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Abstract

One of the biggest challenges of deep neural network to
perform segmentation of point clouds is the requirement of
large amount of annotated data, which is expensive in terms
of manual labour and time. For the case of plants, there is
a scarcity of datasets to train the networks to perform or-
gan segmentation for automated phenotyping applications.
In this work, we explore how the use of virtual plants as
modelled by stochastic L-systems can circumvent this prob-
lem. We investigate the effect of point density and how the
complexity of the plant model affect the transfer of learning
from virtual to real plants on a segmentation task based on
PointNet++.

1. Introduction

Organ segmentation in 3D plant point cloud data is a fun-
damental problem in agricultural automation and plant phe-
notyping research. With the recent breakthrough of deep
learning technology for point clouds [6, 7], a new research
avenue has opened on applications of point cloud segmen-
tation and recognition. Several strategies have been pro-
posed to apply neural networks to point clouds [3]. How-
ever, a major challenge of applying general deep learning
techniques in any particular domain is the availibility of
large number of annotated data. Although there is an abun-
dance of labelled point cloud data on regular objects [12]
and urban scenes [4], there is a scarcity of labelled datasets
for the case of plants. A common approach to handle the
data scarcity problem is to generate synthetic data which
mimicks the original scene/object. This approach has been
shown to be promising in 2D [8], sometimes along with
fine tuning the network using a small set of annotated real
data [9]. However this type of approach has rarely been re-
ported for plants until recently [10]. For the case of plants,
the problem is more challenging due to the complex and
self recursive geometrical structure with a large number of
variability within the species. Generation of virtual plant
models using L-system rules [5] has been a practice in the

computer graphics and geometric modelling community for
decades. Recently, it has been shown that labelled point
cloud data can also be generated from L-system models [1].
In this work, we study whether L-system models have the
potential to train deep networks to perform well in organ
segmentation on real data. We also investigate what are the
features that are critical for knowledge transfer from syn-
thetic data to real data without retraning on real data (a.k.a.
fine tuning in transfer learning literature).

Recently, only a couple of previous approaches investi-
gated deep learning based segmentation of 3D point clouds
of plants ([2], [10]). Ghahremani et al. [2] performed
Wheat ear segmentation of point cloud data based on the
strategy of PointNet [6] architecture, where manually anno-
tated real data were used for training. Turgut et al. [10]
performed a comparsion of state-of-the-art deep networks
for segmenting Rosebush plants. In this work, each plant
is represented as a large point cloud and the segmentation
is performed on small patches of the point cloud containing
few thousand points. The network thus segments small por-
tions of leaves, branches or flowers. In this case, the local
geometric structure of a point gives a good description of
the semantic class of a point. In contrast to this work, we
question whether the whole plant can be segmented in one
shot, without subdiving the point cloud into small patches.

2. Generation of the dataset

2.1. Synthetic data

We followed the L-system modelling strategy as pro-
posed in [1] using their publicly available code. In this
work, we considered Arabidopsis plant for our experiments.
We developed an L-system model of Arabidopsis where we
assigned unique label to each organ of the plant (we used
4 labels: fruit, pedicel, stem, and leaf) in the rules of the
procedural model. The scale of the plant and the parame-
ters of the model are designed on the basis of observations
from real plants. Typical examples of the parameters in-
clude length of fruit, bending of stem, number of organs,



radius of each branch, etc. We also introduced stochastic-
ity in the parameters, so that every execution of the model
can produce a different variety of the plant under consid-
eration. This is achieved by sampling the parameter value
from a Gaussian distribution with a mean of average value
in real plants and a standard deviation of possible variabil-
ities. We focus on specific geometric traits of plant growth
which we believe are crucial for mimicking the real data,
e.g. shape, size, length, curvature and orientation of the or-
gans. For example, bending of the stem is an important pa-
rameter, which we model as a spline curve with controllable
stochastic elasticity factor. This allows us to model a large
variety of bendings that can render realistic data. Since the
real plants have large variabilities with the branch thickness,
the training data should include large varieties of branch ra-
dius. We model this effect in the virtual plant by sampling
the value of radius from a uniform distribution of probable
true values. For leaves for instance, we found it essential to
model precisely the few tiny leaves on the main stem that
have shape, size and orientation different from that of the
leaves in the rosette.

To test the robustness of our approach, we analyzed the
effect of different modifications of our protocol. First, we
generated models of plants with and without small leaves in
order to demonstrate the added complexity of training when
leaves are present (discussed in results section). Second, we
changed the density of points, which is seen to play a crucial
role in training.

2.2. Real data

Real data was acquired using a robotic platform with an
arm moving a camera around the plant. From a set of 72
views, the 3D point cloud of the plant was reconstructed us-
ing a space carving technique. We follow the acquisition
and reconstuction method similar to [11] using their pub-
licly available code. The dataset of 13 point clouds was then
annotated manually using the CloudCompare software.

2.3. Training

The model for training synthetic data is initially rendered
as a mesh using .obj file format. We sampled 4096 points
on the surface of the mesh. Points are shuffled as a pre-
processing step so that the network learning is invariant to
the order of the points. We generated 1000 virtual plants
which were split into 900/80/20 for training, validation and
test. We used the PointNet++ architecture as introduced in
[7] without batch normalization (that did not bring any im-
provement).

3. Results

We used here the standard mean intersection over union
metric to evaluate the result as, mIoU = TP/(TP+FN+FP).

Figure 1. Virtual plant, ground truths and segmentation results of
Arabidopsis thaliana. Sample of a virtual plant model (a), corre-
sponding ground truth point cloud (b), corresponding segmenta-
tion result (c), segmentation result on real data without leaf (d),
and with leaf (e).

3.1. Results on the test virtual plants dataset

We first considered the segmentation result of the net-
work trained on virtual plants when applied to test on virtual
plants (Fig. 1c). We obtained a mIoU of 0.77 for the stem,
0.90 for fruits, and 0.85 for pedicels. This shows that in
principle the PointNet++ provides promising results when
applied to complete point clouds.

3.2. Preliminary results on real plants

We then considered a first application of our method to
real plants (Fig. 1d, e), with the aim of analyzing how to
improve our virtual plants for training so that they optimize
the real plant recognition rates. In a preliminary experiment,
we could obtain a maximal mIoU of 0.56, suggesting that
further improvement of our virtual plants is required. We
therefore are currently refining our construction of virtual
plants so that mIoU is improved on real plants. In particular,
we address the bending of axes that needs to be more real-
istic with respect to the observed real plants and the number
of organs per plant.

3.3. Effect of the sampling strategy

We tested 2 sampling strategies to generate point clouds
from the mesh of virtual plant model for training. In the first
strategy, we generated a point cloud via Poisson disk sam-
pling of the triangle mesh [13]. In the second method, we
used the method proposed in [1] to obtain uniform density.
For both cases we performed testing using PointNet++. The
mIoU averaged over 20 plants is 0.68 with the first strategy
whereas it is 0.84 in the second strategy, showing the im-
portance of using uniform point clouds in our pipeline.
Acknowledgement: This work is supported by Robotics for Mi-
crofarms (ROMI) European project.



References
[1] A. Chaudhury, F. Boudon, and C. Godin. 3D plant pheno-

typing: All you need is labelled point cloud data. In CVPPP
- ECCV, pages 244–260. Springer, 2020. 1, 2

[2] M. Ghahremani, K. Williams, F. M. K. Corke, B. Tiddeman,
Y. Liu, and J. H. Doonan. Deep segmentation of point clouds
of wheat. Frontiers in Plant Science, 12:429, 2021. 1

[3] Y. Guo, H. Wang, Q. Hu, H. Liu L. Liu, and M. Bennamoun.
Deep learning for 3D point clouds: A survey. IEEE trans-
actions on pattern analysis and machine intelligence, 2020.
1

[4] T. Hackel, N. Savinov, L. Ladicky, J. D. Wegner, K.
Schindler, and M. Pollefeys. SEMANTIC3D.NET: A new
large-scale point cloud classification benchmark. In ISPRS
Annals of the Photogrammetry, Remote Sensing and Spatial
Information Sciences, volume IV-1-W1, pages 91–98, 2017.
1

[5] A. Lindenmayer and P. Prusinkiewicz. The algorithmic
beauty of plants, volume 1. New York: Springer-Verlag,
1990. 1

[6] C. R. Qi, H. Su, K. Mo, and L. J. Guibas. Pointnet: Deep
learning on point sets for 3D classification and segmentation.
In Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 652–660, 2017. 1

[7] C. R. Qi, L. Yi, H. Su, and L. J. Guibas. Pointnet++: Deep hi-
erarchical feature learning on point sets in a metric space. In

Advances in Neural Information Processing Systems, pages
5105–5114, 2017. 1, 2

[8] Y. Toda, F. Okura, J. Ito, S. Okada, T. Kinoshita, H. Tsuji,
and D. Saisho. Training instance segmentation neural net-
work with synthetic datasets for crop seed phenotyping.
Communications biology, 3(1):1–12, 2020. 1

[9] J. Tremblay, A. Prakash, D. Acuna, M. Brophy, V. Jampani,
C. Anil, T. To, E. Cameracci, S. Boochoon, and S. Birch-
field. Training deep networks with synthetic data: Bridging
the reality gap by domain randomization. In Proceedings of
the IEEE conference on computer vision and pattern recog-
nition workshops, pages 969–977, 2018. 1

[10] K. Turgut, H. Dutagaci, G. Galopin, and D. Rousseau.
Segmentation of structural parts of rosebush plants with
3D point-based deep learning methods. arXiv preprint
arXiv:2012.11489, 2020. 1

[11] T. Wintz, D. Colliaux, and P. Hanappe. Automated extraction
of phyllotactic traits from arabidopsis thaliana. In CVPPP,
2018. 2

[12] Z. Wu, S. Song, A. Khosla, F. Yu, L. Zhang, X. Tang, and
J. Xiao. 3d shapenets: A deep representation for volumetric
shapes. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 1912–1920, 2015. 1

[13] C. Yuksel. Sample elimination for generating poisson disk
sample sets. In Computer Graphics Forum, volume 34, pages
25–32. Wiley Online Library, 2015. 2


