              120      

 

=== Detailed Accuracy By Class === 

 

TP Rate   FP Rate   Precision   Recall  F-Measure   Class 

  0.8       0          1         0.8       0.889    black 

  0.7       0          1         0.7       0.824    blue 

  1         0          1         1         1        brown 

  1         0          1         1         1        cyan 

  1         0          1         1         1        green 

  1         0.009      0.909     1         0.952    grey 

  0.9       0.009      0.9       0.9       0.9      orange 

  1         0          1         1         1        pink 

  1         0          1         1         1        red 

  1         0          1         1         1        violet 
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  1         0.009      0.909     1         0.952    white 

  1         0.027      0.769     1         0.87     yellow 

 

=== Confusion Matrix === 

 

  a  b  c  d  e  f  g  h  i  j  k  l   <-- classified as 

  8  0  0  0  0  0  1  0  0  0  1  0 |  a = black 

  0  7  0  0  0  0  0  0  0  0  0  3 |  b = blue 

  0  0 10  0  0  0  0  0  0  0  0  0 |  c = brown 

  0  0  0 10  0  0  0  0  0  0  0  0 |  d = cyan 

  0  0  0  0 10  0  0  0  0  0  0  0 |  e = green 

  0  0  0  0  0 10  0  0  0  0  0  0 |  f = grey 

  0  0  0  0  0  1  9  0  0  0  0  0 |  g = orange 

  0  0  0  0  0  0  0 10  0  0  0  0 |  h = pink 

  0  0  0  0  0  0  0  0 10  0  0  0 |  i = red 

  0  0  0  0  0  0  0  0  0 10  0  0 |  j = violet 

  0  0  0  0  0  0  0  0  0  0 10  0 |  k = white 

  0  0  0  0  0  0  0  0  0  0  0 10 |  l = yellow 
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Appendix VII – Results of the Experiment with an MFCC-like 

Feature 

 

Results of the experiment described in Section 3.5.4. 
 
TestDB16-1 
=== Evaluation on test set === 

 

Correctly Classified Instances          58               48.3333 % 

Incorrectly Classified Instances        62               51.6667 % 

Kappa statistic                          0.4364 

Mean absolute error                      0.1431 

Root mean squared error                  0.2632 

Relative absolute error                 93.6364 % 

Root relative squared error             95.2444 % 

Total Number of Instances              120      

 

=== Detailed Accuracy By Class === 

 

TP Rate   FP Rate   Precision   Recall  F-Measure   Class 

  0.4       0.064      0.364     0.4       0.381    black 

  0.6       0.009      0.857     0.6       0.706    blue 

  0.8       0.027      0.727     0.8       0.762    brown 

  0.6       0.073      0.429     0.6       0.5      cyan 

  0.3       0.018      0.6       0.3       0.4      green 

  0.5       0.009      0.833     0.5       0.625    grey 

  0.5       0.009      0.833     0.5       0.625    orange 

  0.8       0.055      0.571     0.8       0.667    pink 

  0.1       0.027      0.25      0.1       0.143    red 

  0.1       0.055      0.143     0.1       0.118    violet 

  0.7       0.182      0.259     0.7       0.378    white 

  0.4       0.036      0.5       0.4       0.444    yellow 

 

=== Confusion Matrix === 

 

 a b c d e f g h i j k l   <-- classified as 

 4 0 1 1 0 0 0 0 0 0 4 0 | a = black 

 0 6 0 0 0 0 0 0 0 2 0 2 | b = blue 

 0 0 8 0 0 0 0 0 0 0 2 0 | c = brown 

 0 0 1 6 1 0 0 0 0 0 2 0 | d = cyan 

 0 0 0 1 3 0 0 4 0 2 0 0 | e = green 

 2 0 0 0 1 5 0 0 2 0 0 0 | f = grey 

 0 0 0 0 0 0 5 2 0 1 2 0 | g = orange 

 1 0 0 0 0 1 0 8 0 0 0 0 | h = pink 

 2 0 0 2 0 0 0 0 1 0 4 1 | i = red 

 2 0 0 2 0 0 0 0 0 1 4 1 | j = violet 

 0 0 0 0 0 0 1 0 1 1 7 0 | k = white 

 0 1 1 2 0 0 0 0 0 0 2 4 | l = yellow 

 
TestDB16-2 
=== Evaluation on test set === 

 

Correctly Classified Instances         183               50.8333 % 

Incorrectly Classified Instances       177               49.1667 % 

Kappa statistic                          0.4636 

Mean absolute error                      0.1421 

Root mean squared error                  0.2614 
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Relative absolute error                 93.0211 % 

Root relative squared error             94.5737 % 

Total Number of Instances              360      

 

=== Detailed Accuracy By Class === 

 

TP Rate   FP Rate   Precision   Recall  F-Measure   ROC Area  Class 

  0.8       0.003      0.96      0.8       0.873      0.996    black 

  1         0.039      0.698     1         0.822      0.983    blue 

  1         0          1         1         1          1        brown 

  0.9       0.303      0.213     0.9       0.344      0.844    cyan 

  0.233     0          1         0.233     0.378      0.856    green 

  0.033     0.042      0.067     0.033     0.044      0.813    grey 

  0.133     0.012      0.5       0.133     0.211      0.752    orange 

  1         0.024      0.789     1         0.882      0.989    pink 

  0.367     0.085      0.282     0.367     0.319      0.829    red 

  0.333     0.012      0.714     0.333     0.455      0.95     violet 

  0.267     0.003      0.889     0.267     0.41       0.919    white 

  0.033     0.012      0.2       0.033     0.057      0.739    yellow 

 

=== Confusion Matrix === 

 

  a  b  c  d  e  f  g  h  i  j  k  l   <-- classified as 

 24  0  0  3  0  0  0  1  1  0  1  0 |  a = black 

  0 30  0  0  0  0  0  0  0  0  0  0 |  b = blue 

  0  0 30  0  0  0  0  0  0  0  0  0 |  c = brown 

  0  0  0 27  0  0  0  0  0  0  0  3 |  d = cyan 

  0  1  0 16  7  4  0  1  1  0  0  0 |  e = green 

  0  0  0 12  0  1  0  0 17  0  0  0 |  f = grey 

  0  0  0  7  0  8  4  6  4  1  0  0 |  g = orange 

  0  0  0  0  0  0  0 30  0  0  0  0 |  h = pink 

  0  0  0 19  0  0  0  0 11  0  0  0 |  i = red 

  0  0  0 17  0  2  0  0  1 10  0  0 |  j = violet 

  1  0  0  9  0  0  4  0  4  3  8  1 |  k = white 

  0 12  0 17  0  0  0  0  0  0  0  1 |  l = yellow 
 
TestDB16-3 
=== Evaluation on test set === 

 

Correctly Classified Instances          99               82.5    % 

Incorrectly Classified Instances        21               17.5    % 

Kappa statistic                          0.8091 

Mean absolute error                      0.1395 

Root mean squared error                  0.2565 

Relative absolute error                 91.2948 % 

Root relative squared error             92.7896 % 

Total Number of Instances              120      

 

=== Detailed Accuracy By Class === 

 

TP Rate   FP Rate   Precision   Recall  F-Measure   ROC Area  Class 

  0.9       0.027      0.75      0.9       0.818      0.988    black 

  1         0.018      0.833     1         0.909      0.991    blue 

  1         0.018      0.833     1         0.909      0.991    brown 

  0.7       0.027      0.7       0.7       0.7        0.979    cyan 

  0.9       0.009      0.9       0.9       0.9        0.979    green 

  0.8       0          1         0.8       0.889      0.991    grey 

  0.8       0.018      0.8       0.8       0.8        0.988    orange 

  0.9       0          1         0.9       0.947      0.996    pink 

  0.8       0.009      0.889     0.8       0.842      0.953    red 

  0.7       0.027      0.7       0.7       0.7        0.962    violet 
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  0.8       0.009      0.889     0.8       0.842      0.987    white 

  0.6       0.027      0.667     0.6       0.632      0.93     yellow 

 

=== Confusion Matrix === 

 

  a  b  c  d  e  f  g  h  i  j  k  l   <-- classified as 

  9  0  0  0  0  0  0  0  0  0  1  0 |  a = black 

  0 10  0  0  0  0  0  0  0  0  0  0 |  b = blue 

  0  0 10  0  0  0  0  0  0  0  0  0 |  c = brown 

  1  0  0  7  0  0  0  0  0  0  0  2 |  d = cyan 

  0  0  0  1  9  0  0  0  0  0  0  0 |  e = green 

  0  0  0  1  1  8  0  0  0  0  0  0 |  f = grey 

  0  1  0  0  0  0  8  0  0  0  0  1 |  g = orange 

  0  0  0  0  0  0  1  9  0  0  0  0 |  h = pink 

  1  0  0  0  0  0  0  0  8  1  0  0 |  i = red 

  1  0  0  0  0  0  1  0  1  7  0  0 |  j = violet 

  0  0  0  0  0  0  0  0  0  2  8  0 |  k = white 

  0  1  2  1  0  0  0  0  0  0  0  6 |  l = yellow 

 





 

  



 

 


