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ABSTRACT
The perception of facial attractiveness is a complex phenomenonwhich depends onhow
the observer perceives not only individual facial features, but also theirmutual influence
and interplay. In themachine learning community, this problem is typically tackled as a
problem of regression of the subject-averaged rating assigned to natural faces. However,
it has been conjectured that this approach does not capture the complexity of the
phenomenon. It has recently been shown that different human subjects can navigate the
face-space and ‘‘sculpt’’ their preferred modification of a reference facial portrait. Here
we present an unsupervised inference study of the set of sculpted facial vectors in such
experiments. We first infer minimal, interpretable and accurate probabilistic models
(through Maximum Entropy and artificial neural networks) of the preferred facial
variations, that encode the inter-subject variance. The application of such generative
models to the supervised classification of the gender of the subject that sculpted the
face reveals that it may be predicted with astonishingly high accuracy. We observe that
the classification accuracy improves by increasing the order of the non-linear effective
interaction. This suggests that the cognitivemechanisms related to facial discrimination
in the brain do not involve the positions of single facial landmarks only, but mainly
the mutual influence of couples, and even triplets and quadruplets of landmarks.
Furthermore, the high prediction accuracy of the subjects’ gender suggests that much
relevant information regarding the subjects may influence (and be elicited from) their
facial preference criteria, in agreement with themultiple motive theory of attractiveness
proposed in previous works.

Subjects Neuroscience, Psychiatry and Psychology, Statistics, Data Mining and Machine Learning
Keywords Statistical inference, Statistical learning, Facial perception

INTRODUCTION
Human facial perception (of identity, emotions, personality dimensions, attractiveness)
has been the subject of intense and multidisciplinary research in the last decades (Walker
& Vetter, 2016; Little, Jones & DeBruine, 2011; Leopold & Rhodes, 2010). In particular,
facial attractiveness is a research topic that involves many different disciplines, from
evolutionary biology and psychology to neuroscience (Bzdok et al., 2011; Hahn & Perrett,
2014; Laurentini & Bottino, 2014; Little, 2014; Thornhill & Gangestad, 1999). Furthermore,
it is an interesting case of study in the machine learning research community, as a paradigm
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of a complex cognitive phenomenon, ruled by complex and difficult to infer criteria. Indeed,
the rules according to which a facial image will probably result pleasant are poorly known
(Little, Jones & DeBruine, 2011). The most relevant face-space variables in terms of which
such rules should be inferred remain elusive as well (Laurentini & Bottino, 2014).

Many works have discussed, in the context of evolutionary biology, the validity of the so
called natural selection hypothesis (Little, Jones & DeBruine, 2011; Rhodes, 2006), according
to which the traits that we recognise as attractive are markers of a good phenotypic
condition. Along with natural selection, also sexual selection and the handicap principle are
known to play a role in facial attractiveness (Thornhill & Gangestad, 1999).

The evolutionary approach explains several aspects of the phenomenon, such as
the impact in facial attractiveness of facial traits that are known to covary with a good
phenotypic condition (averageness, symmetry, secondary sexual traits). Despite the success
of the evolutionary approach, it is known that there are aspects of facial attractiveness
which elude an evolutionary explanation. The natural selection hypothesis implies that the
perception of attractiveness is mainly universal, species-typical. While a certain degree of
universality has been assessed in many references, cultural and inter-person differences
definitely play a role, beyond the species-typical criterion (Little, 2014). Several factors
are known to influence the single subject idiosyncrasies, such as the subject’s self- and
other-rated attractiveness, genetic propensity, sexual orientation, and the menstrual cycle
(see references in Oh, Grant-Villegas & Todorov, 2020).

Recently, many works have argued (the multiple motive hypothesis) that the evaluation
of facial attractiveness is a complex process, influenced by the prior inference of
semantic personality traits (such as dominance, extroversion or trustworthiness) that
we consensually attribute to specific shape and luminance patterns in others’ face (Oh,
Dotsch & Todorov, 2019; Oh, Grant-Villegas & Todorov, 2020; Abir et al., 2017; Walker &
Vetter, 2016; Adolphs et al., 2016; Galantucci et al., 2014; Little, 2014; Todorov & Oosterhof,
2011; Oosterhof & Todorov, 2008; Edler, 2001; Cunningham et al., 1995). According to
this scenario, facial attractiveness is influenced by the single-subject relative inclination
towards some fundamental personality traits. In the word of Oh, Dotsch & Todorov
(2019), individuals who highly value a personality trait, such as dominance, are likely to
perceive faces that appear to possess the trait as attractive. This implies, in particular, that
(A) the single subject preferred faces are expected to be, to some extent, distinguishable
if characterised or inferred with sufficient accuracy, and (B) they are expected to reflect
meaningful information regarding the subject.

The assessment of the validity of these hypotheses is, arguably, strongly influenced by
the experimental precision with which the individuals’ preferred faces can be characterised.
While the natural selection hypothesis explains general aspects of facial attractiveness, if
the experiments allow to resolve the single subjects’ idiosyncrasies, more complex aspects
and a strong subjectivity emerge (Hönekopp, 2006;Oh, Grant-Villegas & Todorov, 2020). In
particular, the subjectivity of facial attractiveness has been proven to be underestimated by
the common experimental method from which most of the works draw their conclusions:
the subject-averaged rating assigned to several natural facial images (Hönekopp, 2006).
Moreover, it has been argued that the average rating may suffer, as an experimental
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1The alternative experimental technique
allows a given subject to seek her/his
preferred variation of a reference facial
portrait. Such variations differ only
in a low-dimensional face-space of
essential facial features. It is arguably the
introduction of these two ingredients: the
reduction of facial degrees of freedom and
the possibility to efficiently explore the
face-space (rather than rating facial images
differing in many facial dimensions) that
allows for a significant experimental
distinction of different subject’s criteria
(see the Supplemental Information for
further details).

technique, the curse of dimensionality (the face-space being highly dimensional) and
may consequently hinder the complexity and subjectivity of the phenomenon (Laurentini
& Bottino, 2014; Valentine, Lewis & Hills, 2016; Ibáñez-Berganza, Amico & Loreto, 2019).
Roughly half of the variance in attractiveness ratings has been attributed to idiosyncratic
preferences, the other half to shared preferences (Hönekopp, 2006). It is a natural question
whether such idiosyncratic proportion would result more prominent using an experimental
method that bypasses the use of ratings.

This motivates the search for alternative experimental approaches. Ibáñez-Berganza,
Amico & Loreto (2019) investigated the question (A) by means of an innovative
experimental technique which permits the sampling of a single subject’s preferred
region in the face-space.1 As a matter of fact, the method allows the sampling of the
subjects’ preferred facial modifications with high precision. It is observed that, within the
experimental precision (limited by the time that the subjects dedicate to the experiment),
different subjects ‘‘sculpt’’ distinguishable facial modifications. Indeed, when repeating the
experiment, they tend to sculpt facial modifications which are more similar to the ones
that they already sculpted than to those sculpted by others, in ∼ 82% of the cases.

In the present work we present an inference analysis of the data collected in reference
(Ibáñez-Berganza, Amico & Loreto, 2019), developing data-driven probabilistic generative
models that describe the inter-subject fluctuations around the average landmark positions.
As previously stated, such fluctuations are expected to reflect and encode meaningful
differences among experimental subjects. Indeed, we thereafter apply such models to
the investigation of the aforementioned prediction (B); that is, whether we could elicit
meaningful information regarding the subject from her/his preferred facial modifications.
In particular, we address whether one may correctly predict the gender of the sculpting
subject from such data. Many references have reported quantitative differences between
male and female perception of facial attractiveness. Generally, males prefer smaller lower
face area, higher cheekbones, larger mouths and eyes (see references in Little, Jones &
DeBruine, 2011; Rhodes, 2006; Thornhill & Gangestad, 1999). These facts are compatible
with the results of Ibáñez-Berganza, Amico & Loreto (2019). In the present work we go one
step further and demonstrate that gender, besides having an impact on the subject-averaged
facial sculptures, can actually be predicted with almost certainty for single subjects, based
on their facial modifications.

Our inference protocol allows the assessment of the relative influence of linear and non-
linear correlations among facial coordinates in the classification, hence overcoming the
black-box issue. In particular, we infer, in an unsupervised way, a collection of probabilistic
generative models from the database of sculpted facial modifications S ={f(s)}Ss=1 (where s
is the subject index). Afterwards we assess the predictive power of the models, in two ways.
(1) We evaluate the consistency of the simplest of such models, in order to ensure that
all of them provide a faithful and economic description of the data. (2) The models are
applied, when inferred from male/female data separately, to the supervised classification
of the subject gender of a test-set and the results are compared with a powerful, specific
algorithm for supervised classification, the random forest algorithm.
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2This inference scheme differs from
the common one found in the facial
attractiveness literature, specially in the
machine learning papers. In these papers
the main goal is the automatic rating of
facial images, considered as a supervised
inference problem (Laurentini & Bottino,
2014). The facial image is parametrised
in a face-space vector f, the inference
goal consists in the regression R(f) that
reproduces at best the subject-averaged
ratings 〈Rs〉s of a database {fs,Rs}. In the
case of deep, hierarchical networks, which
automatically perform feature selection,
the raw image is used as an input to the
learning algorithm instead of a face-space
parametrisation f. The resulting relevant
features are, however, not immediately
accessible.

3Many works exploit the geometric/texture
decoupling in artificial facial images
to study separately the effect of both
kinds of coordinates. It is also a natural
strategy of dimensionality reduction of
the human face, that has been observed
to be implemented in both the neural
code for facial identification in the brain
and by artificial neural networks (Chang
& Tsao, 2017; Higgins et al., 2020). In
Ibáñez-Berganza, Amico & Loreto (2019),
we combine this separation with the
use of completely realistic images, thus
eliminating the bias that artificial images
are known to induce in experiments (Balas
& Pacella, 2015; Oh, Grant-Villegas &
Todorov, 2020).

We infer, in particular, probabilistic models, L(f|θ), representing the probability density
of a facial image with face-space vector f to be sculpted by any subject (given the reference
facial portrait and the sculpture protocol). We have considered three generative models
of unsupervised learning: two Maximum Entropy (MaxEnt) models, with linear and non-
linear interactions among the facial coordinates, and the Gaussian Restricted Boltzmann
Machine (GRBM) model of Artificial Neural Network (ANN).2

The models presented here are interpretable: the model parameters θ provide
information regarding the relative importance of the various facial distances and their
mutual influence in the cognitive process of face perception, which are fundamental
questions in the specific literature (Laurentini & Bottino, 2014). In particular, a comparison
of the various models’ efficiency highlights the relevance of the nonlinear influence (hence
beyond proportions) of facial distances. Finally, this work provides a novel case of study, in
the field of cognitive science, for techniques and methods in unsupervised inference and, in
particular, a further application of the MaxEnt method (Jaynes, 1957; Berg, 2017; Nguyen,
Zecchina & Berg, 2017), otherwise extensively used in physics, systems neuroscience and
systems biology (Lezon et al., 2006; Schneidman et al., 2006; Shlens et al., 2006; Bialek &
Ranganathan, 2007; Tang et al., 2008;Weigt et al., 2009; Roudi, Aurell & Hertz, 2009; Tkacik
et al., 2009; Stephens & Bialek, 2010; Mora et al., 2010; Morcos et al., 2011; Bialek et al.,
2012;Martino & Martino, 2018).

The structure of the article is as follows. The inference models will be presented in
‘Materials and Methods’, along with some key methodological details. In ‘Results’ we
analyse the results following our objectives (1,2) described above: we first evaluate the
quality of our models as generative models of the set of facial modifications in Ibáñez-
Berganza, Amico & Loreto (2019). Afterwards, we perform a further assessment in which
we apply the generative models to the classification of the gender of the subjects from their
sculpted facial vectors, and compare the results with that of a purely supervised learning
algorithm. We draw our conclusions in ‘Conclusions’.

MATERIALS AND METHODS
Description of the database
We analyse the dataset S described by Ibáñez-Berganza, Amico & Loreto (2019). In such
experiments, each subject was allowed to sculpt her/his favorite deformation of a reference
portrait (through the interaction with an software which combines image deformation
techniques with a genetic algorithm for the efficient search in the face-space). The set of
selected images are, hence, artificial, though completely realistic, variations of a common
reference portrait (corresponding to a real person). In such a way, only the geometric
positions of the landmarks are allowed to vary, the texture degrees of freedom are fixed
(and correspond to the reference portrait RP1 (taken from the Chicago database, see
(Ma, Correll & Wittenbrink (2015)) and Fig. 1). This representation of the face is, hence,
rooted on a decoupling of geometric (also called shape) and texture (also called reflectance)
degrees of freedom (Laurentini & Bottino, 2014).3 See Description of the E1 experiment
in the Supplemental Information for a more detailed descriptions of the experimental
protocol in Ibáñez-Berganza, Amico & Loreto (2019).
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4Actually, the database S = {r(v,i)} is
composed by S= ns×N facial vectors
labelled by a single index s= 1,...,S or,
alternatively, by a tuple of indices (v,i)
(v = 1,...,ns, i = 1,...,N , ns = 95,
N = 28) referring to the ith facial
vector sculpted by the v-th subject (in
a single genetic experiment, see Ibáñez-
Berganza, Amico & Loreto, 2019). In the
Supplemental Information we present a
detailed analysis of the error estimation
over the dataset, distinguishing inter-
and intra-subject fluctuations. The last
ones are, in principle, an artifact of the
sculpting process, but they may encode
part of the subject’s idiosyncrasy. Similarly,
the inferred models may be conceived to
account for intra- and inter-subject, or
only for inter-subject correlations (see the
Supplemental Information).
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Figure 1 Facial landmarks i = 0,...,7 whose 2D coordinates Eri constitute the face space (signaled with
black circles). Their position in the figure correspond to the average position, 〈Eri〉. The background im-
age corresponds to the texture degrees of freedom of the reference portrait. The blue lines are polar his-
tograms h(φ) (the radius is proportional to h(φ)) corresponding to the experimental distribution of angle
landmark fluctuations around their average position.

Full-size DOI: 10.7717/peerj.10210/fig-1

The database consists in the set of landmark geometric coordinates S = {r(s)}Ss=1,
where s is the facial vector index corresponding to the N = 28 vectors sculpted by
each of the ns = 95 experimental subjects (hence: S= nsN = 2,660).4 We will call
r(s) = (r (s)(x,1),...,r

(s)
(x,n),r

(s)
(y,1),...,r

(s)
(y,n)) the vector whose 2n components are the (x,y)

Cartesian coordinates of a set of n= 8 landmarks, in units of the facial height. Such
landmarks (those signaled with an empty circle in Fig. 1) are a subset of the set of
landmarks used for the image deformation in Ibáñez-Berganza, Amico & Loreto (2019)
(signaled with red points in Fig. 1). We will also refer to the 2D Cartesian vector of the
ith landmark as Eri = (xi,yi), and define the fluctuations of the landmark positions with
respect to their average value as E1i=Eri−〈Eri〉, where 〈·〉 denotes the experimental average,
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〈·〉 = (1/S)
∑

s·. Analogously, 1
(s)
= r(s)−〈r〉. An important aspect of the dataset is that

even the coordinates of the restricted set of n= 8 landmarks, r(s), are redundant and
depend on 10 coordinates only, due to the presence of 2n−10= 6 constraints that result
from the very definition of the face-space. Such constraints are described in detail in the
Supplemental Information.

Unsupervised inference
Wenowpresent somenon-technical notion of unsupervised learning. In the next subsection
we will describe the probabilistic models with which we describe the dataset. These are
generative models that induce a likelihood probability density L(·|θ) over the space of
facial vectors1. The meaning of L(1|θ) is that the probability of finding a facial vector in
an interval of facial vectors I is given by

∫
IL(1|θ)d1. The probabilistic model L represents

a generalisation of the database, from which it is not unambiguously elicited. Indeed, a
probabilistic model of the data depends both on the functional form of L (often called
simply the model), and on the learning algorithm, or the protocol with which its parameters
θ are inferred form the data.

For the learning algorithm, in the present work we adopt the Maximum Likelihood
principle. We fix the parameters to the value that maximises the database likelihood:
θ∗ = argmaxθ

∏
sL(1

(s)
|θ), where the product is over all the samples in the database

(please, see Inter- and intra-subject correlations and errors in the Supplemental Information
for further information at this regard).

The functional form is given by the kind of unsupervised model. In this article we will
consider three models (2- and 3-MaxEnt, GRBM), that will be described in the following
subsections. The 2- and 3-MaxEnt models follows from the Maximum Entropy principle
(Jaynes, 1957; Berg, 2017;Nguyen, Zecchina & Berg, 2017;Martino & Martino, 2018), which
provides the functional form of the probability distribution L(·|θ) that exhibits maximum
entropy and, at the same time, is consistent with the average experimental value of some
observables of the data, 〈6〉, thatwill be called sufficient statistics.Lmust satisfy 〈6〉L=〈6〉,
where 〈·〉L refers to the expected value according toL. In other words, L is themost general
probability distributions constrained to exhibit a fixed expectation value of 〈6〉L (and
this value, under the Maximum Likelihood prescription, is given by the corresponding
experimental value). The precise choice of the sufficient statistics determines the functional
form of L(1|θ). A more detailed description is given in the next section and in section
Introduction to the Maximum Entropy principle: correlations vs effective interactions of the
Supplemental Information.

The maximum entropy models
We propose two MaxEnt probabilistic generative models of the set of selected faces,
inferred from the dataset S . In the case of the Gaussian or 2-MaxEnt model, the sufficient
statistics is given by the 2n averages 〈1µ〉 and by the 2n×2n matrix of horizontal, vertical
and oblique correlations among couples of vertical and horizontal landmark coordinates,
whose components are Cµν = 〈1µ1ν〉. In these equations, the 2n Greek indices µ= i,ci
denote the ci = x,y coordinates of the ith landmark. The 2-MaxEnt model probability
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distribution takes the form (see Supplemental Information) of a Maxwell–Boltzmann
distribution, L(1|θ)= 1

Z exp(−H (1|θ)). In this equation, Z is a normalising constant
(the partition function, in the language of statistical physics) depending on θ, and H =H2

(the Hamiltonian) is the function:

H2(1|θ2)=
1
2
1†
· J ·1+h†

·1. (1)

The model depends on the parameters θ2 = {J ,h}, or the 2n× 2n matrix of effective
interactions J and the 2n vector of effective fields, h. Due to the symmetry of matrix
J , the number of independent parameters in the 2-MaxEnt model is D+D(D+ 1)/2,
where D= 2n is the dimension of the vectors of landmark coordinates 1. The value
of these parameters is such that the equations 〈1〉 = 〈1〉L and 〈1µ1ν〉L = Cµν are
satisfied. This is equivalent to require that θ2 are those that maximise the likelihood of
the joint L over the database S (the Maximum Likelihood condition). The solution of
such an inverse problem is (see Supplemental Information): J = C−1, h= J · 〈1〉, and
Z = (2π)nexp(h†

· J−1 ·h/2)(detJ )−1/2, where the −1 power in equation J =C−1 denotes
the pseudo-inverse operation, or the inverse matrix disregarding the null eigenvalues
induced by the database constraints (see Supplemental Information). The 2-MaxEnt
model is equivalent in the present case, in which the coordinates 1µ are real numbers, to
a Principal Component Analysis and L is in this case a multi-variate Normal distribution.

We will define as well the 3-MaxEnt model. In this case, the sufficient statistics is given by
averages 〈1µ〉, pairwise correlations Cµν , and correlations among 3-landmark coordinates,
C (3)
µνκ =〈1µ1ν1κ〉. The 3-MaxEnt model probability distribution function takes the form

of a Maxwell–Boltzmann distribution multiplied by a regularisation term ensuring that it
is normalisable:

L(·|h,J ,Q)=
1
Z3

e−[H2(·|θ2)+H3(·|Q)]H(·|B) (2)

where H(·|B) is a multivariate Heaviside function, equal to one for vectors 1 lying in the
hypercube −B≤1µ≤B for all µand zero otherwise; Z3 is the normalising factor, and the
Hamiltonian is H =H2+H3, where H2 given by Eq. (1) and H3 by:

H3(1|Q)=
1
6

∑
µνκ

1µ1ν1κQµνκ (3)

Besides h and J , the non-linear MaxEnt model depends on a further tensor of three-wise
interaction constants among triplets of landmark coordinates. Consequently, the number of
independent parameters is [D]+[D(D+1)/2]+[(D3

−D2)/6+D] =D3/6+D2/3+5D/2.
The solution of the inverse problem for the non-linear MaxEnt model does not take

a closed analytic form. The maximum likelihood value of the parameters (h,J ,Q) is
numerically estimated by means of a deterministic gradient ascent algorithm (seeMonechi,
Ibáñez-Berganza & Loreto, 2020). A detailed explanation of the learning protocol may be
found in the Supplemental Information (see Learning in the non-linear MaxEnt model).
Before inferring the data with the non-linear models (3-MaxEnt and GRBM) we have
eliminated a subset of 6 redundant coordinates from the original 2n coordinates. The data
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has been standardised in order to favor the likelihood maximisation process. The value
of B has been chosen to be B= 6, so that the probability distribution function is nonzero
only in an hypercube whose side is six times the standard deviation of each standardised
variable.

The Restricted Boltzmann Machine model for unsupervised inference
We have learned the data with the (Gaussian-Binary) Restricted Boltzmann Machine
(GRBM) model of unsupervised inference (Wang, Melchior & Wiskott, 2012; Wang,
Melchior & Wiskott, 2014). It is a 2-layer unsupervised ANN, a variant, processing
input real vectors, of the binary-binary RBM model. The model induces a probability
distribution L(1|θ)=

∑
hp(1,h|θ) which is obtained by the marginalisation, over a set

of Nh binary hidden variables (or hidden neurons), hj ∈ {0,1}, j = 1,...,Nh, of a joint
probability distribution p:

L(1|θ)=
∑
h

p(1,h|θ), p(v,h|θ)=
1
Zθ

e−E(v,h|θ) (4)

The interaction among visible and hidden variables, and the dependence of p(1,h|θ) on all
its arguments is described by an energy function E that couples hidden to visible neurons. E
is defined in terms of a set of parameters θ consisting, among others, on the D×Nh matrix
of synaptic weights among visible (input) and hidden variables. Although E presents only
a linear coupling among v and h, the marginalisation over binary hidden neurons actually
induce nonlinear effective couplings at all orders among the visible variables v (or 1),
couplings that may be accessed from the network parameters θ (MacKay, 2003; Cossu et
al., 2019).

We have employed the open-source software (Melchior, 2017) for the efficient learning
of GRBM. The learning protocol and parameters are described in detail, along with an
introduction to the GRBM model, in the Supplemental Information, see: Learning the
database with the Gaussian Restricted Boltzmann Machine.

RESULTS
We will now present an assessment of the description of the database according to the
inference models described in the precedent section. In ‘Quality of the MaxEnt models as
generative models’ we will argue that the 2-MaxEnt model is a faithful representation of the
dataset, and that only the nonlinear models predict the subject’s gender when applied to
such supervised inference task. Finally, in ‘Analysis of the matrix of effective interactions’,
we will argue that the matrix of effective interactions J provides interpretable information,
beyond the raw information present in the raw experimental measure C .

Quality of the MaxEnt models as generative models
Histograms of single landmark-angle fluctuations
The quality of the 2-MaxEnt generative model as a faithful description of the database may
be evaluated by the extent to what the model L reproduces observables O that it is not
required to reproduce by construction. In other words, observables that cannot be written

Ibanez-Berganza et al. (2020), PeerJ, DOI 10.7717/peerj.10210 8/20

https://peerj.com
http://dx.doi.org/10.7717/peerj.10210#supplemental-information
http://dx.doi.org/10.7717/peerj.10210


5Interestingly, such local maxima seem
to be oriented along inter-landmark
segments eventually involving landmarks
which are not described in the facial vectors
E1: the landmarks `0 and `18, see the
Supplemental Information.

Figure 2 Comparison among empirical (h(i)(φ)) and theoretical (h(i)
t (φ)) histograms of angle landmark

fluctuations, for several landmarks, i = 1,5,6,7, see Fig. 1 (from left to right, from top to bottom). The
empirical histograms h(i)(φ) represent the probability density of empirical displacements E1(s)

i of the ith
landmark along an axis which subtends an angle φ ∈ (−π,π) with the horizontal axis. These histograms
are presented for all the landmarks also in Fig. 1, under the form of polar histograms. h(i)

t (φ) is the theo-
retical prediction of the same quantity, obtained by sampling data from the inferred L(·|θ).

Full-size DOI: 10.7717/peerj.10210/fig-2

in terms of couples and triplets of coordinates 1α . The model is faithful in the extent to
what 〈O〉' 〈O〉L.

The ith landmark coordinates E1i tend to fluctuate in the database with respect their
average position 〈 E1i〉 = E0. As a nonlinear observable O we will consider the angle that
the ith landmark fluctuation E1i forms with the x-axis. This quantity will be referred to
as φ(s)i = arctan(1(s)

i,y/1
(s)
i,x). In Figs. 1 and 2, we report the empirical histogram of angles,

h(φi) for some landmarks i. Remarkably, some landmarks’ angle distribution exhibit local
maxima, probably reflecting their tendency to follow the direction of some inter-landmark
segments (as it is apparent for the 3-rd and 6-th landmark’s in Fig. 1).5 We have compared
the empirical histograms with the theoretical φi distributions according to themodel. These
have been obtained as the angle histograms of a set of S vectors1 sampled from the inferred
distribution L(·|θ) (see Fig. 2). The 2-MaxEnt model satisfactorily reproduces most of the
landmark angle distributions. The empirical angle distribution, in otherwords, is reasonably
well reproduced by the theoretical distribution h(ϕ)=

∫
d1L(1|θ)δ(φ(1)−ϕ).

It is important to remark that the model-data agreement on h(φi) is observed also for
large values of |φi| ∈ (0,π) (see Fig. 2), and not only for small values of |φi|, for which
it approximately becomes |1i,y/1i,x| (whose average is related to the correlation Cαβ ,
see Supplemental Information).
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6These consist in a scatter plot with the
fraction of true positive classifications
(TPR) in the SA test-set versus the fraction
of false positive classifications (FPR) in the
SB test-set, where each point corresponds
to a different soil δ over the estimator
s(1)≶ δ that we use to assign whether
the model predicts that1 belongs to
A or B. The curve is invariant under
reparametrizations of s→ f (s) defined
by any monotone function f .

We conclude that, very remarkably, a highly non-linear observable as φ is well described
by the 2-MaxEnt model, albeit it has been inferred from linear (pairwise) correlations only.
In this sense, the 2-MaxEnt model is a faithful and economic description of the dataset.
This picture is confirmed by the results of the following section which suggest, however,
that a description of the gender differences in the dataset require taking into account
effective interactions of order p> 2.

Performance of the MaxEnt model in a classification task
We now further evaluate the quality of the 2- and 3-MaxEnt models by assessing their
efficiency to classify a test database of vectors in two disjoint subsets S = SA ∪SB

corresponding to the gender of the subject that sculpted the facial vector in Ibáñez-Berganza,
Amico & Loreto (2019). We compare such efficiency with that of the GRBMmodel of ANN
(see Wang, Melchior & Wiskott (2012) and Wang, Melchior & Wiskott (2014), ‘Materials
and Methods’ and the Supplemental Information). This comparison allows to assess the
relative relevance of products of p-facial coordinates 1α in the classification task: averages
(p= 1), pairwise correlations (p= 2), and non-linear correlations of higher, p> 2 order
(modelled by the 3-MaxEnt and GRBM models only).

The dataset is divided in two disjoint classes SA,SB. Afterwards, both SA,B are divided in
training- and test- sets (20% and 80% of the elements of SA,B, respectively), and inferred
the A and B training sets separately, with the MaxEnt and GRBM models. This results in
six ({2,3,G}×{A,B}) sets of parameters θ2,3,GA,B , where the super-index refers to the model.
Given a vector1 belonging to the A or B test set, the score s(1)= lnL(1|θA)− lnL(1|θB)
is taken as the estimation of the model prediction for 1 ∈ SA. The resulting Receiver
Operating Characteristic (ROC) curves (Murphy, 2012) are shown in Fig. 3 for the various
models considered.6

Considering only the averages 〈1〉 as sufficient statistics (or, equivalently, inferring only
the fields h and setting Jij = σ−2i δij in Eq. (1)) results in a poor, near-casual classification
(specially in the most interesting region of the ROC curve, for small FPR and large TPR),
see Fig. 3. The 2-MaxEnt model allows, indeed, for a more efficient classification. Rather
remarkably, with the 3-MaxEnt and GRBM models the classification accuracy gradually
increases. We interpret this as an indication of the fact that non-linear effective interactions
at least of fourth order are necessary for a complete description of the database. For
completeness, we have included a comparison with the Random Forest (RF) algorithm
(Murphy, 2012). As shown in Fig. 3, RF achieves the highest classification accuracy (auRO
C = 0.995, see Supplemental Information). We notice that this does not imply that the
unsupervised models are less accurate: the RF algorithm is advantaged, being a specific
model trained to classify at best the A,B partitions, not to provide a generative model of
the A and B partitions separately.

We report the maximal accuracy scores for all the algorithms: RF (0.971); GRBM
(0.952); 3-MaxEnt (0.865); 2-MaxEnt (0.764); 1-MaxEnt (0.680). The 2-MaxEnt model
efficiency is, as expected, compatible with that of a t-Student test regarding the differences
in the principal component values of A and B vectors, see Fig. 3. See the auROC scores of
all the algorithms in the Supplemental Information.
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7As we explain in the Supplemental
Information, the non-Gaussian
correlations of order 3 present in the
dataset are, at least partially, not of
cognitive origin, but due to an artifact
of the numerical algorithm allowing
subjects to sculpt their preferred facial
vectors. However, we believe that the
non-linear effective interactions that
we infer do reflect the existence of non-
linear operations playing a role in the
cognitive process of facial evaluation.
This is suggested by the fact that the
introduction of non-linear effective
interactions drastically improves the
gender classification.
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Figure 3 True Positive Rate (TPR) versus False Positive Rate (FPR) corresponding to the Receiver Op-
erating Characteristic (ROC) curves associated to the gender classification. Different ROC curves corre-
spond to different algorithms. PC’s refers to a t-Student test of the difference in the principal components
of a vector with respect to their average value in the A, B sets.

Full-size DOI: 10.7717/peerj.10210/fig-3

We conclude that, on the one hand, the subjects’ gender strikingly determines her/his
preferred set of faces, to such an extent that it may be predicted from the sculpted facial
modification with an impressively high accuracy score (Murphy, 2012): a 97.1% of correct
classifications. On the other hand, the relative efficiency of various models highlights the
necessity of non-linear interactions for a description of the differences among male and
female facial preference criterion in this database. Arguably, such nonlinear functions
play also a role in the cognitive process of facial perception. The criterion with which the
subjects evaluate and discriminate facial images seems to involve not only proportions rα/rβ
(related to the pairwise correlations Cαβ , see Supplemental Information), but also triplets
and quadruplets of facial coordinates influencing each other (yet, see the Supplemental
Information for an alternative explanation).7

It is believed that the integration of different kinds of facial variables (geometric,
feature-based versus texture, holistic, see Trigueros, Meng & Hartnett, 2018; Valentine,
Lewis & Hills, 2016) improve the attractiveness inference results, suggesting that both
kinds mutually influence each other in attractiveness (Eisenthal, Dror & Ruppin, 2006;
Xu et al., 2017; Laurentini & Bottino, 2014; Ibáñez-Berganza, Amico & Loreto, 2019). The
present results indicate that, even restricting to geometric coordinates (at fixed texture
degrees of freedom), it is necessary a holistic approach, in the sense that it considers the
mutual influence of many geometric coordinates.

Actually, our results indicate that pairwise influence of geometric coordinates are enough
for a fair and economic description of the database (the 2-MaxEntmodel predicts nonlinear
observables, beyond the empirical information with which it has been fed). However, the
differences among the facial vectors sculpted by males and females are not only encoded
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in pairwise correlations among geometric coordinates. Facial vectors reveal the gender of
the sculpting subject with almost certainty only when non-linear models are used.

Analysis of the matrix of effective interactions
We now show that the generative models may provide directly interpretable information.
This is an advantage of the MaxEnt method, whose parameters, the effective interaction
constants, may exhibit an interpretable significance. We prove, in particular, that at least
the matrix of effective interactions J admits an interpretation in terms of ‘‘resistance’’
(elastic constant) of inter-landmark segment distances and angles to differ with respect to
their average or preferred value.

The 2-MaxEnt model admits an immediate interpretation. The associated probability
density L(1|θ)= exp(−H2(1|θ))/Z formally coincides with a Maxwell–Boltzmann
probability distribution of a set of n interacting particles in the plane (with positions
E1i, i= 1,...,n), subject to the influence of a thermal bath at constant temperature.
Each couple i,j of such fictitious set of particles interacts through an harmonic coupling
that corresponds to a set of three effective, virtual springs with non-isotropic elastic
constants, J (xx)

ij,J (yy)
ij,J (xy)

ij corresponding (see Eq. (1)) to horizontal, vertical and
oblique displacements, 1i,x−1j,x, 1i,y−1j,y, and 1i,x−1j,y, respectively.

The inferred effective interactions are more easily interpretable if one considers, rather
than their xx, yy and xy components, the longitudinal and torsion effective interactions,
J ‖ij and J⊥ij , respectively. The longitudinal coupling |J ‖ij | may be understood (see the
Supplemental Information for a precise definition) as the elastic constant corresponding
to the virtual spring that anchors the inter- ij landmark distance to its average value, 〈rij〉
(where Erij =Erj−Eri). In its turn, the torsion interaction |J⊥ij | is the elastic constant related to
fluctuations of Erij along the direction normal to Erij or, equivalently, to fluctuations of the
ij-segment angle, with respect to its average value that we will call αij = arctan(〈rij,y〉/〈rij,x〉).

In Figs. 4A, 4B we show the quantities |J ‖ij | and |J
⊥

ij | for those couples i,j presenting
a statistically significant value (for which the t-value tij = |Jij |/σJij > 1 (a description of
the calculation protocol of the bootstrap error σij may be found in the Supplemental
Information). The width of the colored arrow over the i,j segment is proportional to
|J ‖ij | (blue arrows in Fig. 4A) and |J⊥ij | (red arrows in Fig. 4B). We notice that there exist

inter-landmark segments for which |J ‖ij | is significant while |J
⊥

ij | is not (as the 0,4 or the

5,6 segments) and vice-versa (as the 6,7 and 2,5). This suggests that |J ‖ij |, |J
⊥

ij | actually
capture the cognitive relative relevance of distance fluctuations around 〈rij〉, and of angle
fluctuations around αij .

We remark that the prominent importance of the inter-segment angles ij highlighted
in Fig. 4B is fully compatible with the analysis presented in (Ibáñez-Berganza, Amico &
Loreto, 2019) at the level of the oblique correlation matrix C (xy), and it goes beyond, as far
as it quantitatively assess their relative relevance. As we will see in the next subsection, such
information cannot be retrieved from the experimental matrix C only.

In the Supplemental Information we explain in more detail the analogy with the system
of particles. We also analyse the dependence of the torsion and longitudinal effective
interactions, |J ‖ij | and |J

⊥

ij |, with the average distance and angle of the ij inter-landmark
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Figure 4 Modulus of the matrices J ‖ (A), J⊥ (B), C‖ (C). The width of the arrow joining the ith and jth
landmarks is proportional to |Aij |, where A is the corresponding matrix. Matrices J ‖ and J⊥ represent, re-
spectively, the longitudinal and torsion elastic constants of the correspondent inter-landmark segments.
They indicate, respectively, the segment’s distance and angle ‘‘resistance’’ to differ in the database with
respect to their average (preferred) values, reported in the image. Only significant matrix elements have
been plotted: only those exhibiting a t -value larger than one: tij = |Aij |/σAij > 1. Matrix C‖ (C) is less inter-
pretable than J ‖ (A).

Full-size DOI: 10.7717/peerj.10210/fig-4

segment, showing that there is amoderate decreasing trend of |J ‖ij |with 〈rij〉. This fact admits
an interpretation: large inter-landmark distances are less ‘‘locked’’ to their preferred value
with respect to shorter distances. Very interestingly, such trend is less evident for |J⊥ij |: the
relative relevance of the inter-landmark angles according to J is not lower for farther away
landmarks. This confirms the holistic nature of facial perception. The mutual influence
among landmarks is not among nearby landmarks only, but over the scale of the entire
face.

Extra information retrieved with effective interactions
A relevant question is to what extent the inferred effective interactions J provide
interpretable information, inaccessible from the raw experimental correlations C . In
the general case, couples of variables may be statistically correlated through spurious
correlations, even in the absence of a causal relation among them (see the Introduction
to the Maximum Entropy principle in the Supplemental Information). In the present case,
the main source of spurious correlations is the presence of the constraints among various
landmark coordinates. The MaxEnt inference eventually subtracts (through the pseudo-
inverse operation) the influence of the constraints from matrix J , which describes the
essential effective mutual influence among pairs of coordinates of prominent relative
importance (seeTwo ways of inferring with constraints in the database of facial modifications
in the Supplemental Information).
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The differences among C and J matrices are apparent from Fig. 4C, where the arrows
represent the absolute value of the raw experimental matrix elements C‖ij . Remarkably, all
but two of the matrix elements result statistically significant (t -value > 1): matrix C‖ can
be hardly used to assess the relative relevance of various inter-landmark segments. The
effective interaction matrix J disambiguates the correlations propagated by the constraints,
attributing them to the effect of a reduced set of elastic constants, in the particle analogy.
Such attribution is not unambiguous, but the result of the inference procedure.

In other words, the inferred matrix J provides interpretable results, beyond the less-
interpretable empirical information present in matrix C . Indeed, matrix C is dense, in
the sense that almost all its elements are statistically significant (see Fig. 4C). Matrix C
is, however, exactly explained by the 2-MaxEnt model, defined by the sparser matrix J of
effective interactions, such that only some matrix elements are statistically significant (see
Figs. 4A, 4B).

An in-depth comparison among C and J is presented in the Supplemental Information,
where we consider also the alternative method of avoiding the constraints, consisting in
inferring from a non-redundant set of coordinates. We conclude that, in the general case,
and for the sake of the interpretation of the effective interactions, it may be convenient to
infer from a database of redundant variables, eliminating a posteriori the influence of the
null modes associated to the constraints (and, perhaps, of low-variant modes associated to
quasi-constraints or to non-linear constraints).

CONCLUSIONS
We have performed an unsupervised inference study of the database of preferred facial
modifications presented in reference (Ibáñez-Berganza, Amico & Loreto, 2019). Much work
has been devoted to the regression of the average rating in face-space, specially in the
machine learning community. Such supervised inference approach indirectly allows for an
assessment of the relative impact of various facial traits on perceived attractiveness. This
point, however, remains poorly understood (Laurentini & Bottino, 2014). Furthermore,
some authors have argued that the subjective nature of facial attractiveness has been
overlooked and underestimated, and that the subject-averaged rating presents several
limitations as an experimental method (Hönekopp, 2006; Laurentini & Bottino, 2014; Oh,
Grant-Villegas & Todorov, 2020). As a novel experimental tool for the investigation of the
nature of facial attractiveness and its subjectivity, we here propose an alternative inference
scheme in which the variability to be inferred is the inter-subject variability of preferred
modifications in a subspace of the face-space (in which only the geometric positions of
some landmarks are allowed to vary), rather than the average rating assigned to different
natural faces.

The present work is probably the first unsupervised inference approach in facial
preference research. Our models induce a probabilistic representations of a set of facial
modifications (corresponding to the whole set of subjects or to the set of male or female
subjects only, in ‘Histograms of single landmark-angle fluctuations’, ‘Performance of the
MaxEnt model in a classification task’ respectively, or to the single subject). Such models
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8The recent de-codification of the neural
code for facial recognition in the primate
brain (Chang & Tsao, 2017) has revealed
that recognition is based on linear
operations (or projections in the geometric
and texture principal axes) in the face-
space.

avoid the use of ratings; account for nonlinear influence of p−plets of facial features, hence
beyond a principal component analysis; their parameters are in principle interpretable
since they involve ‘‘physical’’ facial coordinates only.

Our approach allows to clarify several aspects regarding facial preference. First, that
the cognitive mechanisms related to facial discrimination in the brain mainly involves
proportions, or pairwise influence of couples of landmarks, more than the positions of single
landmarks. Indeed, the 2-MaxEnt model, equivalent to a description in terms of principal
components, is enough to describe also non-linear features of the database (see ‘Histograms
of single landmark-angle fluctuations’). Moreover, the results suggest as well that non-
linear operators of the geometrical facial coordinates may play a non-negligible role in the
cognitive process (see ‘Performance of the MaxEnt model in a classification task’). Further
research is needed to clarify this point (see also Cognitive origin of non-linear correlations in
the Supplemental Information).8

Second, and rather remarkably, the introduction of non-linear effective interactions,
beyond the influence of proportions, allows for an astonishingly high classification efficiency
of the facial vectors according the subject’s gender. Indeed, the random forest algorithm,
a highly nonlinear supervised algorithm for classification, provides a 97% of correct
classifications. The most non-linear of the probabilistic models, the GRBM, provides a
slightly lower accuracy: 95%. This implies that the subject’s gender strikingly determines
her/his facial preference criteria and that the sculpted facial modifications, as a sample of
the subjects idiosyncratic criterion, are accurate enough to allow to predict such impact.

The impact of the gender is consistent with the sexual selection hypothesis (Little, Jones &
DeBruine, 2011; Rhodes, 2006; Thornhill & Gangestad, 1999). However, since the sculpted
vectors partially capture the subjects’ idiosyncrasy, such a result is also consistent with
the multiple motive hypothesis, assuming that the gender strongly influences the subjects’
idiosyncratic preferences for personality traits (in the language of Oh, Grant-Villegas &
Todorov, 2020).

In summary, we have presented probabilistic generative models of the database of
preferred facial variations, describing the inter-subject fluctuations around the average
modification (given a reference background portrait). The simplest of these models,
characterised by pairwise correlations among facial distances, already provides a faithful
description of the database. Afterwords, we demonstrate that such fluctuations encode,
and may accurately reveal when introducing non-linearity, the subjects’ gender. According
to the multiple motive hypothesis, many other subject attributes and distinguishing
psychological traits may influence, beyond the gender, the preferences in the face-space.
The present results suggest that such attributes could be retrieved from the subject sculpted
facial vectors.

Finally, we have demonstrated that the data elicited with the method in Ibáñez-Berganza,
Amico & Loreto (2019) represents a novel case of study for the application of statistical
learning methods, in particular the assessment of the relevant order of interaction by
comparison with an ANNmodel, and the comparison among various strategies of inference
in the presence of constraints.
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The introduction of texture degrees of freedom in the sculpting process is a possible
development of the empirical technique of Ibáñez-Berganza, Amico & Loreto (2019), that
would allow to quantify the extent to which texture and geometric facial features (and
which ones) influence each other in attractiveness perception (a debated question, see
Laurentini & Bottino, 2014). Further possible extensions are: the generalisation to different
datasets and facial codification methods allowing, for example, landmark asymmetry (see
also Generality of the unsupervised inference models in the Supplemental Information); the
classification of different subject’s features from her/his set of sculpted faces.
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