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ABSTRACT

Recently, machine-learning techniques have been success-
fully used for the generation of complex artifacts such as
music or text. However, these techniques are still unable to
capture and generate artifacts that are convincingly struc-
tured. In particular, musical sequences do not exhibit pat-
tern structure, as typically found in human composed mu-
sic. We present an approach to generate structured se-
quences, based on a mechanism for sampling efficiently
variations of musical sequences. Given an input sequence
and a statistical model, this mechanism uses belief propa-
gation to sample a set of sequences whose distance to the
input sequence is approximately within specified bounds.
This mechanism uses local fields to bias the generation.
We show experimentally that sampled sequences are in-
deed closely correlated to the standard musical similarity
function defined by Mongeau and Sankoff. We then show
how this mechanism can be used to implement composi-
tion strategies that enforce arbitrary structure on a musical
lead sheet generation problem. We illustrate our approach
with a convincingly structured generated lead sheet in the
style of the Beatles.

1. INTRODUCTION 1

Recent advances in machine learning, especially deep re-
current networks such as LSTMs, led to major improve-
ments in the quality of music generation [7, 10]. They
achieve spectacular performance for short musical frag-
ments. However, musical structure typically exceeds the
scope of statistical models. As Waite recently wrote, the
music produced by recurrent models tend to lack a sense
of direction and becomes boring after a short while [15].
Pionneering works on music composition with LSTMs al-
ready showed how some structure, such as chord struc-
ture [6] or metrical structure [5] can be spontaneously cap-

1 Authors are listed alphabetically: Pachet originated the general problem and contributed
musical examples; Papadopoulos developed and implemented the technical solution especially
the integration with the regular belief propagation model, devised and performed the evaluation
procedure; Roy brought the original idea and the technical solution, developed the first prototype
and the structured lead sheet generation procedures.
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tured, but the general problem of generating music with
repetitive long-term structure remains open. In this paper,
we propose a method to explicitly enforce such structure in
a controlled way, in a “templagiarism” fashion [2, p. 49].

Musical structure is the overall organisation of a compo-
sition into sections, phrases, and patterns, very much like
the organisation of a text. The structure of musical pieces
is scarcely, if ever, linear as it essentially relies on the
repetition of these elements, possibly altered. For exam-
ple, songs are decomposed into repeating sections, called
verses and choruses, and each section is constructed with
repeating patterns. It has been shown that the listeners’
emotional arousal responses to music is correlated with the
degree of similarity between musical fragments (high for
repetitions, moderate for variations, and least for contrast-
ing segments) [9]. In fact, the striking speech to song il-
lusion discovered by [4] shows that repetition truly creates
music, for instance by turning speech into music. This is
further confirmed by [11] who observed that inserting arbi-
trary repetition in non-repetitive music improves listeners
rating and confidence that the music was written by a hu-
man composer.

Figure 1. The last eight bars of “Strangers in the Night”.

Variations are a specific type of repetition, in which the
original melody is altered in its rhythm, pitch sequence,
and/or harmony. Variations are used to create diversity and
surprise by subtle, unexpected changes in a repetition. The
song “Strangers in the Night” is a typical 32-bar form with
an AABA structure consisting of four 8-bar sections. The
three A sections are variations of each other. The last A
section, shown in Figure 1, consists of a two-bar cell which
is repeated three times. Each occurrence is a subtle vari-
ation of the preceding one. The second occurrence (bars
3-4) is a mere transposition of the original pattern by one
descending tone. The third instance (bars 5-6) is also trans-
posed, but with a slight modification in the melody, which
creates a surprise and concludes the song. Bars 5-6 are
both a variation of the original pattern in bars 1-2. Cur-
rent models for music generation fail to reproduce such



long-range similarities between musical patterns. In this
example, it is statistically unlikely that bars 5-6 be almost
identical to bars 1-2.

Our goal is to generate such structured musical pieces
from statistical models. Our approach is to impose a prede-
fined musical structure that specifies explicitly repetitions
and variations of patterns and sections, and use a statistical
model to generate music that “instantiates” this structure.
In this approach, musical structure is viewed as a procedu-
ral process, external to the statistical model.

Our approach subsumes previous attempts at generating
music with an imposed long-term structure with Markov
models such as [1]. Their approach lacks both a variation
mechanism and a constrained Markov model. As a result,
it is limited to strict repetitions of patterns. Furthermore,
the use of ad hoc joining techniques to glue copied frag-
ments, violates the Markov model, resulting in unnatural
transitions.

An essential ingredient to implementing our approach
is a mechanism to generate variations of a given musical
pattern from a statistical model. Although it is impossi-
ble to characterise formally the notion of variation, it was
shown that some measures of melodic similarity are effi-
cient at detecting variations of a theme [12]. We propose
to use such a similarity measure in a generative context to
sample from a Markov model, patterns that are similar to a
given pattern. This method is related to work on stochas-
tic edit distances [3, 14], but is integrated as a constraint
in a more general model for the generation of musical se-
quences [13]. Moreover, our approach relies on an exist-
ing similarity measure rather than on labeled data (pairs of
themes and related variations), which is not available. Sim-
ilar approaches exist in the context of text generation. For
example, [8] propose a model using a technique based on
skip vectors. They train a model that learns the similarity
between sentences. Using this model, they can predict the
semantic relatedness of two sentences, a standard similar-
ity measure for text, but they can also generate sentences
similar to an existing sentence.

We remind the Mongeau & Sankoff similarity mea-
sure [12] between melodies, and then, we describe our
model for sampling melodic variations based on this simi-
larity, which we validate experimentally, Finally, we show
examples of variations of a melody, and a longer, struc-
tured musical piece generated with an imposed structure.

2. MELODIC SIMILARITY

The traditional string edit distance considers three editing
operations: substitution, deletion, and insertion of a char-
acter. Mongeau and Sankoff [12] add two operations mo-
tivated by the specificities of musical sequences, and in-
spired by the time compression and expansion operations
considered in time warping. The first operation, called
fragmentation, involves the replacement of one note by
several, shorter notes. Similarly, the consolidation opera-
tion, is the replacement of several notes by a single, longer
note. Mongeau and Sankoff proposed an algorithm to com-
pute the similarity between melodies in polynomial time.

Considering melodies as sequences of notes, the algorithm,
based on dynamic programming, computes MGD(A,B),
the measure of similarity between the sequences of notes
A and B. Note that this is not a distance, in particular
MGD(A,B) is not necessarily equal to MGD(B,A).

The Mongeau & Sankoff measure is well-adapted to the
detection of variations, but has a minor weakness: there is
no penalty associated with fragmenting a long note into
several shorter notes of same pitch and same total dura-
tion. The same applies to consolidation. This is not suited
to a generative context, as fragmentation or consolidation
change the resulting melody.

In the dynamic programming recurrence equation given
in their paper [12], Mongeau and Sankoff introduce var-
ious weight functions, denoting predefined local weights
associated with the basic editing operations (substitution,
deletion, insertion, fragmentation and consolidation). We
modify the original measure by adding a penalty p to the
weights of the consolidation and fragmentation operations.

The weight associated with a fragmentation of a note ai
into a sequence of notes bj−k+1, . . . , bj is:

wfrag(ai, bj−k+1, . . . , bj) = wpitch(ai, bj−k+1, . . . , bj)

+ k1n(ai, bj−k+1, . . . , bj) + p

For consolidation, a similar extra-weight is added. The
consolidation weight is defined by:

wcons(ai, bj−k+1, . . . , bj) = wpitch(ai, bj−k+1, . . . , bj)

+ k1n(ai, bj−k+1, . . . , bj) + p.

3. A MODEL FOR THE GENERATION OF
MELODIC VARIATIONS

Given an original theme, i.e. a melodic fragment, we gen-
erate variations of this theme by sampling a specific graph-
ical model. This graphical model is a modified version of
the general model of lead sheets introduced by [13]. We
now briefly describe this general model and explain how
we bias it to produce only melodies at a controlled Mon-
geau & Sankoff distance from the theme, the core technical
contribution of this paper. For full explanations and imple-
mentation details, we refer the reader to [13].

3.1 The Model of Lead Sheets

The overall model comprises two graphical models, one
for chord sequences, one for melodies. Both models are
based on a factor graph that combines a Markov model
with a finite state automaton. The Markov model, trained
on a corpus of lead sheets, provides the stylistic model.
The automaton represents hard temporal constraints that
the generated sequences should satisfy, such as metrical
properties (e.g., an imposed total duration) or user imposed
temporal constraints.

Each factor graph is made of a sequence of variables,
represented with circles, encoding the sequence of ele-
ments, related to unary and binary factors, represented by
squares. In this model, a variable is not associated with
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Figure 2. The two-voice model for lead sheet generation

a specific temporal position in the sequence, but the val-
ues it takes specifies its temporal position. Each value is
a chord or a note e, with a fixed duration d(e) along with
its temporal position t in the sequence. This is a very pow-
erful property of this model. It allows us to specify unary
temporal constraints, e.g., the second bar should start with
a rest. It also allows us to specify harmonic relations be-
tween the chord sequence and the melody, e.g., the note
at time t should be compatible with the chord at time t.
Crucially, we will exploit this property to implement our
variation mechanism.

A binary factor is a conditional probability
f ((e, t)|(e′, t′)) on transitions between elements. In [13],
the authors use binary factors to combine the Markov
transition probabilities with the finite-state automaton
transitions. Harmonic relationship between chords and
notes are also specified by binary factors.

The graphical model defines a distribution
p(e1, . . . , en) over the sequence of variables defined
by the product of all unary and binary factors. A belief
propagation-based procedure samples successively the two
models by taking into account partially filled fragments
and propagating their effect to all empty sections.

3.2 Generating Variations of a Theme

We introduce an extra binary factor β(e|t, e′): the proba-
bility of placing element e at time t and preceded by ele-
ment e′. We will use β to implement the variation mech-
anism. In practice, this additional binary factor is simply
multiplied with the existing binary factors, without affect-
ing the structure of the model on Figure 2. The probability
p′ of a sequence in the resulting model becomes:

p′(e1, . . . , en) = p(e1, . . . , en)
n∏

i=2

β(ei|t, ei−1).

We set the value of β(e|t, e′) according to a “localised”
similarity measure between the sequence [e′, e] and the
fragment of the theme between t − d(e′) and t + d(e).
Biases are set so that a bias of 1 does not modify the prob-
ability of putting element e at time t after e′, and a bias less
than 1 decreases this probability.

The lead sheet in Figure 3 shows the first four bars of
“Solar” by Miles Davis. Suppose we train a lead sheet
model on a corpus of all songs by Miles Davis. Sampling

Figure 3. The first four bars of “Solar”, by Miles Davis.

this model produces new lead sheets in the style of Miles
Davis, but not necessarily similar to Solar specifically. To
favour sequences with the same notes as the theme is to set
the β factors so that:

• β(n|t, n′) = 1 if the melodic fragment consisting of
note n′ followed by note n at position t appears in
the theme, e.g., we set β(C5|t = 1.5, rest) = 1 for
note C5 dotted quarter note;

• β(n|t, n′) < 1 otherwise, and the value of β(n|t, n′)
will be set to very small values (close to zero), if the
melodic fragment made by n′ and n at time t is very
different, musically, from the corresponding melodic
fragment in the theme, e.g.,β(F44|t = 1.5,G25) �
1. On the contrary, if the two fragments are very
similar, musically, the value of β(n|t, n′) will be set
to a value closer to 1, e.g.,β(C5|t = 1.5, rest)� 0
for note C5 quarter note.

More precisely, we evaluate the similarity between each
possible note n at a given position t, preceded by note n′ in
the generated sequence, and the notes in the theme around
position t. We then set each bias β(n|t, n′) based on this
similarity measure.

Technically, for every candidate note n, we consider
all potential temporal positions t and all potential prede-
cessors n′. We compute MGD([n′, n], t), the Mongeau
& Sankoff similarity between the two-note melody [n′, n]
and the melodic fragment of the theme between time
t − d(n′) and t + d(n), where d(n) is the duration of the
note n, i.e. the melodic fragment that would be replaced by
placing the melody [n′, n] at time t − d(n′). The notes of
the theme that overlap the time interval [t−d(n′), t+d(n)]
are trimmed so that the extracted melody has the same du-
ration as the candidate notes. Similarly MGD([n′], t) de-
notes the similarity of the one-note sequence [n′] starting
at t− d(n′). We call those similarities localised Mongeau
& Sankoff similarity measures. The idea is that the simi-
larity measure obtained by summing those localised mea-
sures over a complete sequence approximates the actual
Mongeau & Sankoff similarity. This will be confirmed ex-
perimentally in the next section.

To convert the similarity measure into a weight between
0 and 1, we rescale those values to the [0, 1] interval, and
then invert their order, so that a value of 1 is the closest
to the theme, and 0 the furthest away. Finally, we expo-
nentiate the result, so that the logarithm of the product of
the biases achieved by the model is proportional to the ap-
proximated Mongeau & Sankoff similarity. Formally, we
define β(n|t, n′) as follows, where MGDmax is the maxi-
mal value of localised Mongeau & Sankoff similarities:

β(n|t, n′) = exp

(
1− MGD([n′, n], t)−MGD([n′], t)

MGDmax

)



3.3 Controlling the Similarity

We define an additional mechanism to control the inten-
sity of the variation mechanism, i.e. the extent to which
the generated melodies should be similar to the imposed
theme. We introduce a parameter α, which is used to ad-
just the values of the biases β to new values β′, defined as
β′(n|t, n′) = max(0, (1−α).β(n|t, n′)+α). In theory, α
ranges from−∞ to 1: a very small value will cause almost
all adjusted biases β′ to be equal to 0, except when β was
very close to 1, leading to melodies highly similar to the
theme. Conversely, when α is 1, all adjusted biases β′ are
equal to 1, and have no effect. The interesting, non-trivial,
behaviour is obtained with in-between values, which can
be chosen by the user of the variation mechanism. How-
ever, the range of values where the non-trivial behaviour is
observed depends on a particular corpus and a given theme.
This means that a specific value of α has no general se-
mantics, which hinders usability. As a result, we calibrate
the range of α, by estimating the values for which the non-
trivial behaviour occurs, given a specific corpus and theme.
We estimate the values α− and α+ such that the average
value of all adjusted biases β′ is a given value close to 0
or close to 1, respectively. We estimate those values with a
simple binary search. Given those two values, the user of
the system then sets a parameter σ ∈ [0, 1], the strictness
of the variation mechanism, and the actual value α is de-
duced by setting α = σ(α+ − α−) + α−. We evaluate the
effect of σ in practice in the next section.

4. EXPERIMENTAL RESULTS

Our approach relies on the intuition that local similarities,
favoured by the biased model, will result in a global sim-
ilarity between the generated melodies and the theme. In
this section, we evaluate how the choice of the value for the
parameter σ influences the Mongeau & Sankoff similarity
between the generated melodies and the original theme.
In particular, we show that the biased model favours se-
quences closer to the theme and penalises sequences less
similar to the theme. We then explain the result more ana-
lytically, for σ = 0. We first show that applying the bias to
the model approximates the localised Mongeau & Sankoff
similarity, and then we show that this localised Mongeau
& Sankoff similarity is a good approximation of the actual,
global Mongeau & Sankoff similarity.

In the experiments below, the theme is the melody in
the first four bars of “Solar” (Miles Davis, Figure 3). The
training corpus contains 29 lead sheets by Miles Davis. In
each experimental setup, we build a general model of 4-bar
lead sheets in the style of Miles Davis, called the unbiased
model, and then, we bias the model to favour the theme
with some value for σ. Actual examples of variations at
various distances are shown in Section 5.1.

4.1 Correlation between the Biases and the Mongeau
& Sankoff Distance

For one value of σ, we generate 10 000 variations of the
original theme (first four bars of “Solar”). For each se-

quence, we compute its probability po in the unbiased
model and its probability pb in the biased model, and then
consider the ratio pb/po. This probability ratio shows
by how much the sequence has been favoured, for values
greater than 1, or conversely penalised, for values less than
1, in the biased model. On Figure 4, points in blue are se-
quences generated with the most biased model, i.e.σ = 0.
For each sequence, we plot its probability ratio, on a log
scale, against its Mongeau & Sankoff similarity with the
theme. We observe that the logarithm of the probability
ratio tends to decrease linearly as the Mongeau & Sankoff
distance with the theme increases. Sequences at a distance
less than 75 from the theme are boosted while sequences
at a distance more than 75 from the theme are hindered.
Points in black are sequences generated with σ = 0.95, i.e.
almost no bias at all. We observe that most sequences have
a probability ratio of 1, i.e. that the biased model hardly af-
fects the probability of sequences. Only sequences very far
from the theme have their probability slightly decreased.
Points in the red are generated with σ = 0.5. They display
an intermediate behaviour as expected.
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Figure 4. Sequence probability ratio (log) against Mon-
geau & Sankoff similarity to theme. Sequences in blue, red
and black have been generated with σ = 0, σ = 0.5, σ =
0.95, respectively.

4.2 Explaining the Correlation

We explain the correlation observed by the application of
two successive approximations. We concentrate on the
case where σ = 0, but similar results are obtained with
other values. We can break our analysis in three steps.

First, we note that for a given sequence, its probabil-
ity ratio is equal, by definition of the biased model, to the
product of all the local biases applied to each element of
the sequence, up to a normalisation factor. We verified
this experimentally too: for each generated sequence, we
computed the local bias of each of the elements of the se-
quence, and computed the product of those local biases.
We observed that this product is perfectly correlated with



the ratio of probabilities of the sequence. Second, we show
how the probability ratio compares with the approximated
Mongeau & Sankoff similarity measure obtained by sum-
ming the localised Mongeau & Sankoff similarity mea-
sures. For each sequence, we sum, over all its elements,
the localised Mongeau & Sankoff that was used when com-
puting the biases, as explained in Section 3.2. Then, we
compare this sum to the product of the local biases, equal
to the probability ratio. We plot the result on Figure 5. We
observe that the approximated Mongeau & Sankoff simi-
larity measure is tightly correlated with the logarithm of
the product of the local biases, i.e., the logarithm of the
product of the local biases approximates closely enough
the sum of the localised Mongeau & Sankoff distances.
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Figure 5. The sum of localised Mongeau & Sankoff sim-
ilarity measures against the product of local biases (log),
for σ = 0

Finally, we show that this approximated Mongeau &
Sankoff similarity measure approximates the actual Mon-
geau & Sankoff similarity measure. On Figure 6, we plot
for each sequence, the approximate versus the actual simi-
larity measure. We observe that, although the actual mea-
sure is a global, dynamic programming-based measure, it
is adequately approximated by summing the localised ver-
sions. This is probably because the localised measure cap-
tures sufficiently the effect of a note on the global similar-
ity measure.

5. GENERATING STRUCTURED LEAD SHEETS

We show examples of melodic variations produced with
our techniques, to give a concrete illustration of the varia-
tion mechanism. Then, we use the variation mechanism as
the key building block to generate structured lead sheets 2 .

5.1 Melodic Variations

Figure 7 shows six melodic variations of the first four bars
of “Solar”, by Miles Davis. These variations were created

2 All examples are available on http://www.flow-machines.
com/ismir-examples/
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Figure 6. The sum of localised Mongeau & Sankoff sim-
ilarity measures against the actual Mongeau & Sankoff
measure, for σ = 0

using a model trained on 29 songs by Miles Davis (Sec-
tion 4). The variations are presented in increasing order of
Mongeau & Sankoff distance with the original theme (Fig-
ure 3). Note that the variations are increasingly different
from the theme, both rhythmically and melodically.

(a) Mongeau & Sankoff distance 12: highly similar to the theme

(b) Distance 86, minor enrichments in bars 1 and 3

(c) Distance 87, minor enrichments in bars 1 and 3

(d) Distance 224, with major differences in bars 2 and 3

(e) Distance 285, interesting triplet rhythm in bar 1

(f) Dist. 295, large initial interval (octave) and end of bar 3 differs
from other variations

(g) Dist. 906, first bar uses a rhythm similar that of “Miles Ahead”
(Miles Davis), and bar 3 is introduces a new rhythm, similar to that
of the original theme, except with dotted quarter notes

Figure 7. Several variations of the first four bars of “So-
lar”, by increasing Mongeau & Sankoff distance.



5.2 Enforcing Structure

We describe our strategy for automatic composition of
structured lead sheets. We use the structure of “In a Senti-
mental Mood” (Duke Ellington, Figure 8). This song has a
classical AABA 32-bar structure preceded by a pickup bar:

• Sections: Pickup: bar 1; A1: bars 2 to 9, A2: bars 2
to 8 and bar 10, B: bars 11 to 18; A3: bars 19 to 26.

• Bar 12 is a transposed variation of bar 11;

• Bars 15-16 are exact copies of bars 11-12;

• The last bar 26 is a variation of bar 10, the ending of
Section A2.

Figure 8. “In a Sentimental Mood” by Duke Ellington.
Red boxes correspond to the basic blocks induced by the
structure of the piece.

We illustrate our approach with an automatically gener-
ated lead sheet that conforms to this structure. This struc-
ture induces a segmentation of the lead sheet into contigu-
ous blocks of music. We transform the description of the
structure into a procedure that executes it. The first occur-
rence of each block is generated using the general model
of lead sheets. Subsequent occurrences, if any, are copied
from the first occurrence. If specified by the structure de-
scription, we use the variation mechanism to obtain a vari-
ation instead of an exact copy, with a strictness that may be
specified by the structure description.

Each block may appear in several places, but has been
generated only once, without taking into account all possi-
ble contexts. This may have the adverse effect of creating
awkward transitions that the model would not have created.
In these situations, we systematically apply the variation
mechanism to ensure seamless transitions between blocks.
Since these variations are not specified by the structure, we
impose a very strict variation to ensure minimal differences
with the structure description.

The chords are generated by the general model of lead
sheets, either before the melody or after. In fact, there is
often structure in the chord sequence too. For example,
bars 4-5 of “In a Sentimental Mood” are a transposition of
bars 2-3. We can apply the same approach, with a different
notion of distance on chords.

Figure 9 shows a lead sheet with this structure and gen-
erated from a stylistic model of the Beatles (trained from

Figure 9. A lead sheet with the structure of “In a Senti-
mental Mood” but in the style of the Beatles. Note that
bar 12 is a transposed variation of bar 11, as in the origi-
nal song. The ending is also a variation of the ending of
Section A1.

a corpus with 201 lead sheets by the Beatles). The music
does not sound similar to “In a Sentimental Mood” at all,
but its structure, with multiple occurrences of similar pat-
terns, make it feel like it was composed with some inten-
tions. This is never the case of structureless 32-bar songs
composed from the general model. Each part of the lead
sheet has a strong internal coherence. The melody in the
A parts use mostly small steps and fast sixteenth notes,
many occurrence of a rhythmic pattern combining a six-
teenth note with a dotted eighth note. The B part uses
many leaps (thirds, fourth and fifth) and a regular eighth
note rhythm. This internal coherence is a product of the
imposed structure. For instance, in the B part, four out
of eight bars come from a single original cell, consisting
of bar 11. The fact that the A and B parts contrast with
one another is also a nice feature of this lead sheet. This
contrast simply results from the default behaviour of the
general model of lead sheets.

6. CONCLUSION

We have presented a model for sampling variations of
melodies from a graphical model. This model is based on
the melodic similarity measure proposed by [12]. Techni-
cally, we use an approximated version of the Mongeau &
Sankoff similarity measure to bias a more general model
for the generation of music. Experimental evaluation
shows that this approximation allows us to bias the model
towards the generation of melodies that are similar to the
imposed theme. Moreover, the intensity of the bias may be
adjusted to control the similarity between the theme and
the variations. This makes this approach a powerful tool
for the creation of pieces complying with an imposed mu-
sical structure. We have illustrated our method with the
generation of a long structured lead sheet. A pop music
album is currently being produced using this method.
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