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Hit Song Science is an emerging field of investigation that aims at predicting
the success of songs before they are released on the market. This chapter
defines the context and goals of Hit Song Science (HSS) from the viewpoint
of music information retrieval. In the first part, we stress the complexity of
the mechanisms underlying individual and social music preference from an
experimental psychology viewpoint. In the second part, we describe current
attempts at modeling and predicting music hits in a feature oriented view of
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popularity and, finally, draw conclusions on the current status of this emerging
but fascinating field of research.

10.1 An Inextricable Maze?

Can someone predict whether your recently produced song will become a hit?
Any pop song composer would probably laugh at this question and respond:
How could someone predict the success of what took so much craft, pain, and
immeasurable creativity to produce? I myself do not even have a clue!

This question raises a recurring fantasy in our culture: wouldn’t it be
thrilling to understand the “laws of attraction” that explain how this sort
of preference system of music in human beings works, to the point of being
able to predict the success of a song or any other cultural artifact before it
is even released? This fantasy is elaborated in detail in Malcom Gladwell’s
story “The Formula” [14]. In this fiction, a—needless to say, fake—system is
able to predict the success of movies by analyzing their script automatically.
The system is even smart enough to propose modifications of the script to
increase the success of the movie, with a quantified estimation of the impact
in revenues. In the introduction, Gladwell begins by describing the reasons
why we like a movie or not as resulting from a combination of small details.
He writes:

Each one of those ... narrative details has complicated emotional
associations, and it is the subtle combination of all these associa-
tions that makes us laugh or choke up when we remember a certain
movie... Of course, the optimal combination of all those elements
is a mystery. [14]

This process is also true for music: what makes us like a song or not probably
has to do with a complex combination of micro-emotions, themselves related
to our personal history, to the specifics of the song and to many other elusive
elements that escape our direct understanding. In spite of the many claims
that writing hit songs is just a matter of technique (see, for example, Blume
[5]), it is likely that, as the highly successful Hollywood screenwriter William
Goldman said: “Nobody knows anything” [15].

Or is this the case? However daring, Hit Song Science attempts to challenge
this assumption by precisely undertaking the task of making these kinds of
predictions. Several companies now claim to be able to automatically analyze
songs in order to predict their success (HSS, PlatiniumBlue) and to sell their
results to record labels. Unfortunately, the exact mechanisms behind these
predictions are not disclosed, and no reproducible data is provided to check
the accuracy of these predictions. At the same time, the very existence of these
services shows that hit prediction is taken seriously by the music industry.
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Considering this hit song prediction fantasy from a scientific viewpoint
raises issues in several disciplines, interrelated in complex ways that involve
the following issues: (1) the psychology of music listening and the effects of
repeated exposure, (2) the paradoxical nature of the Western media broad-
casting system, radios in particular, and (3) the social influence human beings
exert and receive from each other. Before describing the specific Music Infor-
mation Retrieval (MIR) approach to Hit Song Science, each of these issues is
first addressed.

10.1.1 Music Psychology and the Exposure Effect

Surprisingly, the question of “Why we like or not a particular song?” has
received little attention from music psychology. Although music preference
is recognized as a central aspect of modern identities, the field is “still in its
infancy” [30]. The issue of liking per se is indeed difficult to study directly, and
music psychologists have traditionally focused on less elusive, more directly
measurable phenomena such as memorization, recognition or learning.

In our context, a central issue in trying to explain music hits is exposure,
that is, the simple fact of listening to a musical piece. What is the effect
of exposure on preference or liking? Studies on exposure show that there is
indeed an impact of repeated exposure on liking, but also that this impact is
far from simple. Parameters such as the context, type of music or listening
conditions (focused or incidental), seem to influence the nature of this impact,
and many contradictory results have been published.

The popular idea that repeated exposure tends to increase liking was put
forward early [21] and was confirmed experimentally in a wide variety of con-
texts and musical genres [27]. The so-called mere exposure effect, akin to the
familiarity principle, or perceptual fluency , is considered by many psycholo-
gists to be a robust principle, pervading many facets of music listening.

However, as noted by Schellenberg [29], this increase in liking may be re-
stricted to musically impoverished or highly controlled stimuli. Indeed, other
studies have shown a more subtle effect of repeated exposure. The study by
Siu-Lan et al. [31] showed different effects of exposure on intact and patchwork
compositions. An inverted U-curve phenomena was observed in particular by
Szpunar et al. [33] and Schellenberg [30], itself explained in large part by
the “two factor model” of Berlyne [3]. In this model, two forces compete to
build up liking: (1) the arousal potential of the stimulus (the music), which
decreases with repeated listening, thereby increasing liking (with the habit-
uation to this arousal potential), and (2) familiarity, which tends to create
boredom. These two forces combined produce typical inverted U-shapes that
have been observed in many studies of preference. This model is itself related
to the famous “Wundt curve” [36]. The Wundt curve describes the typical
experience of arousal as being optimal when achieving a compromise between
repetition/boredom and surprise (Figure 10.1). Interestingly, reaching such
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Figure 10.1
The Wundt curve describes the optimal “hedonic value” as the combination
of two conflicting forces.

an optimal compromise in practice is at the root of the psychology of flow
developed by Cśıkszentmihályi [8].

Yet, other studies [35] show in contrast a polarization effect, whereby re-
peated exposure does not influence initial likings but makes them stronger,
both positively or negatively. Finally, Loui et al. [19] studied exposure effects
by considering exotic musical temperaments, to study the relation between
learning and preference. They showed that passive exposure to melodies built
in an entirely new musical system led to learning and generalization, as well
as increased preference for repeated melodies. This work emphasizes the im-
portance of learning in music preference.

These psychological experiments show that a relation between exposure
and liking exists, but that this relation is complex and still not well under-
stood, in particular for rich, emotionally meaningful pieces. It is therefore
impossible to simply consider, from a psychological point of view, that re-
peated exposure necessarily increases liking: it all depends on a variety of
factors.
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10.1.2 The Broadcaster/Listener Entanglement

If the relation between exposition and preference is unclear in socially neutral
contexts, the issue becomes even more confusing when considering the tangled
interplay between the preference engine of individuals and the editorial choices
of broadcasters, radio programmers, in particular.

Indeed, exposure is largely dependent upon the editorial strategies of pro-
grammers in the field of radio (in a broad definition of the term). Again, it
is often said that it suffices to play a tune often enough to make it a hit,
and that therefore hits are basically built by music marketing. However, the
influence of radios on musical taste is paradoxical. On one hand, mass media
(radio, television, etc.) want to broadcast songs that most people will like, in
the hope of increasing their audience. Yet, what these media broadcasts actu-
ally influence, in turn, is the taste of audiences by means of repeated, forced
exposition.

One process by which radios, for instance, maximize their audiences is so-
called radio testing , which is performed regularly by various companies (e.g.,
musicresearch.com). Radio testing consists in playing songs to a selected panel
that is representative of the radio audience, and then asking the listeners to
rank songs. Eventually, only songs having received top ranks are kept and
programmed. This radio testing phenomenon is more and more prevalent in
Western society [17], but, strangely, has received so far little attention from
researchers. Montgomery and Moe [22] exhibit a dynamic relationship be-
tween radio airplay and album sales, with vector autoregressive models, in
an attempt to better inform marketing managers. Montgomery and Moe also
stress the unpredictable evolution of this relationship as audiences may pro-
gressively evaluate these airplays critically by considering them as forms of
advertisements.

This situation creates a paradox, also stressed by Montgomery and Moe
[22]: “Not only is a radio station able to influence the public, but the public
can also affect what is aired on the radio. Increased album sales may lead
radio stations to play an album more.” In turn, these songs are repeatedly
exposed to a larger population with effects that are not completely clear, as
seen above. As a result, if it is clear that radios do have an impact on musical
taste, it is, again, difficult to assess exactly which one.

10.1.3 Social Influence

This is not the whole story. The situation is further complicated by the social
influence that we all exert on one other. Knowing that a song is a hit, or at least
preferred by others in our community, influences our liking. This phenomenon
has been studied by Salganik et al. [28] in a remarkable experiment, which
consisted in studying preferences in two groups of people: in the first group
(independent), users had to rank individually, unknown songs. In the second
group (social influence), users had the same task, with additional information
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about what the other users of the group ranked. This information regarding
the preferences of others had itself two strength levels.

The comparison between these two groups showed two interesting facts:
(1) In the independent group, the distribution of preference was not uniform,
showing that there are indeed songs that are statistically preferred to others,
independently of social influence. This preference can only come from the songs
themselves and can be considered as an indicator of their intrinsic quality.
(2) The strength of the “social signal” increases the unpredictability of hits,
that is, the more information about what others like, the less replicable are
the experiments in terms of which songs become hits. This unpredictability,
well-studied in network analysis, is referred to as the cumulative advantage
effect. In the social influence group, hits are much more popular than in the
independent group, but they are also different for each experiment, with the
same initial conditions. One interesting argument put forward in this study is
that the determination of which songs will become hits, in the social influence
condition, eventually depend on “early arriving individuals” [34], in other
words on initial conditions, which are themselves essentially random.

Under all of these conditions (unknown effects of repeated exposure, com-
plex interplay between broadcasters and listeners, and the effects of social
influence), is it reasonable even to attempt to program computers to predict
hits in the first place?

10.1.4 Modeling the Life Span of Hits

Recognizing the importance of social pressure and the rich-get-richer effect,
some works have attempted to predict hits using only social information,
regardless of the intrinsic characteristics of songs.

For instance, Chon et al. [7] attempt to predict the popularity and life span
of a jazz album given its entry position in the charts. This work used only
charts information from Billboard, an American magazine maintaining music
charts on a weekly basis. Analysis of the distribution of hits over time showed
that the life span of a song tended to increase with its starting position in the
charts. This result was interpreted as an encouragement to record labels to
market albums before the sales, since the higher the starting position is, the
longer it will stay in the charts. However, such a technique does not seem to
be sufficient to yield more accurate predictions.

In the same vein, Bischoff et al. [4] attempted to identify critical early-
stage effects of cumulative advantage. More precisely, this work posits that the
success of a hit depends only on two factors: (1) its initial observed popularity
after one week, as well as (2) contextual information such as the album, the
general popularity of the artist, and the popularity of other tracks in the
album. Similarly, this approach does not use any information concerning the
actual content of the songs. Initial popularity and contextual information are
converted into a 18 feature vector, and standard machine-learning techniques
are then used to train and test a predictor (as described in detail in the next
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section). Like in the previous work, ground-truth data is taken from Billboard.
This experiment was conducted on a database of 210,350 tracks, performed
by 37,585 unique artists. The results yield an improvement of 28% in AUC
(area under ROC) compared to the work of Dhanaraj and Logan [9] described
below.

These works show that there are patterns in the way social pressure gen-
erates hits. However, requiring initial popularity data, and being independent
of both the characteristics of the songs and the listeners, they don’t tell us
much about why we like or not a given song. The following approaches take
the opposite stance, trying explicitly to identify the features of songs that
make them popular, regardless of social pressure effects.

10.2 In Search of the Features of Popularity

Several MIR researchers have recently attempted to consider hit prediction
from a candid viewpoint. Like mathematicians trying to predict forecast or
evolutions of financial markets, Hit Song Science has emerged as a field of pre-
dictive studies. Starting from the observation of the nonuniform distribution
of popularity [12], the goal is to understand better the relation between in-
trinsic characteristics of songs (ignored in the preceding approaches) and their
popularity, regardless of the complex and poorly understood mechanisms of
human appreciation and social pressure at work.

In this context, popularity is considered as a feature of a song, and the
problem, then, is to map this feature to other features that can be measured
objectively. In other words, MIR sees Hit Song Science as yet another “feature
problem,” like genre or instrument classification.

It is important to stress the hypothesis at stake in this view, in light of the
three difficulties described in the previous section. The attempt to directly
model popularity with objective features ignores the difficulties that experi-
mental psychology encounters in explaining the exposure effect. However, the
yet unclear nature of human music habituation mechanisms does not imply
that a predictor cannot be built. Of course, even if successful, such a predictor
would probably not say much about the mysteries of the exposure effect.

The radio entanglement problem is related to the social influence issue: the
final distributions of hits in a human community depend on random initial
conditions which are not under control, from the choice of the members in
the panel to the preferences of the “early arriving individuals.” This intrinsic
unpredictability in the hit distribution seems at first glance to threaten the
whole Hit Song Science enterprise. An answer to this criticism consists in con-
sidering Hit Song Science as an idealistic attempt to determine the “objective
causes” of individual music preference, independently of the effects of social
influence.
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Even if it is not realistic for individuals to listen and rate songs indepen-
dently of each other, such an attempt is an important and sound approach
for two reasons. First, if the works of Salganik et al. [28] aim at stressing the
importance of social influence, they also show, in passing, that individual pref-
erences do exist and are consistent and grounded. The difference between the
nonuniform distribution of the independent group and a random one can pre-
cisely be seen as what remains of individual preference, once social influence
is ignored. Because these remains of individuality are not random, it is worth
trying to model them. Second, the search for the causes of our aesthetic expe-
rience, even partial ones, is a legitimate goal of cognitive science and should
also be a goal of modern musicology. The remainder of this chapter focuses
on this MIR view of hits, and more precisely on the following problem: under
the absence of social pressure, which features of songs are able to explain their
popularity?

10.2.1 Features: The Case of Birds

Before reviewing works that specifically address music features, we review here
a fascinating and successful case of feature-based hit song prediction in a less
complex area than human music: bird songs. Researchers in animal behavior
have long been interested in the phenomenon of bird song production and
its role in the mating process. In several bird species, male birds produce
songs primarily to attract females. The issue of what makes a bird song more
attractive than others has received particular attention in the recent years.
This question echoes the Hit Song Science question (What are the features of
popularity?), but in a simpler context, where social pressure is considered to
be less significant.

Various results have indeed shown that specific features of songs can ac-
count for their popularity. For instance, great reed warbler females (Acro-
cephalus arundinaceus) were shown to prefer long over short songs in the wild
[2].

More interestingly, the study by Draganoiu et al. [10] focused on the case
of the domesticated canary (Serinus canaria). In this species, male bird songs
have a specific phrase structure. Two features of these phrases were shown
to significantly increase liking: (1) frequency bandwidth and (2) trill rate.
However, it was also shown that these two features are somehow contradictory:
a trade-off is observed in real phrases, due to the specific motor constraints of
the bird vocal track.

The breakthrough experiment by Draganoiu et al. [10] consisted in syn-
thesizing artificial phrases optimizing these two features in an unrealistic way,
that is “beyond the limits of vocal production.” The exposition of these ar-
tificial phrases to bird females showed unequivocally that females preferred
these artificial phrases to the natural ones (see Figure 10.2). An interesting
interpretation for this preference is that the production of “difficult” phrases
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Figure 10.2
The distribution of canary phrases, in a bandwidth/tempo space, representing
the natural trade-off between bandwidth and syllabic tempo. Circles represent
the phrases used for the experiment. The artificial top right phrases optimizing
the two features in unrealistic ways were the most successful [10].

maximizing both bandwidth and syllable rate may be a reliable indicator of
male physical or behavioral qualities.

This evolutionary argument emphasizes the role of virtuosity in music ap-
preciation. In popular music, virtuosity is explicitly present in specific genres
(e.g., shredding in hard-rock, or melodic-harmonic virtuosity in bebop). How-
ever, it is probably a marginal ingredient of most popular styles (pop, rock),
although virtuosity is still a largely understudied phenomenon. To which ex-
tent can these works be transposed to popular music?

10.2.2 The Ground-Truth Issue

In the MIR view of Hit Song Science, the nonuniform distribution of pref-
erences is taken as ground-truth data. The problem is then to find a set of
song features that can be mapped to song popularity. Once the mapping is
discovered, the prediction process from a given, arbitrary new item (a song or
a movie scenario) can be automated.

Considering the preceding arguments, a suitable database to conduct the
experiment should ideally contain preference data which results from non-
“socially contaminated” rankings. Such rankings can be obtained as in the
experiment by Salganik et al. [28]. However, this process works only for a set
of carefully chosen, unknown songs by unknown artists. In practice, there is
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no database containing “normal songs” associated with such pure preference
data. The experiments given in the following sections are based on databases
of known music, with socially determined preference data, as described below.
The impact of this approximation is not clear, and this approach by default
could clearly be improved in future works.

10.2.3 Audio and Lyrics Features: The Initial Claim

The first attempt to model directly popularity in a feature-oriented view of
music preference is probably the study by Dhanaraj and Logan [9]. This study
consisted in applying the traditional machine-learning scheme, ubiquitous in
MIR research, to the prediction of popularity. The features consisted both
in traditional audio features Mel-frequency cepstral coefficients (MFCCs) ex-
tracted and aggregated in a traditional manner, as well as features extracted
from the lyrics. The lyrics features were obtained by extracting an eight-
dimensional vector representing the closeness of the lyrics to a set of eight
semantic clusters, analyzed in a preliminary stage using a nonsupervised learn-
ing scheme.

The experiment was performed on a 1,700 song database, using Support
Vector Machines (SVMs), and a boosting technique [13]. The conclusion of
this study is that the resulting classifiers using audio or lyric information do
perform better than random in a significant way, although the combination
of audio and lyric features do not improve the accuracy of the prediction.
However, a subsequent study described below showed contradictory results.

10.3 A Large-Scale Study

The studies by Pachet and Roy [23, 25] describe a larger-scale and more com-
plete experiment designed initially to assess to which extent high-level music
descriptors could be inferred automatically using audio features. A part of
this study was devoted to the specific issue of popularity, seen as a particu-
lar high-level descriptor among many others. This experiment used a 32,000
song database of popular music titles, associated to fine-grained human meta-
data, in the spirit of the Pandora effort (http://www.pandora.com) as well as
popularity data, obtained from published charts data like in the preceding ap-
proaches. To ensure that the experiment was not biased, three sets of different
features were used: a generic acoustic set à la MPEG-7, a specific acoustic set
using proprietary algorithms, and a set of high-level metadata produced by
humans. These feature sets are described in the next sections.
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10.3.1 Generic Audio Features

The first feature set was related to the so-called bag-of-frame (BOF) approach.
The BOF approach owes its success to its simplicity and generality, as it can
be, and has been, used for virtually all possible global descriptor problems. The
BOF approach consists in modeling the audio signal as the statistical distribu-
tion of audio features computed on individual, short segments. Technically, the
signal is segmented into successive, possibly overlapping frames, from which a
feature vector is computed. The features are then aggregated together using
various statistical methods, varying from computing the means/variance of the
features across all frames to more complex modeling such as Gaussian Mixture
Models (GMM). In a supervised classification context, these aggregated fea-
tures are used to train a classifier. The BOF approach can be parameterized
in many ways: frame length and overlap, choice of features and feature vec-
tor dimension, choice of statistical reduction methods (statistical moments or
Gaussian Mixture Models), and choice of the classifier (decision trees, Support
Vector Machines, GMM classifiers, etc.). Many articles in the Music Informa-
tion Retrieval (MIR) literature report experiments with variations on BOF
parameters on several audio classification problems [1, 11, 20, 26]. Although
perfect results are rarely reported, these works demonstrate that the BOF
approach is relevant for modeling a wide range of global music descriptors.

The generic feature set considered here consisted of 49 audio features taken
from the MPEG-7 audio standard [18]. This set includes spectral character-
istics (Spectral Centroid, Kurtosis and Skewness, High-Frequency Centroids,
Mel-frequency cepstrum coefficients), temporal (Zero-Crossing Rate, Inter-
Quartile Range), and harmonic (chroma). These features were intentionally
chosen for their generality, that is they did not contain specific musical infor-
mation nor used musically ad hoc algorithms. Various experiments (reported
by Pachet and Roy [25]) were performed to yield the optimal BOF parameters
for this feature set: localization and duration of the signal, statistical aggre-
gation operators used to reduce dimensionality, frame size and overlap. The
best trade-off between accuracy and computation time was achieved with the
following parameters: 2,048 sample frames (at 44,100 Hz) with a 50% overlap
computed on a two-minute signal extracted from the middle part of the title.
The aggregated features were the two first statistical moments of this distri-
bution (mean and variance) yielding eventually a feature vector of dimension
98 (49 means + 49 variances).

10.3.2 Specific Audio Features

The specific approach consisted in training the same (SVM) classifier with
a set of “black-box” acoustic features developed especially for popular mu-
sic analysis tasks by Sony Corporation [32]. These proprietary features have
been used in commercial applications such as hard disk based Hi-Fi systems.
Altogether, the specific feature set also yielded a feature vector of dimension
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98, to guarantee a fair comparison with the generic feature set. As opposed
to the generic set, the specific set did not use the BOF approach: each fea-
ture was computed on the whole signal, possibly integrating specific musical
information. For instance, one feature described the proportion of perfect ca-
dences (i.e., resolutions in the main tonality) in the whole title. Another one
represented the proportion of percussive sounds to harmonic sounds.

10.3.3 Human Features

The last feature set considered was a set of human-generated features. We
used the 632 Boolean labels provided by a manually annotated database (see
the following section) to train the classifiers. This was not directly compa-
rable to the 98 audio features as these labels were Boolean (and not floating
point values). However, these features were good candidates for carrying high-
level and precise musical information that are typically not well learned from
features extracted from the acoustic signal.

10.3.4 The HiFind Database

10.3.4.1 A Controlled Categorization Process

Several databases of annotated music have been proposed in the MIR com-
munity, such as the RWC database [16], the various databases created for
the MIREX tests [6]. However, none of them had the scale and number of
labels needed to conduct this experiment. For this study the authors used
a music and metadata database provided by the defunct HiFind Company.
This database was a part of an effort to create and maintain a large repos-
itory of fine-grained musical metadata to be used in various music distribu-
tion systems, such as playlist generation, recommendation, or advanced music
browsing. The HiFind labels were binary (0/1 valued) for each song. They
were grouped in 16 categories, representing a specific dimension of music:
Style, Genre, Musical setup, Main instruments, Variant, Dynamics, Tempo,
Era/Epoch, Metric, Country, Situation, Mood, Character, Language, Rhythm,
and Popularity. Labels described a large range of musical information: objec-
tive information such as the “presence of acoustic guitar,” or the “tempo
range” of the song, as well as more subjective characteristics such as “style,”
“character” or “mood” of the song. The Popularity category contained three
(Boolean) labels: low, medium, and high, representing the popularity of the
title, as observed from hit charts and records of music history. These three
labels were mutually exclusive.

The HiFind categorization process was highly controlled. Each title was
listened to entirely by one categorizer. Labels to be set to true were selected
using an ad hoc categorization software. Label categories were considered in
some specific order. Within a category, some rules could apply that prevented
specific combinations of labels to be selected. The time taken, for a trained
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categorizer, to categorize a single title was about six minutes. Categorized ti-
tles were then considered by a categorization supervisor, who checked consis-
tency and coherence to ensure that the description ontologies were well under-
stood and utilized consistently across the categorization team. Although errors
and inconsistencies could be made during this process, the process nevertheless
guaranteed a relative good “quality” and consistency of the metadata, as op-
posed for instance to collaborative tagging approaches with no supervision. As
a consequence, the metadata produced was very precise (up to 948 labels per
title), a precision difficult to achieve with collaborative tagging approaches.

The total number of titles considered in this study was 32,978, and the
number of labels 632. Acoustic signals were given in the form of a wma file at
128 kbps. This database was used both for training and testing classifiers, as
described in Section 10.3.5.3.

10.3.4.2 Assessing Classifiers

To avoid the problems inherent to the sole use of precision or recall, a tradi-
tional approach is to use F-measure to assess the performance of classifiers.
For a given label, the recall R is the proportion of positive examples (i.e., the
titles that are true for this label) that were correctly predicted. The precision
P is the proportion of the predicted positive examples that were correct. When
the proportion of positive examples is high compared to that of negative ex-
amples, the precision will usually be artificially very high and the recall very
low, regardless of the actual quality of the classifier. The F-measure addresses
this issue and is defined as:

F = 2× R× P
R+ P

However, in this specific case, the authors had to cope with a particularly
unbalanced two class (True and False) database. Therefore, the mean value
of the F-measure for each class (True and False) could be artificially good.
To avoid this bias, the performances of classifiers were assessed with the more
demanding min F-measure, defined as the minimum value of the F-measure
for the positive and negative cases. A min-F-measure near 1 for a given label
really means that the two classes (True and False) are well predicted.

10.3.5 Experiment

10.3.5.1 Design

The HiFind database was split in two “balanced” parts, Train and Test, so
that Train contained approximately the same proportion of examples and
counterexamples for each label as Test. This state was obtained by performing
repeated random splits until a balanced partition was observed.

Three classifiers were then trained, one for each feature set (generic,
specific, and human). These classifiers all used an SVM algorithm with a
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radial-basis function (RBF) kernel. Each classifier, for a given label, was
trained on a maximally “balanced” subset of Train, that is, the largest sub-
set of Train with the same number of “True” and “False” titles for this label
(popularity: Low, Medium, and High). In practice, the size of these individual
train databases varied from 20 to 16,320. This train database size somehow
represented the “grounding” of the corresponding label. The classifiers were
then tested on the whole Test base. Note that the Test base was usually not
balanced with regards to a particular label, which justified the use of the
min-F-measure to assess the performance of each classifier.

10.3.5.2 Random Oracles

To assess the performance of classifiers, these were compared to that of random
oracles defined as follows: given a label with p positive examples (and therefore
N − p negative ones, with N the size of the test set), this oracle returns true
with a probability p

N . By definition, the min-F-measure of a random oracle
only depends on the proportion of positive and negative examples in the test
database.

For instance, for a label with balanced positive and negative examples, the
random oracle defined as above has a min-F-measure of 50%. A label with
200 positive examples (and therefore around 16,000 negative examples) leads
to a random oracle with a min-F-measure of 2.3%. So the performance of the
random oracle was a good indicator of the size of the train set and could
therefore be used for comparing classifiers as described below.

10.3.5.3 Evaluation of Acoustic Classifiers

The comparison of the performance of acoustic classifiers with random oracles
showed that the classifiers did indeed learn something about many of the
HiFind labels. More than 450, out of 632 labels, were better learned with the
acoustic classifiers than with random oracle. Table 10.1 indicates, for each
feature set, the distribution of the relative performance of acoustic classifiers
with regards to random oracles.

Table 10.1 also shows that around 130 to 150 labels lead to low-
performance classifiers, that is, acoustic classifiers that did not perform signif-
icantly better than a random oracle (the last row Table 10.1); approximately
half of the labels led to classifiers that improve over the performance of a
random classifier by less than 10; the rest (top rows) clearly outperformed a
random oracle, that is, they were well modeled by acoustic classifiers.

It is interesting to see that the performance of these acoustic classifiers
varied from 0% for both feature sets to 74% for the generic features and 76%
for the specific ones. The statistical distribution of the performance was close
to a power law distribution, as illustrated by the log-log graph of Figure 10.3.

These acoustic classifiers learned aspects of human musical categorization
with a varying degree of success. The problem, as outlined below, is that
popularity stands at the bottom line of this scale.
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Improvement Specific Generic
50 8 0
40 12 15
30 43 20
20 111 79
10 330 360
0 128 158

Table 10.1
Number of Labels for Which an Acoustic Classifier Improves over a Random
Classifier by a Certain Amount (Column “Improvement” reads as follows:
there are 111 labels for which a specific acoustic classifier outperforms a ran-
dom classifier by +20 [in min-F-measure].)

Not surprisingly, it could be observed that specific features performed al-
ways better than the generic ones (see Figure 10.4). Since the classifiers were
both based on the same SVM/kernel, the difference in performance could only
come from the actual features considered.

Last, the relationship between the performance and the size of the training
set was studied. The trend lines in Figure 10.5 show that the performance of
acoustic classifiers increase with the training data set size, regardless of the
feature set. This was consistent with the acknowledged fact that machine-
learning algorithms require large numbers of training samples, especially for
high-dimensional feature sets.

These experiments showed that acoustic classifiers definitely learned mu-
sical information, with varying degrees of performance. It also showed that
the subjective nature of the label did not seem to influence their capacity to
be learned by audio features. For instance, the label “Mood nostalgic” was
learned with 48% (specific features), and 43% (generic features), to be com-
pared to the 6% of the random oracle. Similarly, label “Situation evening
mood” was learned with 62% and 56% respectively, against 36% for random.
Since a priori high-level features of songs could be learned with some success,
why not popularity?

10.3.5.4 Inference from Human Data

This double feature experiment was complemented by another experiment
with classifier trained using all the HiFind labels but the Popularity ones.
Some pairs of HiFind labels were perfectly well correlated so this scheme
worked obviously perfectly for those, but this result was not necessarily mean-
ingful in general (e.g., to infer the country from the language). The same Train
/ Test procedure described above applied with the 629 nonpopularity labels
as input yielded the following result (min-F-measure): 41% (Popularity-Low),
37% (Popularity-Medium), and 3% (Popularity-High).
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Figure 10.3
Log-log graph of the distribution of the performance of acoustic classifiers for
both feature sets.

10.3.6 Summary

The results concerning the Popularity labels are summarized in Table 10.2.
These results show clearly that the Popularity category was not well-modeled
by acoustic classifiers: its mean performance was ranked fourth out of 16
categories considered, but with the second lowest maximum value among cat-
egories.

Although these results appear to be not so bad at least for the “Low” label,
the comparison with the corresponding random classifiers shows that popular-
ity is in fact not learned. Incidentally, the performance was not improved with
the correction scheme, a method that exploits inter-relations between labels
to correct the results [25]. Interestingly, human features (all HiFind labels)
did not show either any significant improvement over random classifiers.

A last experiment was conducted with a priori irrelevant information:
the letters of the song title, that is, a feature vector of size 26, containing the
number of occurrences of each letter in the song title. The performances of the
corresponding classifiers were respectively 32%, 28%, and 3%. (For the low-,
medium-, and high-popularity labels, see Table 10.2.) This shows that even
dumb classifiers can slightly improve the performance of random classifiers
(by 5% in this case for the medium- and low-popularity labels). Obviously,
this information does not teach us anything about the nature of hits and can
be considered as some sort of noise.

These results suggest that there are no significant statistical patterns
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Figure 10.4
Cumulated distribution of the performance of acoustic classifiers for the
generic and specific feature sets.

concerning popularity using any of the considered features sets (audio or hu-
mans). This large-scale evaluation, using the best machine-learning techniques
available to date, contradicts the initial claims of Hit Song Science, that is that
the popularity of a music title could be learned effectively from well-identified
features of music titles. A possible explanation is that these early claims were
likely based on spurious data or on biased experiments. This experiment was
all the more convincing that other subjective labels could be learned reason-
ably well using the features sets described here (e.g., the “mood nostalgic”
label).

The question remains: Do these experiments definitely dismiss the Hit
Song Science project?

10.4 Discussion

The experiments described above show that current feature-oriented ap-
proaches to hit song prediction are essentially not working. This negative
result does not mean, however, that popularity could not be learned from
the analysis of a music signal or from other features. It rather suggests that
the features used commonly for music analysis are not informative enough to
grasp anything related to subjective aesthetic judgments.
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Figure 10.5
The relative performance of the 632 acoustic classifiers (i.e., the difference
between the min-F-measures of the classifier and of the corresponding random
oracle) for specific and generic features, as a function of the training database
size. The performance of the acoustic classifiers increases with the size of the
training database.

A natural way forward is to consider other feature sets. A promising ap-
proach is the use of feature generation techniques, which have been shown to
outperform manually designed features for various audio classification tasks
[24]. However, more work remains to be done to understand the features of
subjectivity for even simpler musical objects such as sounds or monophonic
melodies. Concerning the problem of social pressure, an interesting approach
is to use music produced with exotic musical temperaments, an approach de-
scribed by Loui et al. [19] to study the effects of exposure on musical learning
and preference. This approach cannot be used on existing music, but has the
great advantage of avoiding the biases of social pressure.

These negative results cast serious doubts on the predictive power of com-
mercial Hit Song Science systems. Therefore, notwithstanding the limitations
of current feature-based approaches, the arguments of social pressure effects
are crippling: Hit Song Science cannot be considered, in its current state,
as a reliable approach to the prediction of hits, because of the chaotic way
individual preferences are mingled and propagated.

In spite of these negative results, we think that the main scientific inter-
est of Hit Song Science, from a MIR viewpoint, lies precisely in the feature
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Low 36 35 31 41 32 27
Medium 36 34 38 37 28 22
High 4 3 3 3 3 3

Table 10.2
The Performance (Min-F-Measures) of the Various Classifiers for the Three
Popularity Labels (No significant improvement on the random oracle is ob-
served.)

questions: Are there features of popularity, for an individual or for a commu-
nity, and, if yes, what are they? From this perspective, Hit Song Science is a
fascinating enterprise for understanding more what we like, and hence, what
we are. The studies presented here have only started to scratch the surface of
these questions: Hit Song Science is not yet a science but a wide open field.
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