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Figure 1: (Top left) Sample RGB image. (Top right) Measures of interest: angle between

successive organs α; internode length l. (Bottom) Proposed processing pipeline.

1 Introduction

Large-scale phenotyping can help us understand biology but also to adapt cultures to a chang-

ing environment. Working on well understood model plants like arabidopsis can both provide

useful data to the biologists and is an important stepping stone to the study of more complex

models: in-field imaging of crops, imaging of plant populations. . .

Data collection and traits extractions are time-consuming process and a major bottleneck

in plant phenotyping [13]. There is therefore a need of automated procedures to quickly
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extract important parameters from live models. In this work, we propose a fully automated

procedure to extract the structure of arabidopsis, including internode lengths and angles be-

tween successive organs.

In arabidopsis like in many other plants, the sequence of organs produce a Fibonacci

spiral, each organ having an angle around the golden angle of 137.5◦ to the previous organ.

Anomalies in these sequences are of particular interest to biologists, see for example [8].

The paper is structured as follows: section 2 reviews the related literature. Section 3

presents the general methodology and the hardware setup used in the experiments. Section 4

describes into details the different steps of the reconstruction procedure. Finally, section 5

validates the approach on both simulated and real world data.

2 Related works

As an answer to the need for computer vision in plant phenotyping, software have been made

available for the analysis of 2d traits, like the open source Phenotiki [14] and PlantCV [6]

including some machine learning aspects. It has also been pointed out in recent works that

many of the current challenges are arising from 3d aspects of the morphology of plants [3].

There are already existing works on the 3d reconstruction of plants, including character-

ization of vegetation structure with a Kinect sensor [2] and phenotyping of sunflowers from

3D point clouds [7].

Arabidopsis is one of the most studied plants in biology, and has therefore been the

subject to many works in computer vision for automatic phenotyping. These works include

leaf surface reconstruction and growth monitoring [1, 9], branch angle estimation [4, 12].

To the authors’ knowledge, no automated method for evaluation of the sequence of angles

between successive organs has been presented yet. The originality of this work reside both

in the fully automated aspect of the method, which require almost no specific tuning, and to

the specific trait many biologists are interested in.

3 Acquisition method

3.1 General methodology

In this work, we present a method for the analysis of the phyllotaxis of arabidopsis from 2D

images. More precisely, high resolution still RGB images of a single stem of Arabidopsis

thaliana are taken along a circular trajectory around it. Visual markers are placed into the

space to be enable the estimation of camera poses, and the background is black to allow for

easy segmentation of the plant.

From this data, the goal is to segment organs from the stem, and to measure internode

lengths and angles between successive organs. These angles are defined in the plane orthog-

onal to the stem (Fig. 1).

3.2 Hardware platform

For the experiments presented below, we use a home made solution as a 3D scanner. It

consists in a X-Carve CNC Cartesian arm, combined with a pan-tilt gimbal with a camera

mount. This setup therefore has five degrees of freedom. This gimbal can support different

types of sensors. In this work, it consists in a Sony Alpha 5100 DSLR camera, remote
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Figure 2: 2D Preprocessing steps. From left to right: original grayscale image, binary

image, binary image on which the open filter has been applied, difference between the two

previous images.

controlled with gphoto2. This allows for views from any point in space in a box containing

the imaged plant. In addition to the additional degrees of freedom, another advantage of this

platform compared to a rotating plate is the fact that the plant is not displaced. Therefore,

there is less chance that the plant sways and it is easier to get a still plant in every frame.

4 Segmentation algorithm

In this section, we present the details of the reconstruction method from 2D images. The

proposed pipeline is as follows (see figure 1): we first process the RGB images to obtain

both a mask of the location of the plant and an estimation of the camera pose. Then from

these, we compute the visual hull of the plant. This 3D volume is then processed further to

estimate angles and internode lengths.

4.1 Pose estimation

The first step in our method consists in getting the camera poses from the pictures. To this

end, we chose to use the result of a Structure from motion (SfM) algorithm, instead of a te-

dious calibration of our acquisition system. It is a well studied computer vision problem, for

which many off-the-shelf commercial or open source solutions exist. For our experiments,

we used the open source software Colmap [19, 20]. SfM rely on feature matching and do not

work well in textureless pictures. Therefore, we used a sheet of paper with random patterns

on the plane below the plant, as seen on figure 1.

From this SfM pipeline, we extract camera poses (camera extrinsics), the camera’s fun-

damental matrix, and distortion coefficients which can be used to undistort images. From

these parameters, any point in space can be projected onto all of the pictures.

4.2 2D Segmentation

To use the color image, the plant location must be identified and separated from the back-

ground in each frame. To this end, we apply a simple procedure to the input 2D images: first,

we remove dark parts of the image by applying a threshold on pixel intensity. Second, we

apply a morphology open filter to remove thin parts of the image, and then by applying the

difference with the first binary image, we obtain the location of the branches. See figure 2

for an example of such a segmentation.
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4.3 Visual Hull

The visual hull is a classical tool of 3D reconstruction from 2D images [10]. For a given

set of 2D views of an object, its is defined as the set of all 3D points which projection in

all views is inside the object. This volume contains all object points, and is in general a

good approximation of the object shape if the number of views is sufficient. In the case of

arabidopsis, which is a tree-like object, it is expected that the visual hull will be very close

to the true shape of the object for a circular set of views around it.

To compute the visual hull, we use an approach similar to the one in [17]. This algorithm

computes an octree in which each node is either labeled as inside, outside, or inbetween the

visual hull. The nodes in the tree are split until either their size are smaller than the requested

precision or the bounding region is either completely inside or outside the visual hull.

4.4 Skeletonization

In this subsection, we present a method to segment the plant, in the case of a single stem

with thin organs along the stems. The first task is to separate the stem from the organs and

to estimate the skeleton of the plant.

The visual hull octree can be converted in a 3D binary volume by splitting the cells to

a fixed size, and subsequently filling the corresponding voxel positions. A skeleton is then

computed using a thinning algorithm, which was introduced by [11]. An implementation

from scikit-learn [16] was used to this end. This algorithm produces a thin set of voxels

which approximate the medial axis of the visual hull. In the case of arabidopsis plants, this

skeleton is a useful representation of the structure of the plant (Fig. 3).

From this thin structure, we build a graph which nodes are the positive voxels of our vol-

ume. Voxels are connected to all other voxels in a given radius, with edges oriented towards

the top of the plant and weighted by distance. The constructed graph is therefore a directed

acyclic graph, for which there exist efficient minimum spanning tree (MST) extraction al-

gorithms, like Edmond’s algorithm [5]. There may be artefacts in the reconstruction, thus

there might be multiple weakly connected components. We select the largest one as the plant

graph. We then compute the MST, and the stem is then segmented as the longest path in the

graph. Then, the organs points are the weakly connected components of the MST in which

we have removed the stem. We denote the set of points of the ith organ from the bottom of

the plant by Fi, for 1 ≤ i ≤ N f , where N f is the number of organs.

4.5 Parameter estimation

We are interested in successive angles of the organs projected onto the plane orthogonal

to the stem. Stretching the plants is a tedious work: to be able to use our method more

effectively, it is important that the angle estimation also works if the stem is bent due to

gravity. Therefore, we introduce the following method of angle estimation:

Let us assume that the stem points lie on a one-dimensional submanifold of R3, contained

inside a euclidean plane P . For any point p of the stem, let us denote the unit upwards tangent

vector at p by tp. Both P and tp can be approximated using a principal component analysis

(PCA). Let P̂ and t̂p be such approximations of P and tp respectively. Let us fix an arbitrary

orientation for P̂ .

We then define the following frame at p for any point p of the stem: let up be the orthog-

onal projection of t̂p onto P̂ . Let us complete (up) into a direct orthonormal basis (up,vp) of
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Figure 3: Segmented skeleton and projection planes. Stem points are in blue, organ points

in red. Black lines represent basis vector on which organs are projected.

P̂ . Finally, let us complete (up,vp) into a direct orthonormal basis (up,vp,wp) of R3 (Fig. 3).

For i ∈ {1, · · · ,N f }, let us define the following projection:

(

x

y

)

=
1

Ni

Ni

∑
j=1

(

vpx j − p

wpy j −q

)

, (1)

where {(x j,y j),1 ≤ j ≤ Ni}= Fi and (p,q) is the branching point between the organ Fi

and the stem. We then define αi, the angle for the ith organ, as the angle between (1,0) and

(x,y):
αi := arctan2(y,x). (2)

Internode length can simply be computed as the distance in the graph between successive

branching nodes in the graph along the stem.

Other quantities such as organ length and angle between organ and stem can also be

easily computed from the analysis, but are not included in the evaluation.

5 Results and evaluation

5.1 Simulated data

The algorithm was tested on a set of synthetic data generated using a simple model of ara-

bidopsis main shoot and organs. The main shoot is modeled as a cylinder. A thin cylinder

is used to model each peduncle and a slightly larger and longer cylinder is representing the

organs attached to it. The organ and its peduncle are then attached along the main shoot. The

parameters describing the model are:

• the length of the main shoot, peduncle and organ lengths and radii (Ls, Lp, L f , Rs, Rp,

R f ).

• the angle of organs relative to the main shoot (αs).

• the internode I, that is the distance between two consecutive attachment points of the

organs.
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Figure 4: (Left) Rendered view of a model arabidopsis. (Center) Estimation of angle be-

tween 2 consecutive fruits αi based on 100 views and voxel size of 2mm. (Right) Sequence

of internodes as measured (dots) compared to the internodes imposed at generation (dashed

line).
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Figure 5: (Left) Standard deviation of the measured angles depending on the number of

views considered to make the estimation. The insert shows a sample histogram when con-

sidering 100 views. (Right) RMSE of the estimated angles depending on the voxel size. We

also report the computation time depending on the voxel size (arbitrary units) in red.

• the relative angle in the plane orthogonal to the main shoot between to consecutive

organs (αi)

Angles αs and αi are the same for all organs. The internode distance is modeled as a func-

tion of the distance of the attachment point from the main shoot terminal I(z) = A

1+e−a(z−b)

in a similar fashion to what is reported about real plants in [15]. Views of the model were

rendered along a circular trajectory around the plant using the Open3D [21] interface to

OpenGL.

The angle estimation algorithm was evaluated on pairs of organs with various angles. A

good accuracy of angle estimation and internode length can be achieved (Fig. 4).

The root mean square error (RMSE) of the measured angles are actually approximately

constant if the number of views is more than a certain threshold (in our case, more than 20

views), and if the voxel size is greater than a certain size (in our case, around 0.35 (Fig 5).

In real arabidopsis, variance around the golden angle is observed as around 20◦ [8] and
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Figure 6: Reconstruction of a real arabidopsis. (Left) Visual hull with a voxel size of 2mm.

(Center) Skeleton and segmented organs. (Right) Reconstructed angles.

the accuracy achieved by our method of less than 5◦ should therefore be more than precise

enough to observe anomalies in angle sequences.

5.2 Real world example

To test our method on a real plant, we isolated a single stem of Arabidopsis thaliana and put

it in a wooden stand (Fig. 1). From this plant, we took a series of 50 pictures around the

plant using a Sony Alpha 5100 DSLR digital camera. The images were then downsampled

from 6000x4000 resolution to 1500x1000 to reduce computation time.

Fig. 6 illustrates the result of the reconstruction from the RGB images presented in Fig. 1.

The golden angle is plotted as a reference value: we can see that in this particular plant, the

sequence presents no anomalies as all angles are close to the value of 2π

ϕ2 ≃ 2.40 rad.

5.3 Computation time

Computations were done on a desktop computer with a single NVIDIA Titan X Pascal graph-

ics card and a 3.20GHz Intel i5 CPU. In the real world example presented above, with image

resolution of 1500x1000 and 50 images, Colmap’s structure from motion implementation

takes a few seconds to complete, as well as 2D segmentation tasks. The most computation-

ally expensive part of the algorithm is the computation of the visual hull, implemented in

OpenCL, which takes 52 seconds for a voxel size of 1mm. This computing time could be

further reduced, using more advanced space carving procedures, for example using integral

images [18].
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