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ABSTRACT

Precision farming and in-field phenotyping benefit from developments in robotics. However, the
technological advances are usually dedicated to large scale facilities, either monoculture farms or
research facilities. We introduce the LettuceThink robotic platform as a versatile tool to ease the
work on market farms. The design and software are modular and open source  so that it can be built
with standard parts and modified to fit specific needs. We demonstrate its use with two applications:
precise mechanical weeding and 3D reconstruction of plants. 
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1. INTRODUCTION 

We are seeing a  recent  trend in  Europe,  in  which young farmers  are  settling  on small-surface,
organic farms to grow a wide variety of vegetable crops. A major challenge on these microfarms is
to overcome the workload as the smaller surfaces are compensated for by applying more spatially-
dense growing techniques that require a large amount of manual work. The traditional machines
used  in  agriculture  are  optimized  for  speed  and  power,  and  are  not  adapted  to  dense  cultures
(Bechar,  C  2016).  The  LettuceThink  platform  is  a  lightweight  wheeled  robot  equipped  with
precision  sensors  and  actuators  controlled  with  open  source  software.  We present  below  two
applications relevant to market farms. The weeding of crop beds is a task that demands the most
amount of work and it is therefore the first application we wish to address. As a second application,
we present the precise characterization of plant growth and plant structure. This analysis provides
useful information to prevent the spread of diseases and to plan harvests. 

The  LettuceThink  robot  is  currently  being  deployed  on  experimental  fields  to  demonstrate  its
usability and efficiency. The acquired images will also complement annotated data sets used for
plant recognition (Goëau et al, 2016) with market farm data. We wish to collaborate with related
projects and we will release the hardware design and the software on a repository under free license.

The following sections provide details of the current state of our work. The open source robotic
system is discussed in Section 2. Details on the weeding application, LettuceHoe, can be found in
Section 3. Finally, an overview of the tool and application for 3D scanning is presented in Section 4.
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2.  AN OPEN PLATFORM

2.1 Hardware design

We aim to build a platform that is inexpensive and easy to build and modify by farmers and other
users.  An  open  and  accessible  solution  is  a  requisite  to  enable  bottom-up,  community-driven
innovation  for farming tools that  use robotics and artificial  intelligence.  As an example  of this
bottom-up dynamics,  we point  to  the  stunning growth of  3D printing,  laser  cutting,  and CNC
routing tools over the past decade. Linked to this notion of open design is the idea of distributed
production in which an object’s description is available globally but produced locally, for example,
in FabLabs (Gershenfeld, 2012, von Hippel, 2017). We use well-known, off-the-shelf components
and  simple  assembly  techniques  to  lower  the  costs,  to  benefit  from  the  available  online
documentation, and to facilitate reuse.

The main frame of the robot consists of aluminium tubes (or wooden battens) that are assembled
together using standards nuts and bolts. The total size is 1.67m x 1.26m x 1.64m (LxWxH). The
robot bridges over a vegetable row, with two wheels on either side of the row, so it can work on the
vegetables  in the workspace underneath the robot.  The soil-to-robot  clearance  is  80 cm, which
allows it to pass over many commercial crops.

Four independent wheel modules are fixed to the main frame. Each wheel module can be controlled
independently and has a commercial, electrical wheel designed for small scooters for the traction
and a stepper motor with rotary encoder for the direction (Fig. 1). The robot is currently controlled
remotely using a standard radio control because we have not yet included an automatic navigation
system. The electronics consists mostly of a Raspberry Pi and Arduino compatible boards connected
over Ethernet for communication (Fig. 2).

The robot carries a CNC machine with three degrees of freedom to place tools such as the weeding
hoe or the 3D camera precisely in the workarea beneath it. We currently use the X-Carve’s CNC kit.
Our solution resembles the FarmBot project, which similarly uses a rail system to manage a small
vegetable plot. However, by using a mobile system, LettuceThink can cover much larger areas.

The robot runs on two 12V lead batteries and carries a 280W solar panel to recharge the batteries.
We estimate that the panel can provide enough energy to make the robot autonomous in terms of
energy, but field experiments will have to confirm this.

2.2 Open source software

The  software  is  also  released  under  a  free  license  and  is  available  at
http://github.com/p2pfoodlab/LettuceThink/. It is split into code for handling the general operations
of  the  robot  (navigation,  power  management,  CNC  control,  topcam)  and  code  for  specific
applications (LettuceHoe, LettuceScan). Each “app” provides its own user-interface, work tool, and
control logic. We are in the process of porting the main modules to ROS1.
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Figure 1. Robot design: (Left) The 3D design in OpenScad. Middle: The prototype in construction.
(Right) The X-Carve CNC with an earlier version of the LettuceHoe tool.

Figure 2. Robot design: The hardware modules for the navigation.

3. LETTUCEHOE: A TOOL AND AN APPLICATION TO WEEDING

Among the applications of agriculture robotics, weeding is especially interesting (Slaughter et al
2008).  Several  methods  have  been  proposed  for  weeding  based  either  on  chemical,  electrical,
thermal or mechanical perturbations of the weeds. Some of these systems rely on the discrimination
between weeds and plants of interest which, while based on color, hyperspectral, shape or location
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cues, may be hard problem to solve and require a large database to train classifiers. We present our
solution to circumvent this problem and show early results from the exploratory experiment that
started recently.

3.1 Principles

In the LettuceThink robot, a CNC machine is augmented with a rotating hoe and is moved through
the working area. The task is to move the hoe along a path that covers the ground in the working
area while avoiding the plants. First, we consider situations where the culture bed is initially free of
weeds: young plants are grown in a greenhouse and then planted out in the prepared and weed-free
culture beds. This context makes the weeding process more straightforward as it can be executed in
3 steps:

• Detect regions of the workspace occupied by plants of interest.
• Generate a tool path covering the workspace except for the regions occupied by plants.
• Run the tool through the generated path.

Our  hypothesis  is  that  a  weekly  application  of  this  method  prevents  most  of  the  weeds  from
developing.

3.2 Implementation

3.2.1 Plant detection

A large collection of color indices have been proposed for the detection of plants. The most robust
index was selected by testing on images, see Fig. 3], from a wide variety of external conditions
(with different lighting conditions and types of soil). The index used in practice is an excess green
index, as described in Hamuda (2016), with slight difference in the normalization compared. It is

based on the rescaled values of the image channels, at pixel ( i , j ) :

where � , �  and �  are the matrices corresponding to red, green and blue channels of the image.

The excess green index is then defined, at pixel ( i , j ) , as
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Figure 3. Comparaison of common color indices, listed in Hamuda (2016),
for the computation of the plant masks. Several of the indices have similar performances

on most images.

On images of young plants on ground, the histogram for this index is bimodal with one main peak
for the ground and a secondary peak for the plants. Clustering of the image can be performed using
K-means or Gaussian mixture models to determine the threshold for the separation the parts of the
histogram  related  to  the  ground  and  those  related  to  plants  (an  implementation  of  automatic
thresholding using Otsu’s method is available in OpenCV performs well on most images).

The thresholded image may still  contain outlier  pixels,  with high excess green index, from the
ground. To ensure that  the mask describing the regions occupied by plants of interest  does not
include  those  pixels  successive  erosions  and  dilations  are  applied.  The  parameters  of  the
morphological operations (size and shape of the kernel and number of iterations) are used to choose
the minimum size of the regions identified as plants (see Fig. 4).

3.2.1 Path planning

Based on the mask of the segmented plants, the area to be avoided by the center of the hoe is taken
as  all  points  in  plant  area  and  all  points  located  at  less  than  the  radius  of  the  tool  from the
plant/ground border. The shortest solution to the 2 dimensional covering path problem on a convex
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domain with no obstacles is a simple zig-zag path, commonly known as the boustrophedon and
reviewed in Galceran (2013).

Figure 4. Weeding application algorithms: (Left) Excess green color index and mask defining the
domains occupied by plants. (Right) Tool path generated using the modified

boustrophedon algorithm.

As a first path generation algorithm, the boustrophedon path for the workspace with forbidden areas
is modified so that parts of the path that go through the forbidden regions are substituted with valid
regions.  At each portion of the boustrophedon which crosses a forbidden region, entry and exit
points  are  identified.  To have  pixel  accuracy  in  the  detection  of  those  points,  both  the  initial
boustrophedon path and forbidden areas contours are densified using linear interpolation. For each
pair of entry/exit points, the shortest path along the border of the corresponding forbidden zone
connecting those point is substituted to the straight line of the original boustrophedon. Finally, the
number of points composing the path is reduced using the Douglas-Peucker algorithm.

The modified boustrophedon is well suited for young plants but as plants grow, although the ground
region to be covered by the tool shrinks, the resulting path length increases (see Fig. 5) due to
multiple  passages  on  the  contours  of  the  forbidden  regions.  As  an  alternative  to  this  simple
algorithm, a more computationally demanding algorithm is designed using the following steps:

• Generate cells of size comparable with the tool on the ground regions,
• Find the shortest path passing through all centers of the cells once and only once,
• Reduce the number of points along the path using the Douglas-Peucker algorithm.

There  are  several  possible  algorithm  to  generate  ground  cells,  e.g.  with  the  SLIC  superpixel
algorithm. For the second step, a traveling salesman problem (TSP), there are also multiple methods
available.  Elastic  net,  a kind of self-organizing maps,  reaches  approximate solutions with good
performance when the problem dimension is reasonable (Durbin et al 1987) and we found that it

perform well on this problem. The centers of superpixels ( �i  with i∈1⋯N ) are associated with
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cities in the TSP so that the shortest path along those points will cover the ground. Starting with a

number of nodes (or neurons) ( � j  with  j∈1⋯M ) denser than number ( N<M ) and organized
along a path, we solve the optimization problem with a cost function of 2 terms:

•

C1(� j ,K )=−α K∑i
l o g∑ j

e−|� j−�i|
2
/(2K 2

)

¿  is  the  term  accounting  for  the  path  passing
through the centers of cells modelled as a attraction potential by centers of cells on path
nodes.

•
C2(� j)=β∑ j

(� j−� j+1)
2

 is the term accounting for the path length modelled as an elastic
interaction among path nodes.

The update rule for moving path nodes is then:

with

Here the parameter K  is a regularizing factor, varied along iterations of the algorithm, so that the
initial steps are not trapped in a local minimum. At the begin of the algorithm, K is large and each
path node feels the potential of several centers around and as the algorithm goes on interactions are
frozen so that only interactions with closest centers remain.
We tested  path  generation  with  both  modified  boustrophedon  and  elastic  net  on  a  workspace
including  plants  at  various  (simulated)  growth  stages.  The  path  is  shorter  with  the  modified
boustrophedon at early stages showing that the elastic net solution is not globally optimal. As plants
grow,  the  elastic  net  solution  gets  shorter  than  the  modified  boustrophedon,  reflecting  the
inefficiencies mentioned above for the modified boustrophedon. Paths obtained with the elastic net
are  decreasing  in  length  as  plants  grow, as  expected,  and  at  some stage  of  the  growth,  paths
generated by the elastic net are shorter than the ones obtained by the modified boustrophedon. At
this point, elastic net solutions are better although at higher computational cost. Another possible
algorithm, yet to be tested, is based on a cellular decomposition of the ground domains and running
a boustrophedon path on each cell (Chosset, 2000).
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Figure 5. Comparaison of paths generated by the modified boustrophedon (yellow) and the elastic
net (purple): (Left) Sample paths when plants are small. (Right) Path length depending on

the size of plants (simulated through iterated dilation of the small plants). Curves
crossing suggest a plant size for which elastic net generates shorter paths, but at the cost

of longer computation time.

3.3 Exploratory experiments in outdoor environments

We are testing the weeding application on radishes cultivated in plain ground. We continue to refine
the application to account for unexpected aspects of an open-field experiment. For example, red
markers were added on the field to make the identification of the workspace easier on images. One
of the challenges that we encountered is the high contrast in the image generated by shade, which
may result in plants or markers detection to fail. As plants grow, markers may be hidden by plants
or no ground may be left to hoe. Although when plants are big weeding may be unnecessary since
the growth of weeds is slowed down due to the foliage, the path generation algorithm could be
adapted to generate covering path of the connected components so that it can be used when plants
are overlapping leaving isolated islands of ground to be hoed. We also noticed that, for radish, when
the plant grows leaves are few centimeters above the ground so that using the contour of leaves as
border for the forbidden zone may leave a large portion of the ground untouched. In this case it may
be better to take finer details of the plant architecture into account in the definition of the forbidden
zone.
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Figure 6 Test of the weeding application on radishes cultivated in open-field: (Left) The hoe is
passed before transplanting and every week. (Middle) The hoe is passed before

transplanting only. (Right) The ground is left untouched.

Preliminary evaluation shows that a pass every week is enough to maintain a low density of weeds
compared to a bed where the hoe was not used during plant growth and that had many more weeds.
In  both  case,  the  ground  was  hoed  before  transplanting  the  radishes.  A single  pass  before
transplanting is quite efficient in delaying the growth of weeds by about a week.

4. LETTUCESCAN: TOOLS AND APPLICATIONS TO CROP MONITORING AND 3D
SCANNING

The second application that we present in this paper, at the crossroad of crop monitoring and plant
phenotyping,  is  the  characterization  of  the  plant  structure  and  plant  growth.  This  app aims  at
providing information to the farmers about the health and maturity of its crops.
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Figure 7 Crop monitoring based on 2d images: (Top) Snapshots of the culture bed along a month.
(Bottom) Estimation of the plants size from the projected leaf area.

The pictures from the top-camera of the robot give a good approximation of the volume of lettuces
but for a finer description or for other plants this set-up is lacking. An RGB+Depth camera mounted
on the robotic arm and traveling around the plants provides much more information. We show that a
good 3d reconstruction can be obtained with commercial time-of-flight cameras. The characteristics
of the plants (leaf area, leaf count, leaf orientation relative to the shoot and to each other) can then
be estimated by processing the acquired point clouds (Li ,2014, Chaudhury, 2017).
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A first  component,  2D  crop  monitoring,  is  easily  implemented  from  the  robot  operations  in
LettuceHoe since the weeding application generates images of the plant bed. The surface occupied
by segmented plants is measured on each of these images and the resulting projected leaf area is an
estimation of the size of the plant. As seen on Fig. 6, plant growth dynamics are monitored from the
projected leaf area (PLA).

We expect the accuracy of this estimation of plant volume from 2D images to decrease as plant
grow but as can be seen on Fig. 6, it is still be very useful in detecting growth stage transitions. It
would also be able to characterize variations of growth dynamics across the field.

Ultimately, the accuracy of PLA in estimating plant volume should be evaluated using stronger
methods,  for example,  relying on 3D imaging.  We thus started using a commercial  3D camera
(Softkinetic DepthSense) based on RGB and TOF sensors. The camera is attached to the robotic
arm and it can be controlled in translation on 3 axes and in rotation around 2 axes. This 3D scanning
system aims at the precise evaluation of the volume of plants as well as their architecture.

Figure 8 LettuceScan pipepeline: (Left) Data acqisition with a 5 DOF camera. (Center-Left)
Combinaition of RGB and depth images into a coloured point cloud. (Center-Right)

Segmention of the point cloud isolating leaves of a plant. (Right) Graph representation of
a plant and identification of the shoot.

The 3D point clouds from multiple views are combined for the reconstruction of the plant. The
camera moves around the plant along a circular path and a hundred images are sampled. At each
point, a colored point cloud is generated from RGB and depth data and filtered to avoid outliers and
smooth the point cloud. As the neighbouring images are close to together the transformation from
one image to the other can be directly estimated on the dense point clouds using an iterative closest
point algorithm (Chen et al,  2015). We found the dense transformation to perform well on data
separated by as far as  12

∘
 on the circle although some specific configurations (like a leaf being

perpendicular  to  the  sensors)  made the  estimation  difficult.  After  pairwise registration  of  point
clouds,  they  are  merged maintaining  a  constant  density  of  points.  The resulting  point  cloud  is
converted into more abstract representations like meshes, graphs or octree. For example, a sparse
graph  based  on nearest  neighbors  in  the  point  cloud  is  shown on  Fig. 8  vertices  with  highest
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betweenness centrality index are highlighted in red, those are located on the shoot. As another post-
processing step,  the clustering of the point cloud by K-means result  in segmentation of leaves.
Further  work  is  still  needed  to  analyze  other  components  of  plant  architecture  like  the
characterization of individual leaves or phyllotactic patterns.

5. CONCLUSION

We showed in this  paper  that  a lightweight  robotic  plateform is  useful on small  scale  farm by
relieving farmers of painful and time consumming tasks like weeding. We also highlighted other
uses of the robot based on embedded imaging devices. Future work will be dedicated to show the
potential usefulness of this application for farmers in planning harvest and detecting pests or stress
in fields. This application may also drive new insights for researchers in plant biology, agronomy or
ecology.

We are also hopeful that the modular, open source design and programming of the robot will bring
interested researchers and farmers in proposing new, unexpected modules.

6. REFERENCES

Bechar, A. & Vigneault, C. (2016) ’Agricultural robots for field operations: Concepts and compo-
nents’, Biosystems Engineering, Vol.149, pp.94–111 

Chaudhury A., Ward C., Talasaz A., Ivanov A.G., Brophy M., Grodzinski B., Huner N.P.A., Patel R.
V. & Barron J. L.(2017) ’Machine Vision System for 3D Plant Phenotyping’, 
https://arxiv.org/abs/1705.00540

Chen K., Lai Y.K. & Hu S.M. (2015) 3D indoor scene modeling from RGB-D data: a survey Com-
putational Visual Media, vol.1, no. 4, pp 267-278 

Choset H. (2000) ’Coverage of Known Spaces: The Boustrophedon Cellular Decomposition’ Auto-
nomous Robots Volume 9, Issue 3, pp 247–253

Durbin R. & Willshaw D. (1987) ’An analogue approach to the travelling salesman problem using 
an elastic net method’ Nature 326, 689 - 691 

Galceran E. & Carreras M. (2013) ’A survey on coverage path planning for robotics.’ Robotics and 
Autonomous Systems vol. 61, no. 12 , pp. 1258-1276

Gershenfeld N (2012) ’How to Make Almost Anything: The Digital Fabrication Revolution’, Forei-
gn Affairs, 91:6, 2012.

 Goëau H., Joly A. & Bonnet P. (2016) ’Plant Identification In An Open World, CLEF 2016 working
notes.’ LifeCLEF 2016 working notes, Evora, Portugal, http://ceur-ws.org/Vol-1609/16090428.pdf

D Colliaux and P Hanappe. “LettuceThink : A open and versatile robotic platform for weeding and
crop monitoring on microfarms” .
EFITA WCCA 2017 Conference, Montpellier Supagro, Montpellier, France, July 2-6, 2017.
Paper number: 109



13

Hamuda E., Glavin M. & Jones E. (2016) ’A survey of image processing techniques for plant ex-
traction and segmentation in the field.’ Computers and Electronics in Agriculture, vol.125, pp. 184-
199 

von Hippel, E (2017) ’Free Innovation’, Cambridge MA: MIT Press

Li L., Zhang Q. & Huang D. (2014) ’A review of imaging techniques for plant phenotyping’ Sen-
sors, vol. 14, no. 11, 2014.

Slaughter D.C., Giles D.K., Downey D. (2008) ’Autonomous robotic weed control systems: A re-
view’ Computers and Electronics in Agriculture Volume 61, Issue 1, Pages 63-78 

D Colliaux and P Hanappe. “LettuceThink : A open and versatile robotic platform for weeding and
crop monitoring on microfarms” .
EFITA WCCA 2017 Conference, Montpellier Supagro, Montpellier, France, July 2-6, 2017.
Paper number: 109


	ABSTRACT
	2. AN OPEN PLATFORM
	2.1 Hardware design
	2.2 Open source software

	3. LETTUCEHOE: A TOOL AND AN APPLICATION TO WEEDING
	3.1 Principles
	3.2 Implementation
	3.2.1 Plant detection
	3.2.1 Path planning

	3.3 Exploratory experiments in outdoor environments

	4. LETTUCESCAN: TOOLS AND APPLICATIONS TO CROP MONITORING AND 3D SCANNING
	5. CONCLUSION

