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Abstract

Many content generation applications in sequential do-
mains such as music or text are based on sampling
from statistical models. In practice, users need so-
lutions that satisfy specific, additional properties not
captured by the model. For instance, music generation
often requires long-range, structural constraints to be
satisfied, and these are typically ignored by statisti-
cal models such as Markov models. Several works have
shown that it is possible to sample, in polynomial time,
Markov models subject to specific types of constraints.
In this paper, we address the problem of sampling Mar-
kovian sequences satisfying equality constraints bet-
ween distant variables. Such constraints are motiva-
ted by the need to enforce high-level structure, such as
the repetition of patterns. Our contribution is twofold.
First, we show that exact sampling is, in this case, #P-
hard. Second, we show empirically that a random walk
approach augmented by a filtering algorithm leads to
efficient sampling, but with a significant bias in the
output’s distribution. Finally, we show that specific
configurations of equality constraints can be handled in
polynomial time. We illustrate this result on a chord
sequence generation problem.
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1 Introduction
Recent years have seen an increase in style imitation
applications in sequential domains such as text and
music. Although style remains an elusive notion, it is
most often modeled as a statistical object, usually esti-
mated from a representative corpus of sequences. Once
a statistical model is estimated, new sequences can be
sampled according to the underlying distribution of
the model [2].
However, in practice, statistical models do not capture
all the properties of the corpus from which they have
been trained. For instance, meter, harmony, and more

generally properties involving long-range correlations
are not well captured by statistical models that involve
only local features of the corpus at stake. It is the-
refore interesting to use the technology of constraint
programming to enforce a posteriori these properties
and to somehow combine the statistical power of the
model with the filtering of such global constraints.
Several results have been obtained recently in this di-
rection, for instance to enforce meter [17], nogoods
(anti-plagiarism) [12] or 1/f spectrum properties [8]
in sequences generated by Markov models, in polyno-
mial time.
Such an endeavor follows a trend in constraint pro-
gramming consisting in reformulating existing statis-
tical algorithms as constraint satisfaction problems
(CSP), notably for Markov chains [7, 9], neural net-
works [6, 1], and more generally statistical constraints
[14, 15]. This work can be seen as yet another bridge
between stochastic algorithms and finite-domain, dis-
crete constraint satisfaction.

2 Markov Models under Binary
Equality Constraints

The problem we address in this paper was first high-
lighted in [3]. It consists in sampling a sequence from
a Markov model of chord progressions, that additio-
nally satisfies a set of binary equality constraints. In
the cited publication, this model was estimated from
a corpus of chord sequences in the Trance music style.
Binary equality constraints hold on specific indexes
of the sequence, i.e. if we consider a sequence to
be sampled as a set of variables x1, x2, . . . , xn

, then
each constraint C

i,j

states that x

i

= x

j

. An arbi-
trary number of such equalities can be set on a se-
quence. Obviously, the number of equality is bounded
by

�
n

2

�
= n(n�1)

2 if n is the size of the sequence.
The motivation for imposing such binary equalities is
to simulate structural properties observed in real se-
quences, a notoriously difficult problem in statistical
modeling. Indeed, enforcing binary constraints is a way
to specify repeating patterns of arbitrary lengths in a
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Figure 1 – A typical configuration of binary equalities, impo-
sed on a Markov sequence to specify the repetition of a pattern.
Here the three first values should be repeated at a specific po-
sition in the sequence

finite sequence. A set of binary equalities can be used
to specify a pattern of arbitrary size to be repeated
at specific locations of the sequence as illustrated in
Figure 1.
In the original publication, a modified random walk
procedure was proposed. In general, a simple random
walk is impractical and a random walk augmented
with filtering introduces a statistical bias in the out-
put’s distribution. Binary equalities introduce cycles
and dependencies in the corresponding models that
need to be somehow propagated.
If there is a fixed small number of such equalities,
the corresponding language defined by the set of
constraints can be considered as regular. In that case,
the result described in [11] can be applied. However,
the size of the automaton grows exponentially with
the number of constraints and quickly becomes intrac-
table.
In this paper, we address the problem in its full gene-
rality, and study the complexity of the problem from
a sampling perspective.
The rest of the paper is organized as follows. In Sec-
tion 1, we show that the problem of deciding if there is
a solution to the Markov + binary equality constraints
with a non zero probability is NP-hard. This proof is
based on a parcimonious reduction of binary CSPs to
a Markov + binary equality problem. We also show
that the corresponding inference problem is #P-hard.
In Section 2, we show empirically that using a filtering
procedure in a random walk scheme does enable us to
find non zero probabilities solutions quickly, but that
these probabilities are wrong. In Section 3, we identify
a number of specific cases corresponding to configura-
tions of the binary equalities (including our motivating
example), for which we exhibit a polynomial sampling
algorithm, and we report on experiments conducted
on a music chord sequence generation problem.

3 Complexity of Decision and
Sampling Problems

A CSP is fully represented by its constraint graph, i.e.
a graph where the vertices represent the variables, and
each edge (x, y) is labeled by a function C(x, y) taking
value 1 when (x, y) satisfies the constraint and 0 other-
wise. Factor graphs are a generalization of constraint
graph, i.e. C(x, y) can take any real value. They allows
us to answer queries about the CSP in a probabilistic
framework. Two fundamental queries are, for example,
is the CSP satisfiable (decision problem), and if so,
how many solutions does it have (counting problem).
Let G be the factor graph associated with the CSP,
and P

G

the unnormalized measure associated with
the factor graph. It can easily be shown that P

G

is
a uniform distribution over the solution of the CSP,
where each solution have measure 1. The decision pro-
blem thus consists in determining whether or not this
distribution is the null distribution, and the counting
one consists in computing the normalizing constant
Z =

P
X

P
G

(X).

Proposition 1. The decision (resp. counting) pro-
blem associated with a Markov model subjet to a
set of equality constraints is NP-complete (resp. #P-
complete), i.e. deciding if there is an (resp. counting
the number of) assignment that have non zero proba-
bility.

Démonstration. Let A be a (d, 2)-CSP and G its asso-
ciated factor graph, i.e. A is a binary CSP where the
maximum size of a variable domain is d. We will show
that the decision (resp. counting) problem associated
to A can be reduced to the decision (resp. inference)
problem in a Markov model subject to a set of equality
constraints.
We unwrap the factor graph G into a chain G

0 with a
set of equality constraints Ceq =

�
C1, . . . , Cneq

 
such

that the contraction of G

0 with respect to Ceq is G

[[13], p.231]. One property that the linear chain must
follow is that the set of binary constraints labeling its
edges must be the same set of constraints labeling the
original graph, regardless of constraints allowing all
pairs of values (dummy edge). In order to build the
unwrapped graph G

0 one can use the Algorithm 1 1.
An example is shown in Figure 2.
As the factor graph G

0 is a chain, we can factorize
P

G

0 (X) = P
G

0 (X1)
Q

N

n=2PG

0 (X
n

|X
n�1) because

of the independence assumptions it must satisfies.
The conditional probabilities can be obtained by
belief propagation on G

0, leaving us with the Mar-
kov model M [5]. By construction, there exists a
non zero probability sequence satisfying the equa-
lity constraints if and only if A has a solution.

1. We do not discuss the efficiency of the unwrapping me-
thod. We only need it to be polynomial, and the method we
propose is polynomial.



Algorithme 1 : Linearizing graphs
Data : G = (V, E) − graph
Result : G

0 = (V 0
, E

0) − linear chain
C − set of binary equality constraints

1 E

0  ;;
2 V

0  ;;
3 C  ;
// initializing E

0

4 (left, right) first edge of E;
5 add (left, right) to E

0 ;
6 add left to V

0;
7 add right to V

0;
8 remove (left, right) from E

9 while E is not empty do

10 (left, right) first edge of E;
11 last last vertex of V

0;
12 if last == right then

// we only need to add right

13 add (last, right) to E

0;
14 add right to V

0;
15 remove (left, right) from E;
16 if right was already in V

0
then

// add an equality constraint

17 i last occurence of right in V

0 before
current position;

18 j  current position in V

0;
19 Add EqualConst(V (i), V (j)) to C;

20 else

// we need to add e1 and e2

21 edge dummyEdge(last, left);
22 add edge to E

0;
23 add left to V

0;
24 add (left, right) to E

0;
25 remove (left, right) from E;
26 if left was already in V

0
then

// add an equality constraint

27 i last occurence left in V

0 before
current position;

28 j  current position in V

0;
29 Add EqualConst(V (i), V (j)) to C;

30 if right was already in V

0
then

// add an equality constraint

31 i last occurence right in V

0 before
current position;

32 j  current position in V

0;
33 Add EqualConst(V (i), V (j)) to C;

34 G

0  (V 0
, E

0);

x1 x2 x3 x4 x5 x6 x7 x8
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=
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=
=
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Figure 2 – Left : constraint graph. Right : unwrapped chain
with additionnal equalities
Mapping : (v1 ! x1, x5) , (v2 ! x2, x8) , (v3 ! x3, x6) ,
(v4 ! x4, x7).
The edge between x6 and x7 represent a constraint allowing
every pair of values in order to avoid redundancy.

Since solving A is NP-hard in general [4], the de-
cision problem associated with M and Ceq is NP-hard.

We can write the following equation

PM (Ceq) = PM (C1)

neqY

n=2

PM (C
n

|C
n�1, . . . , C1)

where PM (Ceq) is the probability that the
constraints in Ceq are satisfied, according to the
Markov model. Suppose that C

n

is an equality bet-
ween X

i

and X

j

, then PM (C
n

|C
n�1, . . . , C1) =P

d

x=1PM (X
i

= x, X

j

= x|C
n�1, . . . , C1)

So if we can perform inference with
respect to PM (·|C

n

, . . . , C1) for all
1 6 n 6 neq, where PM (·|C

n

, . . . , C1) stands
for the distribution X 7! PM (X|C

n

, . . . , C1), we can
compute PM (Ceq). Let us recall that :

— PM is the normalization of P
G

0 (·), i.e.
PM (·) = 1

Z(G0)PG

0 (·).
— PM (·|Ceq) is the normalization of PM (·, Ceq),

i.e. PM (·) = 1
PM(Ceq)PM (·, Ceq).

Therefore PM (Ceq) = Z(A0)
Z(G0) where Z(A0) is the num-

ber of satisfying assignment for A

0. So if we can per-
form inference with respect to PM (·|Ceq), we can also
compute Z(A0). Since computing Z(A0) is #P-hard
[16], we have proved the #P-completeness of the infe-
rence problem.

4 Empirical Results with a Filte-
ring Approach

In this Section we illustrate the problem on a concrete
example : the generation of a chord sequence in a
given style. We consider a corpus of 232 song by the
Beatles, taken from the LSDB database [10]. The size
of the alphabet here is 56 (different chords, e.g. C, Eb
min, etc.). For example, the song Hey Jude begins
with the sequence of chords F, C, C7, F, Bb, F, C7,
F,... .
We build a first-order Markov model from this corpus,
and we consider the following problem :
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Figure 3 – Constrained markov model associated
with Problem#1

Problem#1 := Generate a sequence of 11
chords X1, . . . , X11 with the set of equalities
{X1 = X4 = X8 = X9} and {X6 = X7}.
The filtering approach consists in a random walk
where constraints are propagated after each instan-
tiation :

1. Arc-consistency : filter out values forbid-
den by Markovian transitions and equality
constraints until a fixed point is reached.

2. Instantiation : instantiate the first uninstan-
tiated variable according to its prior probability
restricted to the filtered domain.

We then plot the probabilities estimated from sam-
pling versus their actual probabilities in the Markov
model. Such a plot should look like a straight line if we
perform a perfect sampling. The bias in the output’s
distribution is represented by the deviation from such
an ideal plot. Figure 4 represents Problem#1, and the
probability of the model is not normalized according
to the equality constraints, due to the complexity of
computing the normalizing constant i.e. model’s pro-
bability is PM (X) instead of PM (X|Ceq).
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Figure 4 – Sampling of a Markov sequence under 4 binary
equality constraints, using a filtering approach. The most out-
puted sequence is G5, G5, G5, G5, G5, G5, G5, G5, G5, G5,
G5, G.

5 Specific Cases
We have shown that the general problem of sampling a
Markov chain under an arbitrary set of binary equality
constraints is hard. Experiments using a simple filte-
ring approach do find non zero probability solutions

but with a strong bias. The difficulty of the general
problem is intrinsically related to the structure of the
associated binary CSP introduced in Section 3, and in
particular its tree-width. We exhibit here two specific
cases in which the problem can be solved in polynomial
time, by exploiting the specific structure of the asso-
ciated binary CSP. The general algorithm we propose
is summarized in Algorithm 2.

Algorithme 2 : Constrained sampling
Data : M − Markov model
N − length of the sequence
C − Set of binary equality constraints
Result : X − Markovian sequence sampled with

probability PM(X|C)

1 G factor graph associated with M and N

2 G

0  G

3 G

0  marginalize out unconstrained nodes in G

0

according to C
4 G

0  contraction of G

0 according to C
5 XC  exact sampling from G

0

6 G instantiate constrainted variable in G with XC
7 X  sample G with belief propagation

The algorithm can be decomposed into two steps :
1. Sampling from constrained nodes.
2. Performing belief propagation given the

constrained nodes.
The major complexity of the problem lies in the first
step. In the rest of this section, we first recall how to
marginalize nodes in a linear chain, then we exhibit
two cases where the first step of our sampling algo-
rithm can be done in polynomial time.

5.1 Marginalizing in a Linear Chain

Let G be a linear chain representing the distribution
P (X1, X2, X3) = 1

Z

f1(X1, X2)f2(X2, X3). The factor
graph obtained after marginalizing X2 is still a chain.
It is obtained by removing node X2 and merging fac-
tors f1 and f2 into a factor f such that

f(X1, X3) =
X

X2

f1(X1, X2)f2(X2, X3)

The marginalization step in a linear chain has com-
plexity O(d3) for each marginalized node where d is
the size of the variable’s domain. Figure 5 summarizes
this procedure.

5.2 Non-crossing Equalities

When the binary equality constraints do not cross each
other, the factor graph obtained at line 5 of Algo-
rithm 2 is a linear chain with an additional unary
factor for each node. In Figure 6, the first factor is
f1(y1) = PM (X1 = y1, X2 = y1), the second factor is



f

G

G

�
x1

x2

x3

f1 f2x1 x3

Figure 5 – Marginalizing node X2 from the graph G on the
top gives the graph G

0 on the bottom.
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Figure 6 – Left : Markov model M with equality constraints.
Right : Quotient graph obtained after marginalizing over x4.
Mapping : (x1, x2 ! y1), (x3, x5 ! y2).

f2(y1, y2) = PM (X3 = y2|X2 = y1), and the third fac-
tor is f3(y2) = PM (X5 = y2|X3 = y2). We can apply
belief propagation to perform perfect sampling. The
overall procedure takes O(d3

N) where N is the umber
of nodes, as the marginalization step takes O(d3) for
each marginalized node.

5.3 Repeating Patterns

Another interesting case is when binary equalities cor-
respond to a repeating pattern, as in our motivating
example in Figure 1. In that case, the quotient graph
obtained at line 4 of Algorithm 2 can be shown to be
a simple cycle. Figure 7 shows the quotient graph as-
sociated with the example shown in Figure 1, where
we have marginalized variables X and Y .

Let us note X1, . . . , Xn

the variables of a simple cycle
factor graph. It can be easily unfolded into a linear
chain with nodes Y1, . . . , Yn+1, with the additional
constraint {Y1 = Y

n+1}. In this linear chain, Y1 and
Y

n+1 correspond to X1, and for 2 6 i 6 n � 1, Y

i

correspond to X

i

. We need to compute the margi-
nal probability P (X1 = x) = P (Y1 = x|Y1 = Y

n+1)
for all x in the variable domain. To do so, we ins-
tantiate Y1 = x and Y

n+1 = x, then we per-
form belief propagation to compute the normaliza-

x1,5

x2,6

x3,7 =

y1 y2 y3 y4

Cycle Unwrapped chain

Figure 7 – Left : Quotient constraint graph of example shown
in Figure 1, after marginalization of unconstrained variables.
Right : Unwrapped chain correpsonding to the quotient graph.
Mapping : (x1,5 ! y1, y4) , (x2,6 ! y2) , (x3,7 ! y3).

tion constant Z(x) of the linear chain where Y1 and
Y

n+1 instantiated. We can compute this normalisa-
tion constant in O(d2

n) and we have that Z(x) =
P (X1 = x) = P (Y1 = x|Y1 = Y

n+1). Once we have
computed P (X1 = x) for all x, the sampling scheme
is the following :

— Sample X1 according to P (X1) =
P (Y1|Y1 = Y

n+1).
— Sample X

i

for 1 6 i 6 n using belief propaga-
tion algorithm.

The overall procedure is in O(d3
n). Once we have sam-

pled all the values of the quotient graph, we can follow
the rest of Algorithm 2 to sample the unconstrained
variables.
The complexity of this case does not depend on the
number of binary equality constraint. We performed a
sampling experiment with a first order Markov mo-
del trained on a corpus of 129 songs composed by
Charlie Parker, made of 51 different chords. The ge-
nerated sequences contains 12 chords and must satisfy
{X1 = X9, X2 = X10, X3 = X11, X4 = X12}, as in the
example of Figure 1. Figure 8 plot the estimated pro-
babilities vs the model’s probability normalized with
respect to the set of equality, i.e. PM (X|Ceq).
The most frequent instantiation of this pattern of 12
chords in the corpus is Bb, Gm, Cm, F, Bb, G, Cm, F,
Bb, Gm, Cm, F. The second most outputed pattern by
our algorithm is Bb, Cm, F, Bb, Bb, Cm, F, Bb, Bb,
Cm, F, Bb, which is close to the most frequent one in
the corpus 2, i.e. the constrained variables almost take
the desired values.
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Figure 8 – Sampling of a Markov sequence under 4 binary
equality constraints, using a belief propagation approach on the
quotient graph. Sampling is here perfect.

6 Discussion
We have introduced a sampling problem originating
from a music generation problem : sampling Mar-

2. The most outputed sequence being Bb, Cm, F, Bb, Bb,
Bb, Cm, F, Bb, Cm, F, Bb.





kov sequences satisfying a set of binary equality
constraints. We have shown that the problem in gene-
ral is #P-hard. The proof is based on the fact that a
binary CSP can be transformed into a Markov model
subject to equality constraints. We have empirically
shown that it is possible to sample such sequences
using filtering at the price of a significant statistical
bias. We have shown that for specific configurations of
binary equalities, polynomial solutions can be found.
When used without additionnal constraint, these algo-
rithms do not give satisfactory results, however they
can easily be mixed with all regular constraints be-
cause it is based on a belief propagation scheme.
This problem is an instance of a Markov + X problem
where X is a hard constraint, which turns out to be
NP-hard in general, as opposed to previous results in
this domain (e.g. regular or nogood constraints). More
generally we believe that the combination of statistical
models and hard constraints is an interesting approach
to follow.
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