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Abstract. Language dynamics is a rapidly growing field that focuses on all
processes related to the emergence, evolution, change and extinction of languages.
Recently, the study of self-organization and evolution of language and meaning
has led to the idea that a community of language users can be seen as a
complex dynamical system, which collectively solves the problem of developing a
shared communication framework through the back-and-forth signaling between
individuals.

We shall review some of the progress made in the past few years and highlight
potential future directions of research in this area. In particular, the emergence
of a common lexicon and of a shared set of linguistic categories will be discussed,
as examples corresponding to the early stages of a language. The extent to which
synthetic modeling is nowadays contributing to the ongoing debate in cognitive
science will be pointed out. In addition, the burst of growth of the web is
providing new experimental frameworks. It makes available a huge amount of
resources, both as novel tools and data to be analyzed, allowing quantitative
and large-scale analysis of the processes underlying the emergence of a collective
information and language dynamics.
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1. Introduction

Understanding the origins and evolution of language and meaning is currently one of the
most promising areas of research in cognitive science.

Unprecedented results in information and communications technologies are enabling,
for the first time, the possibility of mapping the interactions precisely, whether embodied
and/or symbolic, of large numbers of actors, as well as the dynamics and transmission
of information along social ties. At the same time, new theoretical and computational
tools, as well as synthetic modeling approaches, have now reached sufficient maturity to
contribute significantly to the long-lasting debate in cognitive science. The combination
of these two elements is opening terrific new avenues for studying the emergence and
evolution of languages, new communication and semiotic systems. As was the case with
biology, new tools and methods can trigger a significant boost in the ongoing transition of
linguistics into an experimental discipline, where multiple evolutionary paths, timescales
and dependence on the initial conditions can be effectively controlled and modeled.

Language as a social dynamical system. Semiotic dynamics studies how populations of
humans or agents can establish and share semiotic systems, typically driven by their
use in communication. From this perspective, language is seen as an evolving [1] and
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self-organizing system, whose components are thus constantly being (re)shaped by
language users in order to maximize communicative success and expressive power while at
the same time minimizing articulatory effort. New words and grammatical constructions
may be invented or acquired, new meanings may arise, the relation between language
and meaning may shift (e.g., if a word adopts a new meaning), as well as the relation
between meanings and the world may shift (e.g. if new perceptually grounded categories
are introduced). All these changes happen at the level of the individual as well as at the
group level. Here we focus on the interactions among the individuals, communicating both
in a vertical (teacher-pupil) and in an horizontal (peer to peer) fashion. Communication
acts are particular cases of language games, which, as already pointed out in [2], can
be used to describe linguistic behavior, even though they can also include non-linguistic
behavior, such as pointing. Clark [3] argues that language and communication are social
activities—joint activities—that require people to coordinate with each other as they
speak and listen. Language use is more than the sum of a speaker speaking and a listener
listening. It is the joint action that emerges when speakers and listeners [4] perform
their individual actions in coordination, as ensembles. Again language is not seen as an
individual process, but rather as a social process where a continuous alignment of mental
representations [5] is taking place.

The landscape describing the large set of approaches to the study of language
emergence and dynamics is extremely diversified, due to the obvious complexity of a
problem that can be addressed from many respects, with different methodologies, guided
by often incompatible conceptual frameworks, and with different goals in mind. A useful
way to gain insights into such a variegated world is, therefore, that of focusing on a
few dimensions that allow for a coarse categorization of the ongoing research [6]. It is
in general possible to identify broad paradigms that frame the problem in a particular
way, focusing on specific aspects and addressing precise fundamental questions through
concrete models and experiments [7]. Within each framework, then, the investigation can
proceed through computational models, experiments with embodied agents, psychological
experiments with human subjects and finally exploiting data made available either by
in-house laboratory experiments or by large information systems such as the Web.

Mathematical modeling of social phenomena. Statistical physics has proven to be a very
effective framework to describe phenomena outside the realm of traditional physics [8].
Recent years have witnessed the attempt by physicists to study collective phenomena
emerging from the interactions of individuals as elementary units in social structures [9].
This is the paradigm of complex systems: an assembly of many interacting (and simple)
units whose collective (i.e., large-scale) behavior is not trivially deducible from the
knowledge of the rules that govern their mutual interactions. This scenario is also true
for problems related to the emergence of language.

From this new perspective, complex systems science turns out to be a natural ally
in the quest for general mechanisms driving the collective dynamics whereby conventions
can spread in a population, to understand how conceptual and linguistic coherence may
arise through self-organization or evolution, and how concept formation and expression
may interact to coordinate semiotic systems of individuals. One of the key methodological
aspects of the modeling activity in the domain of complex systems is the tendency to seek
simplified models to clearly pin down the assumptions and, in many cases, to make the
models tractable from a mathematical point of view.

doi:10.1088/1742-5468/2011/04/P04006 3
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A crucial step in the modeling activity is represented by the comparison with empirical
data in order to check whether the trends seen in real data are already compatible with
plausible microscopic modeling of the individuals, or if the latter requires additional
ingredients. From this point of view, the Web may be a major source of help, both
as a platform to perform controlled online social experiments, and as a repository of
empirical data on large-scale phenomena. It is in this way that a virtuous cycle involving
data collection, data analysis, modeling and predictions could be triggered, giving rise to
an ever more rigorous and focused research approach to language dynamics.

It is worth stressing that the way the contributions are extended by physicists,
mathematicians and computer scientists should not be considered as alternatives to more
traditional approaches. We rather posit that it would be crucial to foster the interactions
across the different disciplines by promoting scientific activities with concrete mutual
exchanges among all the interested scientists. This would help both in identifying the
problems and sharpening the focus, as well as in devising the most suitable theoretical
concepts and tools to approach the research.

Simple models of language dynamics. Mathematical and computational modeling schemes
play an essential role in all the domains of science and they can clearly be helpful in studies
related to the origins and evolution of language. Modeling can help us to understand what
kinds of mechanism are necessary and sufficient for the origins and evolution of language.
This approach makes it possible to examine, through mathematical investigations and
computational simulations, whether certain basic assumptions of a theory are viable
or not.

Most of the modeling efforts developed in the statistical physics of complex
systems [9] are relatively new to more humanities-oriented communities. One of the
key methodological aspects is that of identifying and defining the simplest (minimal)
models (i.e., algorithmic procedures) that could lead to efficient communication systems.
It is important to stress the need in this field of shared and general models to create a
common framework where different disciplines could compare their approaches and discuss
the results. Moreover, the simplicity of the modeling schemes may allow the discovery of
underlying universalities, i.e., realizing that, behind the details of each single model, there
could be a level where the mathematical structure is similar. This implies, in its turn, the
possibility to perform mapping with other known models and to exploit the background
of the already acquired knowledge for those models. In this respect, statistical physics
brings an important added value.

With this concept of universality in mind, an important open question concerns the
quest for the best modeling schemes as well as the essential ingredients they should
contain for a quantitative approach to the emergence and evolution of language structures.
From this point of view, a first distinction concerns multi-agent models, in which one
needs to define both the individuals’ architectures and the social interactions, and
macroscopic models in which populations are treated as a whole and one is interested
in the evolution of aggregate quantities. Another dimension allows to discriminate
between different approaches in the realm of multi-agent models according to the
importance they give to cultural transmission (e.g., the iterated learning model [10]),
cognition and communication (language games [2], [11]–[13]) and biology (genetic
evolution models [14]–[17]). Also economic considerations, finally, have been pointed
out [18, 19].

doi:10.1088/1742-5468/2011/04/P04006 4
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Some of the relevant general open questions include: what are the fundamental
interaction mechanisms that allow for the emergence of consensus on an issue, a shared
culture, a common language? What favors the homogenization process? What hinders it?
Do spontaneous fluctuations slow down or even stop the ordering process? Does diversity
of agents’ properties strongly affect the model behavior? An additional relevant question
concerns the effect of the topology of the social interaction network on the dynamical
features of linguistic phenomena [9].

Language games are particularly interesting since they provide a clue towards
describing and understanding how shared conventions may emerge in a social group that
constantly negotiate and reshape them. At present, language games are investigated both
through experiments involving embodied artificial agents (i.e., robots) and through multi-
agent models. In particular, in the last few years, the methods and tools developed in
statistical physics and complex systems science have turned out to be extremely powerful
in providing more quantitative insights into the problem. While experiments have been
tackling problems as complex as investigating the emergence of a shared grammar in a
population, complex systems modeling has so far dealt with the most elementary, yet
absolutely nontrivial, problems of the emergence of a shared set of names (naming game)
and categories (category game). The category game, in particular, is presently allowing for
comparisons with data retrieved by psychological/anthropological experiments (e.g. the
World Color Survey).

The outline of the paper is as follows. We shall discuss problems of increasing
complexity. We shall start with the so-called naming game, which possibly represents
the simplest example of the complex processes leading progressively to the establishment
of complex human-like languages. Further we shall describe the so-called category game,
which simulates the emergence of a shared set of linguistic categories, and we will point out
how the synthetic results obtained in this way agree quantitatively with the experimental
ones. We shall conclude by highlighting a few open research challenges.

2. Naming game

The naming game was expressively conceived to explore the role of self-organization in
the evolution of language [11, 12] and it has acquired, since then, a paradigmatic role
in the entire field of semiotic dynamics. The original paper [11] mainly focused on
the formation of vocabularies, i.e., a set of mappings between words and meanings (for
instance physical objects). In this context, each agent develops its own vocabulary in a
random and private fashion. Nevertheless, agents are forced to align their vocabularies,
through successive conversation, in order to obtain the benefit of cooperating through
communication. Thus, a globally shared vocabulary emerges, or should emerge, as a
result of local adjustments of individual word–meaning associations. The communication
evolves through successive conversations, i.e., events that involve a certain number of
agents (two, in practical implementations) and meanings. It is worth remarking that
conversations are here particular cases of language games, which, as already pointed out
by Wittgenstein [20, 2], are used to describe linguistic behavior but, if needed, can also
include non-linguistic behavior, such as pointing.

This seminal idea triggered a series of contributions along the same lines and many
variants have been proposed subsequently. It is worthwhile to mention here the work
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proposed in [21], who focuses on an imitation model which simulates how a common
vocabulary is formed by agents imitating each other either using a mere random strategy
or a strategy in which imitation follows the majority (which implies non-local information
for the agents). A further contribution of the aforementioned paper is the introduction
of an interaction model which uses a probabilistic representation of the vocabulary.
The probabilistic scheme is formally similar to the framework of evolutionary game
theory [17, 22], since a production matrix and a comprehension matrix is associated
with each agent. Unlike the approach of evolutionary language games, the matrices are
here dynamically transformed according to the social learning process and the cultural
transmission rule. A similar approach has been proposed in [23].

Here we discuss in detail a minimal version of the naming game which results
in a drastic simplification of the model definition, while keeping the same overall
phenomenology. This version of the naming game is suitable for massive numerical
simulations and analytical approaches. Moreover its extreme simplicity allows for a direct
comparison with other models introduced in other frameworks of statistical physics as
well as in other disciplines.

2.1. The minimal naming game

The simplest version of the naming game [13] is played by a population of N agents trying
to bootstrap a common vocabulary for a certain number M of objects present in their
environment. The objects can be people, physical objects, relations, web sites, pictures,
music files, or any other kind of entity for which a population aims at reaching a consensus
as far as their naming is concerned. Each player is characterized by an inventory of word-
object associations he/she knows. All the inventories are initially empty (t = 0). At
each time step (t = 1, 2, . . .) two players are picked at random and one of them plays
the speaker and the other the listener. Their interaction obeys the following rules (see
figure 1):

• The speaker selects an object from the current context.

• The speaker retrieves a word from its inventory associated with the chosen object, or,
if its inventory is empty, invents a new word.

• The speaker transmits the selected word to the listener.

• If the listener has the word named by the speaker in its inventory and that word is
associated with the object chosen by the speaker, the interaction is a success and both
players maintain in their inventories only the winning word, deleting all the others.

• If the listener does not have the word named by the speaker in its inventory, or the
word is associated to a different object, the interaction is a failure and the listener
updates its inventory by adding an association between the new word and the object.

The game is played on a fully connected network, i.e., each player can, in principle, play
with all the other players, and makes two basic assumptions. One assumes that the
number of possible words is so huge that the probability of a word being reinvented is
practically negligible (this means that homonymy is not taken into account here, although
the extension is trivially possible). As a consequence, one can reduce, without loss of
generality, the environment to one consisting of only one single object (M = 1).

doi:10.1088/1742-5468/2011/04/P04006 6
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Failure

Success

Figure 1. Naming game. Examples of the dynamics of the inventories in a failed
(top) and a successful (bottom) game. The speaker selects the word highlighted.
If the listener does not possess that word he includes it in his inventory (top).
Otherwise both agents erase their inventories only keeping the winning word
(bottom).

It is interesting to note that the authors in [24] have formally proven, adopting an
evolutionary game theoretic approach, that languages with homonymy are evolutionarily
unstable. On the other hand, it is commonly observed that human languages contain
several homonyms, while true synonyms are extremely rare. In [24], this apparent paradox
is resolved by noting that if we think of ‘words in a context’, homonymy does indeed
disappear from human languages, while synonymy becomes much more relevant. In the
framework of the naming game, homonymy is not always an unstable feature (see section 3
about the category game for an example [25]) and its survival depends in general on the
size of the meaning and signal spaces [26].

A third assumption of the naming game consists in assuming that the speaker and
the listener are able to establish whether a game was successful by subsequent actions
performed in a common environment. For example, the speaker may refer to an object
in the environment he wants to obtain and the listener then hands him the right object.
If the game is a failure, the speaker may point (non-verbal communication) or get the
object himself so that it is clear to the listener which object was intended.

2.2. Macroscopic analysis

Three main quantities allow to describe the dynamics of the model: the total number
of words, Nw(t), corresponding to the total memory required to the agents (i.e. to the
sum of the sizes of their inventories); the number of different words, Nd(t), telling us how
many synonyms are present in the system at a given time; and the success rate, S(t),
measuring the probability of observing a successful interaction at a given time. Figure 2
reports the evolution of these observables for the case in which one assumes that only two

doi:10.1088/1742-5468/2011/04/P04006 7
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Figure 2. Naming game. (a) Total number of words present in the system, Nw(t);
(b) number of different words, Nd(t); (c) success rate S(t), i.e., probability of
observing a successful interaction at time t. The inset shows the linear behavior
of S(t) at small times. The system reaches the final absorbing state, described
by Nw(t) = N , Nd(t) = 1 and S(t) = 1, in which a global agreement has been
reached.

agents interact at each time step, but the model is perfectly applicable to the case where
any number of agents interact simultaneously.

We can distinguish three phases in the behavior of the system. In the very early stage,
pairs of agents play almost uncorrelated games and the number of words hence increases
over time as Nw(t) = 2t, while the number of different words increases as Nd(t) = t. In
the second phase the success probability is still very small and agents’ inventories start
correlating, the Nw(t) curve presenting a well identified peak. The process evolves with
an abrupt increase in the number of successes and a further reduction in the numbers of
both total and different words. Finally, the dynamics ends when all agents have the same
unique word and the system is in the attractive convergence state. It is worth noting that
the developed communication system is not only effective (each agent understands all the
others), but also efficient (no memory is wasted in the final state).

The system undergoes a spontaneous disorder/order transition to an asymptotic state
where global coherence emerges, i.e., every agent has the same word for the same object.
It is remarkable that this happens starting from completely empty inventories for each
agent. The asymptotic state is one where a word invented during the time evolution takes
over with respect to the other competing words and imposes itself as the leading word. In
this sense the system spontaneously selects one of the many possible coherent asymptotic
states and the transition can thus be seen as a symmetry breaking transition.

Figure 3 shows the scaling behavior of the convergence time tconv, and the time and
height of the peak of Nw(t), namely tmax and Nmax

w = Nw(tmax). It turns out that all
these quantities follow power law behaviors: tmax ∼ Nα, tconv ∼ Nβ , Nmax ∼ Nγ and
tdiff = (tconv − tmax) ∼ N δ, with exponents α = β = γ = δ � 1.5. A further timescale,
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Figure 3. Naming game. (Top) scaling of the peak and convergence time, tmax

and tconv along with their difference, tdiff . All curves scale with the power law
N1.5. (Bottom) the maximum number of words obeys the same power law scaling.

namely N5/4, rules the behavior of the success rate curve, whose abrupt jump appears
therefore to be steeper and steeper as the population size grows, even on the convergence
timescale. We do not enter here into more details on this point, but we refer the interested
reader to [13], where in addition the values of all of these exponents are derived through
simple scaling arguments.

2.3. Symmetry breaking: a controlled case

We concentrate now on a simpler case in which there are only two words at the beginning
of the process, say A and B, so that the population can be divided into three classes: the
fraction of agents with only A, nA, the fraction of those with only the word B, nB, and
finally the fraction of agents with both words, nAB. Describing the time evolution of the
three species is straightforward:

ṅA = −nAnB + n2
AB + nAnAB ṅB = −nAnB + n2

AB + nBnAB

ṅAB = +2nAnB − 2n2
AB − (nA + nB)nAB.

(1)

The system of differential equations (1) is deterministic. It presents three fixed points
in which the system can collapse depending on initial conditions. If nA(t = 0) > nB(t = 0)
[nB(t = 0) > nA(t = 0)] then at the end of the evolution we will have the stable fixed point
nA = 1 [nB = 1] and, obviously, nB = nAB = 0 [nA = nAB = 0]. If, on the other hand, we
start from nA(t = 0) = nB(t = 0), then the equations lead to nA = nB = 2nAB = 0.4. The
latter situation is clearly unstable, since any external perturbation would make the system
fall into one of the two stable fixed points. Indeed, it is never observed in simulations
due to stochastic fluctuations, which in all cases determine a symmetry breaking forcing
a single word to prevail.

doi:10.1088/1742-5468/2011/04/P04006 9
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Equations (1) however, are not only a useful example to clarify the nature of the
symmetry breaking process. In fact, they also describe the interaction among two different
populations that converged separately on two distinct conventions. In this perspective,
equations (1) predict that the population whose size is larger will impose its conventions.
In the absence of fluctuations, this is true even if the difference is very small: B will
dominate if nB(t = 0) = 0.5 + ε and nA(t = 0) = 0.5 − ε, for any 0 < ε ≤ 0.5 and
nAB(t = 0) = 0. Data from simulations shows that the probability of success of the
convention of the minority group, nA, decreases as the system size increases, going to zero
in the thermodynamic limit (N → ∞). A similar approach was proposed to model the
competition between two languages in the seminal paper [27]. It is worth pointing out
the formal similarities between modeling the competition between synonyms in a naming
game framework and the competition between languages: in both cases a synonym or a
language are represented by a single feature, e.g., the characters A or B, for instance, in
equations (1). The similarity has been made more evident by the subsequent variants of
the model introduced in [27] to include explicitly the possibility of bilingual individuals.
In particular, in [28, 29], deterministic models for the competition of two languages have
been proposed which include bilingual individuals. In [30, 31], a modified version of the
Voter model including bilingual individuals has been proposed, the so-called AB-model.
In a fully connected network and in the limit of infinite population size, the AB-model
can be described by coupled differential equations for the fractions of individuals speaking
language A, B or AB that are, up to a constant normalization factor in the timescale,
identical to equations (1).

In [32] it has been shown that the naming game and the AB-model are equivalent
in the mean-field approximation, though the differences at the microscopic level have
non-trivial consequences. In particular the consensus-polarization phase transition taking
place in the naming game (see section 2.5) is not observed in the AB-model. As for the
interface motion in regular lattices, qualitatively, both models show the same behavior: a
diffusive interface motion in a one-dimensional lattice, and a curvature driven dynamics
with diffusing stripe-like metastable states in a two-dimensional lattice. However, in
comparison to the naming game, the AB-model dynamics is shown to slow down the
diffusion of such configurations. In general, the close connection of the AB-model with
the naming game suggests that the latter can be fruitfully seen also as a framework
to model language contact or, more speculatively, such issues as the emergence of new
languages.

2.4. The role of the interaction topology

Social networks play an important role in determining the dynamics and outcome of
language change [33, 34]. The first investigation of the role of topology was proposed,
to the best of our knowledge, in 2004, at the fifth Conference on language evolution,
Leipzig [35]. Since then many approaches have focused on adapting known models
on topologies of increasing complexity: regular lattices, random graphs, scale-free
graphs, etc.

The naming game model, as described above, is not well-defined on general networks.
When the degree distribution is heterogeneous, it does matter if the first randomly chosen
agent is selected as a speaker and one of its the neighbor as the listener or vice versa:
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Figure 4. Evolution of the total number of words Nw (top), of the number of
different words Nd (middle), and of the average success rate S(t) (bottom), for
a fully connected graph (mean-field, MF) (black circles) and low-dimensional
lattices (1D, red squares and 2D, blue triangles) with N = 1024 agents, averaged
over 103 realizations. The inset in the top graph shows the very slow convergence
for low-dimensional systems.

high-degree nodes are in fact more easily chosen as neighbors than low-degree vertices.
Several variants of the naming game on generic networks can be defined. In the direct
naming game (reverse naming game) a randomly chosen speaker (listener) selects (again
randomly) a listener (speaker) among its neighbors. In a neutral strategy one selects an
edge and assigns the role of speaker and listener with equal probability to one of the two
nodes [36].

Low-dimensional lattice. On low-dimensional each agent can rapidly interact two or more
times with its neighbors, favoring the establishment of a local consensus with a high success
rate (figure 4, red squares for 1D and blue triangles for 2D), i.e. of small sets of neighboring
agents sharing a common unique word. Later on, these ‘clusters’ of neighboring agents
with a common unique word undergo a coarsening phenomenon [37] with a competition
among them driven by the fluctuations of the interfaces [38]. The coarsening picture
can be extended to higher dimensions, and the scaling of the convergence time has been
conjectured as being O(N1+1/d), where d ≤ 4 is the dimensionality of the space. This
prediction has been checked numerically. On the other hand the maximum total number of
words in the system (maximal memory capacity) scales linearly with the system size, i.e.,
each agent uses only a finite capacity. In summary, low-dimensional lattice systems require
more time to reach the consensus compared to mean-field, but a lower use of memory. A
detailed analysis of the behavior of the AB-model (whose mean-field deterministic version

doi:10.1088/1742-5468/2011/04/P04006 11

http://dx.doi.org/10.1088/1742-5468/2011/04/P04006


J.S
tat.M

ech.
(2011)

P
04006

Statistical physics of language dynamics

is equivalent, as we have seen above, to the deterministic naming game with only two
possible words (equations (1))) on low-dimensional lattices has been carried out in [30].
Here the issue of memory is not important since the total number of words (or languages)
is kept equal to two.

Small-world networks. The effect of a small-world topology has been investigated in [39]
in the framework of the naming game [13] and in [30] for the AB-model. Two different
regimes are observed. For times shorter than a cross-over time, tcross = O(N/p2),
one observes the usual coarsening phenomena as long as the clusters are typically one-
dimensional, i.e., as long as the typical cluster size is smaller than 1/p. For times much
larger than tcross, the dynamics is dominated by the existence of short-cuts and enters a
mean-field like behavior. The convergence time is thus expected to scale as N3/2 and not
as N3 (as in d = 1). Small-world topology allows one thus to combine advantages from
both finite-dimensional lattices and mean-field networks: on the one hand, only a finite
memory per node is needed, in opposition to the O(N1/2) in mean-field; on the other hand
the convergence time is expected to be much shorter than in finite dimensions. In [30] the
dynamics of the AB-model on a two-dimensional small-world network was studied. Also
in this case a dynamical stage of coarsening is observed, followed by a fast decay to the
A or B absorbing states caused by a finite size fluctuation.

Complex networks. The naming game has been studied also on complex networks. Here we
only report about the global behavior of the system and we refer the reader to [36, 40] for
an extensive discussion. Figure 5 shows that the convergence time tconv scales as Nβ with
β � 1.4±0.1, for both Erdös–Renyi (ER) [41, 42] and Barabasi–Albert (BA) [43] networks.
The scaling laws observed for the convergence time are a general robust feature that is not
affected by further topological details, such as the average degree, the clustering or the
particular form of the degree distribution. The value of the exponent β has been checked
for various 〈k〉, clustering, and exponents γ of the degree distribution P (k) ∼ k−γ for
scale-free networks constructed with the uncorrelated configuration model (UCM) [44]–
[46]. All these parameters have instead an effect on the other quantities such as the time
and the value of the maximum of memory (see [36] for details). Finally, the presence of a
strong community structure can in principle alter the overall dynamics dramatically, and
we refer the interested reader to [36] (and to [47] for considerations on general ordering
dynamics in this kind of networks).

2.5. Beyond consensus

A variant of the naming game has been introduced with the aim of mimicking
the mechanisms leading to opinion and convention formation in a population of
individuals [48]. In particular, a new parameter, β (β = 1 corresponding to the naming
game), has been added, mimicking an irresolute attitude of the agents in making decisions.
β is simply the probability that in a successful interaction both the speaker and the listener
update their memories, erasing all opinions except the one involved in the interaction (see
figure 1). This negotiation process, as opposed to herding-like or bounded confidence
driven processes, displays a non-equilibrium phase transition from an absorbing state in
which all agents reach a consensus to an active (not-frozen as in the Axelrod model [49])
stationary state characterized either by polarization or fragmentation in clusters of agents
with different opinions. Figure 6 moreover shows that the transition at βc is only the first
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Figure 5. Top: scaling behavior with the system size N for the time of the
memory peak (tmax) and the convergence time (tconv) for ER random graphs
(left) and BA scale-free networks (right) with average degree 〈k〉 = 4. In both
cases, the maximal memory is needed after a time proportional to the system
size, while the time needed for convergence grows as Nβ with β � 1.4. Bottom:
in both networks the necessary memory capacity (i.e. the maximal value Nmax

w

reached by Nw) scales linearly with the size of the network.

of a series of transitions: when decreasing β < βc, a system starting from empty initial
conditions self-organizes into a fragmented state with an increasing number of opinions.
At least two different universality classes exist, one for the case with two possible opinions
and one for the case with an unlimited number of opinions. Very interestingly, the model
displays the non-equilibrium phase transition also on heterogeneous networks, in contrast
with other opinion-dynamics models, such as for instance the Axelrod model [50], for
which the transition disappears for heterogeneous networks in the thermodynamic limit.

3. Category game

Categories are fundamental to recognize, differentiate and understand the environment.
From Aristotle onwards, the issue of categorization has been subject to strong controversy
in which purely cultural negotiation mechanisms [2, 51] competed with physiological and
cognitive features of the categorizing subjects [52]. A recent wave in cognitive science
has induced a shift in viewpoint from the object of categorization to the categorizing
subjects: categories are culture-dependent conventions shared by a given group. From
this perspective, a crucial question is how they come to be accepted at a global level
without any central coordination. Here we present the so-called category game, a
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Figure 6. Time tx required for a population on a fully connected graph to reach a
(fragmented) active stationary state with x different opinions. For every m > 2,
the time tm diverges at some critical value βc(m) < βc.

scheme where an assembly of individuals with basic communication rules and without
any external supervision may evolve an initially empty set of categories, achieving a non-
trivial communication system.

The category game is a minimal model for linguistic categorization [53]–[57], [25], [58]–
[61], which is a more complex activity than naming a single object. In the spirit of reducing
the rich spectrum of linguistic phenomena to essential aspects, tractable to mathematical
or numerical modeling, here we consider linguistic categorization as the elaboration of a
map between a large set of perceptions or concepts and a small set of linguistic labels,
typically nouns or attributes [62]. The paradigmatic case is offered by color naming: the
potentially very large set of perceivable colors is mapped into a list of 5–10 ‘basic color
terms’. The aim of the category game is not only reproducing in a realistic fashion the
static (i.e., final) categorization pattern [63, 64], which is composed of a partition of the
perceptual space and the dictionary connecting each category to a label, but to conjecture
a plausible dynamics which brings to the light this final pattern in a large population of
interacting individuals, all starting from an empty linguistic knowledge. A few simple
rules for the interaction between pairs of individuals and samples of the external world
amazingly generate, from scratch, a highly complex linguistic landscape, shared almost
perfectly by all individuals, where the large set of perceptions is cataloged into a small
set of linguistic categories [25].

The category game, originally conceived in [53], through a complex set of rules and
detailed mechanisms, with the purpose of demonstrating the ability of numerical models
to reproduce categorization patterns, posed from its birth a non-trivial problem: if the aim
is the emergence of a pattern from scratch in a population, a discrimination activity where
categories are refined with the purpose of separating different stimuli must be included
in the rules of the game; this discrimination activity will continue until very close stimuli
appear, requiring the introduction of a minimal distance between stimuli to set an endpoint
for discrimination. This minimal distance is a quite natural parameter of any perceiving
mechanism (being human or artificial), equivalent to a maximum resolution, often called
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‘just noticeable difference’ (JND) in the theories of perception. Such a parameter, anyway,
trivially constrains the typical extension of categories, so that for very small JND one will
end with a very large number of very small categories in the final categorization pattern.
This problem was overcome in [25], where a minimal version of the category game was
proposed, containing the essential ingredients to achieve the purpose: in particular, the
solution to the problem consists in letting the model coagulate adjacent (small) perceptual
categories through a linguistic contagion phenomenon: many neighboring categories with
the same label will be considered as a unique linguistic category. The number of these
large linguistic categories, quite surprisingly, remains much smaller than the number of
tiny perceptual categories.

The other important step in demonstrating the relevance of simplified agent models
for linguistic categorization was to make contact with experimental data. The perfect
case study is offered by color categorization, where scientists in the past decades have
collected a rich catalog of data from tens of different languages, building a very useful
statistics of categorization patterns. The collection of these data is known as the
World Color Survey [65], which is freely available, and allowed some of us to test the
similitude of patterns produced by the category game model with those observed in
the human population, obtaining a remarkable agreement, as explained in detail in the
following [61].

3.1. Simple rules for the category game

Here we sketch the simplest rules for the category game, introduced in [25], using as an
explanatory instance the case of color categorization. The game involves a population of N
artificial agents. Starting from scratch and without pre-defined color categories, the model
dynamically generates, through a sequence of ‘games’, a ‘categorization pattern’ highly
shared in the whole population of linguistic categories for the visible light spectrum. The
model has the advantage of involving an extremely low number of parameters, basically
the number of agents N and the JND curve dmin(x), compared with its rich and realistic
output.

For the sake of simplicity and without loss of generality, color perception is reduced
to a single analogical continuous perceptual channel, each light stimulus being a real
number in the interval [0, 1), which represents its normalized, rescaled wavelength.
A categorization pattern is identified with a partition of the interval [0, 1) in sub-
intervals, or perceptual categories. Individuals have dynamical inventories of form–
meaning associations linking perceptual categories with their linguistic counterparts, basic
color terms, and these inventories evolve through elementary language games [2]. At each
time step, two players (a speaker and a listener) are randomly selected from the population
and a scene of M ≥ 2 stimuli is presented. Two stimuli cannot appear at a distance smaller
than dmin(x), where x is the value of one of the two. In this way, the JND is implemented
in the model. On the basis of the presented stimuli, the speaker discriminates the scene,
if necessary refining its perceptual categorization, and says the color term associated to
one of the stimuli. The listener tries to guess the named stimulus, and based on their
success or failure, both individuals rearrange their form–meaning inventories. New color
terms are invented every time a new category is created for the purpose of discrimination,
and are spread through the population in successive games.
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Figure 7. Rules of the category game. A pair of examples representing a
failure (game 1) and a success (game 2), respectively. In a game, two players
are randomly selected from the population. Two objects are presented to both
players. The speaker selects the topic. In game 1 the speaker has to discriminate
the chosen topic (‘a’ in this case) by creating a new boundary in his rightmost
perceptual category at the position (a + b)/2. The two new categories inherit
the word inventory of the parent perceptual category (here the words ‘green’
and ‘olive’) along with a different brand new word each (‘brown’ and ‘blue’).
Then the speaker browses the list of words associated with the perceptual
category containing the topic. There are two possibilities: if a previous successful
communication has occurred with this category, the last winning word is chosen;
otherwise the last created word is selected. In the present example the speaker
chooses the word ‘brown’, and transmits it to the listener. The outcome of the
game is a failure since the listener does not have the word ‘brown’ in his inventory.
The speaker exposes the topic, in a non-linguistic way (e.g. pointing at it), and the
listener adds the new word to the word inventory of the corresponding category.
In game 2 the speaker chooses the topic ‘a’, finds the topic already discriminated
and verbalizes it using the word ‘green’ (which, for example, may be the winning
word in the last successful communication concerning that category). The listener
knows this word and therefore points correctly to the topic. This is a successful
game: both the speaker and the listener eliminate all competing words for the
perceptual category containing the topic, leaving ‘green’ only. In general when
ambiguities are present (e.g. the listener finds the verbalized word associated
to more than one category containing an object), these are solved making an
unbiased random choice.

doi:10.1088/1742-5468/2011/04/P04006 16

http://dx.doi.org/10.1088/1742-5468/2011/04/P04006


J.S
tat.M

ech.
(2011)

P
04006

Statistical physics of language dynamics

To be more specific, we give a slightly more detailed insight into the rules for evolution
of the agents. One of the objects, known only to the speaker, is the topic. The speaker
checks if the topic is the unique stimulus in one of its perceptual categories. If both
stimuli lie in one perceptual category, that category is divided into new categories, which
inherit the words associated with the original category and are assigned a new word each;
this process is called ‘discrimination’ [53]. As a following step, the speaker says the most
relevant name of the category containing the topic (the most relevant name is the last
name used in a winning game or the new name if the category has just been created). If
the listener does not have a category with that name, the game is a failure. If the listener
recognizes the name and there are many categories associated with the name, the listener
picks randomly one of these candidates (in the stable phase of the simulation and when
M is not large, the listener typically has a single candidate). Similarly, if the listener
recognizes the name and there are two or more objects in the corresponding category, it
randomly selects one of them. If the picked candidate is the topic, the game is a success;
otherwise, it is a failure. In the case of failure, the listener learns the name used by
the speaker for the topic’s category. In case of success, that name becomes the most
relevant for that category and all other competing names are removed from both players’
inventories. An example illustrating the rules of the game is shown in figure 7.

3.2. From confusion to consensus

Initially, all individuals have only the perceptual category [0, 1) with no associated name.
During the first phase of the evolution, the pressure of discrimination makes the number
of perceptual categories increase, see dashed lines in figure 8(c): at the same time, many
different words are used by different agents for some similar categories. This kind of
synonymy reaches a peak and then dries up (as displayed in figure 8(a)), in a similar way
to in the naming game described before: when on average only one word is recognized
by the whole population for each perceptual category, a second phase of the evolution
intervenes. During this phase, words expand their dominion across adjacent perceptual
categories, joining these categories to form new ‘linguistic categories’. This is revealed
by counting the number of these linguistic categories (solid lines in figure 8(c)), which
decreases after some time. The coarsening of these categories becomes slower and slower,
with a dynamical arrest analogous to the physical process in which supercooled liquids
approach the glass transition [66]. In this long-lived almost stable phase, usually after 104

games per player, the linguistic categorization pattern has a degree of sharing between 90%
and 100%; success is measured by counting in a small time window the rate of successful
games (figure 8(b)), while the degree of sharing of categories is measured by an overlap
function, which measures the alignment of category boundaries (both for perceptual or
linguistic ones), displayed in figure 8(d): for a mathematical definition of this function
see [25]. The success rate and the overlap both remain stable for 105–106 games per
player [25]: we consider this pattern as the ‘final categorization pattern’ generated by the
model, which is most relevant for comparison with human color categories (see below).
If one waits for a much longer time, the number of linguistic categories is observed to
fall: this non-realistic effect is due to the slow diffusion of category boundaries. Note
that, at the level of the category game, categories can be equivalently described in terms
of boundaries or prototypes, without any difference [25]. Slow diffusion of boundaries
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Figure 8. Results of simulations of the category game model with N = 100 and a
flat (constant) dmin(x) ≡ dmin curve with different values of dmin: (a) synonymy,
i.e., average number of words per category; (b) success rate measured as the
fraction of successful games in a sliding time window; (c) average number of
perceptual (dashed lines) and linguistic (solid lines) categories per individual;
(d) averaged overlap, i.e., alignment among players, for perceptual (dashed
curves) and linguistic (solid curves) categories.

ultimately takes place due to small size effects. Recent investigations have demonstrated
that this phase can occur on a very long timescale, with autocorrelation properties typical
of an ageing material, such as a glass.

The shared pattern in the long stable phase between 104 and 106 games per player is
the main subject of the experiment described in the following section. It is remarkable,
as already observed in [25], that the number of linguistic color categories achieved in this
phase is of the order of 20 ± 10, even if the number of possible perceptual categories
ranges between 100 and 104 and the number of agents ranges between 10 and 1000. For
this reason it is plausible that the mechanism of spontaneous emergence of linguistic
categories portrayed by this model is relevant for the problem of linguistic categorization
in continuous spaces (such as color space) where no objective boundaries are present.
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Figure 9. Categories and the pressure of environment. Inventories of 10
individuals randomly picked from a population of N = 100 players, with
dmin = 0.01, after 107 games. For each player the configuration of perceptual
(small vertical lines) and linguistic (long vertical lines) category boundaries is
superimposed to a colored histogram indicating the relative frequency of stimuli.
The labels indicate the unique word associated with all perceptual categories
forming each linguistic category. Two cases are presented with stimuli randomly
extracted from the hue distribution of natural pictures. One can appreciate the
perfect agreement of category names, as well as the good alignment of linguistic
category boundaries. Moreover, linguistic categories tend to be more refined in
regions where stimuli are more frequent: an example of how the environment
may influence the categorization process.

3.3. The role of parameters and the external world

As discussed above, the only parameters of the model are the size of the population N , the
JND curve dmin(x) and, eventually, the distribution function of the stimuli presented to the
individuals. For the numerical results shown in the previous discussion we have considered
a flat distribution where all stimuli between 0 and 1 were equally likely. In principle, one
can model the role of environmental pressure through shaping this distribution function.
It is interesting to discover that, while the general features of the dynamics are preserved,
the final categorization pattern has a slight but observable sensitivity to the distribution
of stimuli. An example is offered by figure 9, where stimuli distributions are sampled from
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different still pictures and where the final categorization pattern is portrayed for a few
randomly selected individuals from a large population.

The role of N , as already discussed, is important in the stabilization of the plateau
where the categorization pattern remains constant: this plateau, in time, is larger and
larger as N increases [25]. On the other hand, the role of dmin(x) is crucial in obtaining
a close comparison with real data, as detailed in section 4.

4. Comparison with real-world data

A large amount of data on color categorization was gathered in the World Color
Survey [67, 68], in which individuals belonging to different cultures had to name a set
of colors. The results of the analysis of the categorization patterns obtained in this way
have had a huge impact not only on such areas as cognitive science and linguistics, but
also psychology, philosophy and anthropology (see for example, [62, 69, 70]). The main
finding is that color systems across language are not random, but rather exhibit certain
statistical regularities, thus implying that the classical theory of categorization, dating
back to the work of Aristotle and claiming the arbitrariness of categorization, had to be
reconsidered [69]. In this section, we describe how the category game model described
above can be used to run a Numerical World Color Survey and point out that, remarkably,
the synthetic results obtained in this way agree quantitatively with the experimental
ones [61].

4.1. The World Color Survey

Kay and Berlin [67] ran a first survey on 20 languages in 1969. From 1976 to
1980, the enlarged World Color Survey was conducted by the same researchers along
with W Merrifield and the data have been made public since 2003 on the website
http://www.icsi.berkeley.edu/wcs. These data concern the basic color categories in 110
languages without written forms and spoken in small-scale, non-industrialized societies.
On average, 24 native speakers of each language were interviewed. Each informant had to
name each of 330 color chips produced by the Munsell Color Company that represent 40
gradations of hue and maximal saturation, plus 10 neutral color chips (black-gray-white)
at 10 levels of value. The chips were presented in a pre-defined, fixed random order, to
the informant who had to tag each of them with a ‘basic color term’ is her language (in
English, basic color terms would correspond to these would be ‘yellow’,‘green’, ‘red’, etc
for more details see [67]).

After two decades of intense debate on this unique repository of data [69], Kay and
Regier [68] performed a quantitative statistical analysis proving that the color naming
systems obtained in different cultures and language are in fact not random. Through a
suitable transformation they identified the most representative chip for each color name in
each language and projected it into a suitable metric color space (namely, the CIEL*a*b
color space). To investigate whether these points are more clustered across languages than
would be expected by chance, they defined a dispersion measure on this set of languages
S0

DS0 =
∑

l,l∗∈S0

∑

c∈l

min
c∗∈l∗

distance(c, c∗), (2)
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where l and l∗ are two different languages, c and c∗ are two basic color terms respectively
from these two languages, and distance(c, c∗) is the distance between the points in color
space in which the colors are represented. To give a meaning to the measured dispersion
DS0 , Kay and Regier created ‘new’ datasets Si (i = 1, 2, . . . , 1000) by random rotation of
the original set S0, and measured the dispersion of each new set DSi

.
The human dispersion appears to be distinct from the histogram of the ‘random’

dispersions with a probability larger than 99.9%. As shown in figure 3(a) of [68], the
average dispersion of the random datasets, Dneutral, is 1.14 times larger than the dispersion
of human languages. Thus, human languages are more clustered, i.e., less dispersed, than
their random counterparts and universality does exist [68].

4.2. The numerical World Color Survey

The key aspect of the statistical analysis described above is the comparison of the
clustering properties of a set of true human languages against the ones exhibited by a
certain number of randomized sets. In replicating the experiment it is therefore necessary
to obtain two sets of synthetic data, one of which must have some human ingredient in its
generation. The idea put forth in [61] is to act on the dmin parameter of the category game,
describing, as discussed in the previous section, the discrimination power of the individuals
to stimuli of a given wavelength. In fact, it turns out that human beings are endowed
with a dmin, the ‘Just Noticeable difference’ or JND, that is not continuous, but rather is
a function of the frequency of the incident light (see the inset in figure 10)5. Technically,
psychophysiologists define the JND as a function of wavelength to describe the minimum
distance at which two stimuli from the same scene can be discriminated [71, 72]. The
equivalence with the dmin parameter is therefore clear and different artificial sets can be
created:

• ‘Human’ categorization patterns are obtained from populations whose individuals are
endowed with the rescaled human JND (i.e., dmin).

• Neutral categorization patterns are obtained from populations in which the
individuals have constant JND, dmin = 0.0143, which is the average value of the
human JND (as is projected on the [0, 1) interval, figure 10 (inset)).

In analogy to the WCS experiment, the randomness hypothesis in the NWCS for the
neutral test-cases is supported by symmetry arguments: in neutral simulations there is no
breakdown of translational symmetry, which is the main bias in the ‘human’ simulations.

Thus, the difference between ‘human’ and neutral data originates from the perceptive
architecture of the individuals of the corresponding populations. A collection of ‘human’
individuals form a ‘human’ population, and will produce a corresponding ‘human’
categorization pattern. In a hierarchical fashion, finally, a collection of populations is
called a world, which in [61] is formed either by all ‘human’ or by all non-‘human’
populations. To each world there corresponds a value of the dispersion D defined in
equation (2), measuring the amount of dispersion of the languages (or categorization
patterns) belonging to it. In the actual WCS there is of course only one human World
(i.e., the collection of 110 experimental languages), while in [61] several worlds have been
generated to gather statistics both for the ‘human’ and non-‘human’ cases.

5 The attention is here on the human just noticeable difference for the hue, see [61].
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Figure 10. ‘Neutral worlds’, Dneutral, (histogram) are significantly more dispersed
than ‘human worlds’, Dhuman, (black arrow), as also observed in the WCS
data (the filled circles extracted from [68] and the black arrow). The abscissa
is rescaled so that the human D (WCS) and the average ‘human worlds’ D
both equal 1. The histogram has been generated from 1500 neutral worlds,
each made of 50 populations of 50 individuals, and M = 2 objects per scene.
Categorization patterns have been considered after the population had evolved
for a time of 106 games per agents. The inset figure is the human JND function
(adapted from [72]). On the vertical axis: the probability density ρ(xi) equals the
percentage f(xi) of the observed measure in a given range [xi − Δ/2, xi + Δ/2]
centered around xi, divided by the width of the bin Δ, i.e., ρ(xi) = f(xi)/Δ.
This procedure allows for a comparison between the histogram coming from the
NWCS [61] and that obtained in the study on the WCS [68], where the bins have
a different width.

The main results of the NWCS are presented in figure 10. Since the dispersion D
defined in equation (2) [68] depends on the number of languages, the number of colors, and
the space units used, every measure of D in the NWCS is normalized by the average value
obtained in the ‘human’ simulations, and every measure of D from the WCS experiment is
divided by the value obtained in the original (non-randomized) WCS analysis (as in [68]).
Thus, both the average of the ‘human worlds’ and the value based on the WCS data are
represented by 1 in figure 10. In the same plot, the probability density of observing a value
of D in the ‘neutral world’ simulations is also shown by the red histogram bars. Finally,
the figure contains also the data reported in the histogram of the randomized datasets
in figure 3(a) of [68], whose abscissa is normalized by the value of the non-randomized
dataset and frequencies are rescaled by the width of the bins.

Figure 10 illustrates the main results. The category game Model informed with the
human dmin(x) (JND) curve produces a class of ‘worlds’ that has a dispersion lower than
and well distinct from that of the class of ‘worlds’ endowed with a non-human, uniform
dmin(x). Strikingly, moreover, the ratio observed in the NWCS between the average
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dispersion of the ‘neutral worlds’ and the average dispersion of the ‘human worlds’ is
Dneutral/Dhuman ∼ 1.14, very similar to the one observed between the randomized datasets
and the original experimental dataset in the WCS. In the supplementary information
of [61], finally, it is shown that these findings are robust against changes in such parameters
as the population size N , the distribution of the stimuli, the number of objects in a scene
M , the time of measurement (as long as a measure is taken in the temporal region in
which a categorization pattern exists) etc.

These findings are important for a number of reasons. First of all, it is the first case
in which the outcome of a numerical experiments in this field is comparable at any level
with true experimental data. Second, as discussed above, the results of the NWCS are
not only in qualitative, but also in quantitative agreement with the results of the WCS.
Third, the very design of the model suggests possible mechanisms lying at the roots of the
observed universality. Human beings share a certain perceptual bias that, even though
are not strong enough to deterministically influence the outcome of a categorization, are
on the other hand capable of influencing category patterns in a way that becomes evident
only through a statistical analysis performed over a large number of languages. This
explanation for the observed universality had already been put forth based on theoretical
analysis (see, for instance [70, 73]), but the NWCS represents the first numerical evidence
supporting it.

5. Conclusions and open problems

All the efforts outlined in the previous sections indicate that a complex cognitive
phenomena such as human language can be understood through a purely cultural route.
In particular, human language is related to a community of individuals that interact with
each other by means of a set of simple rules. Two important problems, naming and
categorization, already provide us with enough evidence on how languages can evolve and
change over time within different linguistic societies resulting, without any centralized
control, into emergent regularized patterns. Most strikingly, the numerical findings of
particular models show excellent quantitative agreement with real data.

Of course, these results are far from setting an endpoint in the research in cognitive
science. Quite the reverse, this area is rich with many more and equally (or in fact more)
challenging problems. In this spirit, we conclude by listing a few directions where the
research in language dynamics is already moving or could possibly head.

5.1. Category formation

Again sticking to colors, the categorization problem is not a closed challenge, despite
highly significant steps having been done in this direction. For instance, the emergence
in a population of complex color terms has still to be explained: how fine-grained color
terms like ‘crimson’, ‘magenta’ etc emerge and coexist with basic color terms like ‘red’,
‘blue’, etc? Are these the outcome of a special society of individuals for whom the set of
basic terms is not sufficient for explaining the whole spectrum (e.g., painters) or there is
a hierarchy of category structures to which people resort depending on the difficulty of
their specific linguistic task? The two answers are not mutually exclusive, since a finer
categorization could be driven by an uneven distribution of the stimuli.
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In this area many questions remain open: how the number of emerging categories
depends on factors like the population size, the dimension and structure of the semantic
space, the network of acquaintances, the environment where the population live, genetic-
driven perceptual endowments, specific cognitive abilities, etc. It would be important to
investigate each of these elements to make the general modeling scheme closer to a larger
set of realistic situations where categories emerge in a non-trivial way, so that specific
predictions can be compared with real data.

For instance, a fundamental open question about the emergence of linguistic
categories, and more generally of shared linguistic structures, concerns the role of
timescales. How to reconcile the apparent static character of most of the linguistic
structures we learned with the evidence of a fluid character of modern communication
systems? Very preliminary studies suggest that well established linguistic structures
can undergo ageing [74, 75]: at relatively early stages changes are very frequent but
they become progressively more rare as the system ages; a phenomenon whose intensity
increases with the population size. From this point of view, shared linguistic conventions
would not emerge as attractors of a language dynamics, but rather as metastable states.

Categorization is of course a far larger problem than partitioning a possibly continuous
space of perceptions. It concerns the formation of a common lexicon and the emergence of
labels and tags as well as the bootstrapping of syntactic/semantic categories for grammar.
So far, little is known about the collective dimensions of categorization. Understanding
and capturing the interactive aspects of categorization process is a central challenge both
for basic research and for future technologies. Furthermore, communication about complex
information requires sophisticated conceptualizations, i.e., ways to encode knowledge at a
conceptual level (for instance the notion of perspective reversal as right of you). Despite
many studies concerning the topology of the space to be categorized and its impact on
the categorization process [76], a satisfactory mathematical and computational scheme is
still lacking.

5.2. Emergence of complex linguistic structures

Languages are extraordinarily complex because they are multi-layered distributed systems
(sound, words, morphology, syntax, grammar) and large parts are not visible to direct
observation. Despite many interesting attempts (e.g., generative grammar, unification
based grammar, fluid construction grammar, etc), we are still far from having a full
picture and a flexible theoretical and computational framework for the emergence and
the evolution of grammar systems. For instance, a very interesting direction concerns
the emergence of compositionality: which are the mechanisms that bring us to associate
different ‘features’ to an object instead of using a finer categorization of just one preferred
feature? In other words, how terms like ‘red square’ or ‘big blue circle’ emerge in a
linguistic society? This will be a foundation stone in explaining how human beings
acquired the remarkable capacity of compositional semantics.

The experience of complex systems brings us to face this set of problems with a step-
by-step approach, by starting with relatively simple cases while progressively aiming at
more complex situations. In this perspective, one of the first natural question concerns the
notion of complexity for a linguistic system. Here the word complexity is intended, in the
spirit of the algorithmic complexity and information theory [77], as the minimal amount
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of information needed to specify a body of knowledge. Is it possible to introduce a suitable
definition of complexity for a linguistic system? Is this notion of complexity related to
the intuitive functional efficiency of the system? Can this complexity be interpreted as a
sort of fitness function driving the evolution of linguistic structures? A natural starting
point for studies in this direction is represented by the numeral systems [78, 79].

From a general perspective it is tempting to face the problem of simple grammars
by exploiting their potential mapping to complex graphs and applying notions and tools
of data and graph compression [80]. An interesting line of research concerns how much
the hierarchy of patterns and motifs found by a data compression approach are related to
specific grammatical or syntactic rules.

It is worth mentioning how the association between entropic properties and language
structures has a long tradition. In evolutionary language games [17] the notion of linguistic
error limit [22, 81] is introduced as the number of distinguishable signals in a proto-
language and therefore the number of objects that can be accurately described by this
language. Increasing the number of signals would not increase the capacity of information
transfer. An interesting parallel has been drawn between the formalism of evolutionary
language games with that of information theory [82]. A possible way out is that of
combining signals into words [83], opening the way to a potentially unlimited number of
objects to refer to. More recently it has been conjectured that compression could aid in
generalization as well as in making languages evolve towards smooth string spaces, and
that more complex languages evolve more rapidly [84]. Recent approaches have exploited
the notion of algorithmic complexity for the reconstruction of language trees [85] and that
of Shannon entropy to investigate the presence of linguistic structures in Indus script [86]
and Pictish symbols [87].

5.3. New tools for experimental semiotics

While the research field of semiotics may traditionally be considered a conceptual
discipline, the cognitive turn has recently brought central semiotic questions and insights
into the laboratories, and a new discipline, dubbed experimental semiotics [88], is about
to be born. A few important examples have already shown the viability of this approach:
from coordination games with interconnected computers [89, 90] to experimental tests for
Iterated Learning Models [91].

Though only a few years old, the growth of the World Wide Web and its effect on
society have been astonishing, spreading from the research in high-energy physics into
other scientific disciplines, academia in general, commerce, entertainment, politics and
almost anywhere where communication serves a purpose. Innovation has widened the
possibilities for communication. Social media such as blogs, wikis and social bookmarking
tools allow the immediacy of conversation, with unprecedented levels of communication
speed and community size. Millions of users now participate in managing their personal
collection of online resources, enriching them with semantically meaningful information
in the form of freely chosen tags, and coordinating the categories they imply. Wikipedia,
Yahoo Answers and the ESP game [92] are systems where users volunteer their human
computation because they value helping others, participating in a community, or playing
a game. These new types of communities are showing a very vital new form of semiotic
dynamics. From a scientific point of view, these developments are very exciting because
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they can be tracked in real time, and the tools of complex systems science and cognitive
science can be used to study them.

From this perspective the web is acquiring the status of a platform for social
computing, able to coordinate and exploit the cognitive abilities of the users for a given
task, and it is likely that the new social platforms appearing on the web could rapidly
become a very interesting laboratory for social sciences in general [93], and for studies
on language emergence and evolution in particular. These recent advances are enabling
for the first time the possibility of precisely mapping the interactions of large numbers
of people at the same time as observing their behavior, and in a reproducible way. In
particular the dynamics and transmission of information along social ties can nowadays
be the object of a quantitative investigation of the processes underlying the emergence of
collective information and language dynamics.
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[41] Erdös P and Rényi A, On random graphs I , 1959 Publ. Math. Debrecen 6 290
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