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Abstract

In this paper, we introduce a new method for the space-
time registration of a growing plant that is based on match-
ing the plant at different geometric scales. The proposed
method starts with the creation of a topological skeleton of
the plant at each time step. This skeleton is then used to
segment the plant into parts that we call branches. Then
these branches are further divided into smaller segments
that possess a simple geometric structure. These segments
are matched between two time steps using a random forest
classifier based on their topological and geometric features.
Then, for each pair of segments matched, a point-wise reg-
istration is devised using a non-rigid registration method
based on a local ICP.

We applied our method to various types of plants, in-
cluding arabidopsis, tomato plant and maize. We estab-
lished three different metrics for 3D point-wise shape corre-
spondence to test the accuracy, continuity, and cycle consis-
tency of the mapping. We then compared our method with
the state-of-the-art. Our results show that our approach
achieves better or similar results with a shorter running
time.

1. Introduction
In today’s world, an important task for a wide range

of real-world agricultural applications, notably plant phe-
notyping, is the monitoring of plant growth. The manual
measurement of a plant is not only tedious, it is also either
destructive, thus preventing growth tracking, or inaccurate.
Thanks to the development of 3D scanning and photogram-
metry technologies [14], we are able to get 3D point clouds
from real plants with high resolution. With these acquisi-
tions, we hope to achieve accurate measurements of differ-
ent organs of the plant (lengths, angles, etc.) Some frame-
works have already been proposed to analyze the growth
of plants using for example semantic segmentation [21] or
skeleton extraction [9], in order to get some global measure-
ments on the growing plant.

Figure 1: Our registration framework is done at three dif-
ferent scales: branch, segment and then point. We segment
the plant into branches, then each branch into segments
which are defined as the largest point subsets between two
branching points 1in the plant.

Our aim is to register point to point the successive 3D
point clouds of the plant acquired during its growth. In other
words, for each point in one point cloud we need to find its
corresponding point in the next point cloud, and find out
the point-to-point transformation. Having estimated these
correspondences and transformations, we can achieve not
only global but also local geometric measurements of the
plant. For example, by tracking the points belonging to one
specific organ (a branch or a leaf), we can measure how
its length or its surface area evolves over time. Moreover,
identifying the points that are not mapped from the previous
point cloud allows to locate the newly grown organs.

Previous work on 3D shape correspondence and registra-
tion has already achieved great results on shapes with a lim-
ited number of repetitive structures that move isometrically,
such as humans or animals. In these cases local geomet-
ric features are adequate to distinguish different positions,
with a limited number of landmarks to remove the symmet-
ric ambiguities. These algorithms have achieved great ac-
curacy on data sets with an established ground truth map-
ping [5], see [38] for a review. However, plants have multi-
ple branches and leaves with similar geometric features and

1A branching point is defined in the graph sense: it is a graph node with
a degree > 2.



they continuously grow new ones. As we will see, these
properties limit the accuracy and performance of traditional
algorithms which mostly rely on local geometric features.

A recent approach, dedicated to plants, has proposed to
use a skeletonization process to overcome these limits [10].
The overall strategy is to create a skeleton from each point
cloud, then establish a correspondence between the skele-
tons, and finally retrieve the correspondence between points
using the skeleton one. This method has satisfying per-
formance on plants with few leaves and branches, such as
tomato seedlings. However, the proposed skeleton match-
ing method has limited efficiency and accuracy on plants
with a complex structure, such as arabidopsis. Chebrolu et
al. [10] use a Hidden Markov Model (HMM) to align the
skeletons. The time and space complexity of their method is
O(N4) withN the number of skeleton nodes. Therefore the
number of nodes in the skeleton has to be limited in order
to have a reasonable computing time and memory usage.

In this paper, we propose a new framework for the space-
time registration of growing plants. Unlike the previous
methods, we do not establish the point-to-point mapping on
the whole plant directly, but consider the shape correspon-
dence at three different scales: branch scale, segment scale
and point scale. Figure 1 illustrates the relationship between
these scales. Some sample data and a code demo are given
in the supplementary material 2.

2. Related Work
2.1. Shape correspondence and registration

3D shape registration 3D shape registration is a problem
that has been extensively covered. We refer the reader to
surveys such as [38, 33, 7] for a general overview, and only
mention here methods related to our work.

One of the most widely applied registration methods is
the iterative closest point (ICP) algorithm [4], which aims
to compute the optimal rigid transformation between two
shapes by maximizing the spatial correspondence between
them. Building on this, many other methods, e.g. [11],
achieve more robust point-wise correspondence and 3D reg-
istration by computing handcrafted geometric features, like
SHOT [34] or FPFH [32], on 3D point clouds and matching
points in feature space instead of the Euclidean space.

Finding a non-rigid transformation is more difficult.
Compared with the rigid case, more reliable correspon-
dences and prior assumptions are needed to define the point-
wise transformation. Some methods use a predefined skele-
ton to model the point transformation [40, 2]. Other meth-
ods estimate a local rigid transformation for each point or
local region to represent a globally non-rigid transformation

2Our code is also available at: https://github.com/romi/
4d_plant_analysis and the data at: https://zenodo.org/
record/5205562#.YVsD_9ozaUk

[17, 37, 35, 12]. We adopt this strategy in our approach.

3D Shape Correspondence Correspondence between 3D
shapes can be achieved by applying the transforma-
tion models computed by 3D registration algorithms then
searching the nearest neighbours for each transformed
point. One of the state-of-art method which does not re-
quire an explicit transformation model is the Functional
Maps (FM) framework originally proposed by Ovsjanikov
et al. [27]. This method uses a functional basis (generally
a Laplace-Beltrami basis) to represent the shape, so that the
mapping between two shapes could be encoded into a ma-
trix with a reasonable dimension. The original method has
been extended and improved by much subsequent work, in-
cluding [18, 13, 26, 30, 20, 22, 28]. Other work has estab-
lished shape correspondence by learning the features. For
example, authors of [6, 24] learn features using a triangle-
mesh-based convolutional neural network architecture.

In our framework, we achieve the shape correspondence
by estimating a point-wise registration. We compare our
results with the FM-based methods.

Space-time Registration Space-time registration of a de-
forming object is a specific type of shape registration. Many
solutions [1, 29] rely on prior shape templates and try to de-
form the templates to fit the target shapes. However, for a
growing plant, a shape template is difficult to build since
the registration is to be found between two non-isometric
shapes. Some other methods use a topological skeleton to
establish the correspondence [40, 10]. This seems particu-
larly adapted to the case of plants because of their shape.
Some methods dedicated to plants have been proposed in
recent years [15, 10]. They rely on plant specific proper-
ties, for example a semantic segmentation, to first establish
shape correspondence then compute an optimal transforma-
tion. We also use a topological skeleton in our approach and
compare the results with [15, 10].

3. Methodology

We formulate the 3D point cloud correspondence and
registration problem into several different scales: plant,
branch, segment and point, as illustrated in Figure 2. At
the plant scale, we segment each point cloud into what we
call branches and segments. This is done using a topo-
logical skeleton. For each of the other three scales, we
have designed a specific approach to establish the corre-
spondence between consecutive subsets of the point clouds
at this scale. By applying these algorithms hierarchically,
we can achieve a point-to-point correspondence with high
accuracy.

https://github.com/romi/4d_plant_analysis
https://github.com/romi/4d_plant_analysis
https://zenodo.org/record/5205562##.YVsD_9ozaUk
https://zenodo.org/record/5205562##.YVsD_9ozaUk


Figure 2: General pipeline of our framework.

3.1. Plant scale: skeleton extraction + segmentation

Given two point clouds of the input plant at two different
time steps, our registration framework begins by applying a
rigid transformation, estimated by the ICP algorithm [4] in
order to align them globally. Our goal here is to guarantee
that corresponding plant organs are spatially close and share
similar orientations.

Skeleton extraction In our framework, the topological
skeleton of the plant plays a significant role and must be
as accurate and robust as possible. Any skeleton extrac-
tion method can be used, but we found in our experiments
that applying iteratively two classical skeleton extraction
approaches, namely the Laplacian Contraction [8] and the
L1-medial Contraction [16] methods, allows us to reach sat-
isfying results.

Branch extraction We use the skeleton to segment the
plant into parts that we call branches, see Fig. 3. One pe-
culiar branch corresponds to the main stem of the plant and
is extracted by searching for a path from the lowest node to
the highest in the skeleton. Other branches are specified by
the collection of skeleton nodes sharing the same topolog-
ically closest node on the main stem. The segmentation of
the point cloud into branches is derived by assigning each
point to its closest skeleton node.

Segment extraction Each branch of the plant point cloud
is then split into smaller parts called segments, that are again
defined thanks to the skeleton. The subset of the skeleton
corresponding to the branch can be split into sets of succes-
sive nodes and edges separated by a branching node. Points
corresponding to such a set form a segment. We define the
base as the segment of the main stem with the lowest aver-
age height.

Figure 3: The main stem and branches of an arabidopsis
plant. The main stem (light yellow) is the path from the base
to the top of the plant. The other branches (red to purple)
are sets of segments sharing the same closest point on the
main stem.

3.2. Registration at branch and segment scales

Our main idea to register branches and segments be-
tween consecutive time steps is to extract a set of features
from the target pair of branches or segments. Two ran-
dom forest classifiers have then be trained to predict the
correspondence probability. Finally, we propose a post-
processing procedure to handle multiple matching.

3.2.1 Features selection

At the branch scale, the correspondences between main
stems are somewhat obvious, since what we have called a
main stem refers to the actual main stem of the plant, which
is unique for all plants. We also consider that new branches
always appear at the top of the plant, which is the case of
new organs in the case of the growing plants we have used in
our experiments. Therefore, in order to find the correspon-
dence between branches, the height order and angle respect
to the main stem are useful features. In our experiments we
have also added other geometric features, such as the 3D
coordinates of the branch centre.



At the segment scale we have also selected a set of ge-
ometric features suited for most kinds of plants. In our
framework, a branch could be consider as a graph with its
segments as nodes. Most of our features are designed using
the properties of this graph, such as its degree. Some other
features are also computed using the skeleton, for example,
length of the segment.

Tables describing all features used at the branch and the
segment scales are given in the supplementary material.

3.2.2 Data generation and augmentation

In order to generate the data set used to learn the correspon-
dences at the branch scale, we manually labeled the corre-
spondence between branches of 7 pairs of consecutive scans
from an arabidopsis plant. We included all 92 pairs of cor-
responding branches and sampled around 100 pairs of non-
corresponding branches. However, using only 200 pairs of
branches is very likely to lead to over-fitting. Therefore, we
augmented the data set using the following procedures.

Firstly, we have added small perturbations to the point
cloud by removing or adding a small number of points. We
have also applied a small translation to the branches. This
has been done carefully so that the level of the perturbation
does not break the correspondence.

We have also simulated acquisition noise. For example,
some branches could be lost during the acquisition. In this
situation, the height order of the branches above will be af-
fected, and the model fails if it relies too much on the height
order correspondence. To increase the robustness of our
models against these situations, we intentionally reproduce
such acquisition failures in our data augmentation proce-
dure.

We have applied similar procedures to learn correspon-
dences at the segment scale. We have first labeled around
900 pairs of segments with close positions, and then have
augmented the data set by adding perturbation and noise.

3.2.3 Training and result analysis

Given a pair of branches or segments, we have computed
the normalized differences between their features and given
them as input to machine learning models. Ideally, the
smaller differences, the more likely these two branches or
segments are matched. We have split the data set generated
as explained in the previous section into a training set and a
test set, have trained three classical machine learning mod-
els (Random Forest, Logistic Regression and Support Vec-
tor Machine) on the train set and have tested their accuracy
and F1-score on the test set.

According to these two metrics, the random forest clas-
sifier is the most efficient of the three models, see Table 1.
We thus have selected it as the final model for both scales.

Algorithm Accuracy F1-score
Random Forest 0.95 / 0.97 0.91 / 0.96

Logistic Regression 0.95 / 0.64 0.86 / 0.45
SVM 0.92 / 0.87 0.86 / 0.85

Table 1: Accuracy and F1-score of machine learning mod-
els for branch or segment matching on the test set. In each
case, the score for the branch scale is on the left and the
score for the segment scale is on the right.

(a) Branch scale correspondence

(b) Segment scale correspondence between two
branches.

Figure 4: Results of branch and segment scale registration.
Corresponding branches or segments share the same colour
and are connected by lines.

3.2.4 Handling multiple matching

To achieve a complete registration between branches or seg-
ments, estimating the probability of correspondence is not
enough. We propose a technique to avoid multiple match-
ing, in order each branch or segment in the first point cloud
to match a different branch or segment in the second one.

At the branch scale such a multiple matching is uncom-
mon, since different branches are usually far from each
other. However it may occur, and in this case we keep the
pair with the closest centre position.

Hungarian algorithm On the contrary, multiple match-
ing is very likely to happen at the segment scale if each seg-
ment is independently assigned to its most probable match.
To solve this issue, we decided to add some constraints and
formulate the problem as a linear programming problem.

Given two branches that have been matched, the random
forest model trained as explained above has been used to
compute the probability of correspondence between each
pair of segments of the two branches. Let M be the prob-
ability matrix of correspondence: M [i, j] = P means that
the probability that the ith segment of the second branch



and the jth segment of the first branch are matched is P .
The correspondence problem boils down to the problem

of finding a matrix of selection X with the same dimension
as M and binary values: X[i, j] = 1 if the ith segment of
the second branch can be matched with the jth segment of
the first branch. We added two constraints on X . Without
loss of generality, let us suppose the first branch has less
points than the second branch. The two constraints are that
the sum of each row of X should be greater than or equal
to 1, and that the sum of each column should be exactly 1.
The second constraint guarantees that the correspondences
for the second branch are not repetitive, and the first one
ensures that the correspondences for the first branch are
complete. These constraints could be formulated into lin-
ear forms using the masks of columns and rows. The goal
of our problem is now to maximize the element-wise pro-
duction of X and M .

We solve this linear programming problem using the
classical Hungarian algorithm. Given the solution matrix
X , if there are multiple ones in a given row, we select the
one with the highest value in M . This way we guarantee
that the matching is not repetitive.

Examples of branch/segment scale matching result are
illustrated in Figure 4.

3.3. Registration at point scale

After establishing correspondences at the segment scale,
our goal is to find the point-wise correspondence between
two segments that have been matched. The part of the skele-
ton corresponding to a segment can be considered as an
alternating sequence of nodes and edges with no branch-
ing point, thanks to the definition of a segment (see Sec-
tion 3.1). We call it a skeleton chain. Therefore, a segment
has a simple geometric structure, for example a cylinder or
a rectangle, as illustrated in Figure 1.

To achieve point-wise non rigid registration, we estab-
lish local rigid registrations and then smooth them along the
skeleton chains. We first divide the skeleton chains of the
two segments into the same number of fragments, all with
equal lengths. Then for each fragment the transformation
can be approximated as a rigid one, as illustrated in Fig-
ure 5. For each pair of fragments matched, we compute a
rigid transformation Ti using the ICP algorithm. Then for
each point p in the point cloud, we obtain the transformed
point p̂ as a weighted sum of rigid transformations corre-
sponding to the two nearest nodes in the skeleton chain:

p̂ =
1∑

i∈NN(p)

αi

∑
i∈NN(p)

αi ∗ (Ti.p) (1)

where NN(p) contains the indices of the two nearest
skeleton nodes to p, noting Si, Si+1. Having p′ the projec-

Figure 5: A segment is split into fragments (shown in differ-
ent colours) where the transformation can be approximated
as rigid.

tion of p on edge SiSi+1, then αi is computed by:

αi = 1− ‖p′ − Si‖
‖Si − Si+1‖

Finally, we retrieve the correspondence by finding the
closest point to p̂. Figure 6 shows the result of point-wise
correspondence at different scales: segment, branch and
whole plant

4. Evaluation
4.1. Metrics

Obtaining a ground truth for point-wise correspondence
is difficult therefore we have designed three different met-
rics to evaluate a point-to-point mapping between two
shapes. These metrics quantify the mapping accuracy, its
continuity and if it is cycle consistent.

In this section, we note T : R3 −→ R3 the mapping to
be evaluated. (Pi)i∈1,...,M , (Qi)i∈1,...,N are the two point
clouds, t > 0 is a small value which is used as a distance
threshold and is set to the average distance between each
point in a point cloud and its nearest neighbour.

Landmark accuracy In our experiments, we have sam-
pled key points of (Pi) and matched them to points of (Qi).
These key points are defined as landmarks in the follow-
ings and are considered as ground truth. The landmarks are
sampled using the skeleton. For each pair of skeleton nodes
matched, we pick their closest points in each point cloud as
a pair of landmarks. We evaluate the accuracy of a mapping
T by checking if the landmarks are correctly mapped.

Let us note L the selected pairs of landmarks. (i, j) ∈
L iff Pi is mapped to Qj . To check if a landmark Pi is
correctly mapped using T , we test if the distance between
the mapped point T (Pi) and the ground truth mapping Qj

with (i, j) ∈ L is lower than the threshold t. We compute
the ratio of landmarks correctly registered as the score for
landmark accuracy:

Slm =

∑
(i,j)∈L I(‖Qj − T (Pi)‖< t)

Card(L)
(2)



(a) Point-wise matching between seg-
ments of a pair of matched branches.

(b) Point-wise matching between two
branches by merging the matching be-
tween their segments.

(c) Point-wise matching of the whole
plant, computed by merging all point-
wise matching of segments.

Figure 6: We achieve the shape correspondence by establishing point-wise mapping between shapes. The mapping is visual-
ized by colour: the colour of the target shape (right sides) is determined by the points’ coordinates. The colour of the source
shape (left sides) is determined by the correspondence: the correspondent points have the same colour. Several landmarks
are randomly sampled and connected to their corresponding points.

Mapping continuity Our second metrics aims to measure
the continuity of the mapping on the plant surface. Given
a pair of neighbouring points in the point cloud (Pi) (dis-
tance between them ≤ t), we check if their mappings are
neighbours in (Qi).

We only sampled 50% of the points to reduce the compu-
tation time. For each point P ′i sampled, we randomly select
one of its neighbours P ′′i such that ‖P ′i −P ′′i ‖< t. Our met-
rics compute the ratio of pairs of points (P ′i , P

′′
i ) which are

mapped to neighbouring points in (Qi):

Sc =

∑
i∈1...M/2 I(‖T (P ′i )− T (P ′′i )‖< t)

M/2
(3)

Cycle consistency Our third metrics has been designed
to measure the consistency of the mapping when applied
from one point cloud to the next one or the other way round.
Let us note T+ and T− the point-wise mappings from (Pi)
to (Qi) and from (Qi) to (Pi), respectively. Ideally, T−
should be the inverse mapping of T+. We measure the cycle
consistency by checking if each point remains in the neigh-
bourhood of its original position when mapped forth and
then back. To speed up the computation, this is done only
on half of the points, as for the previous metrics. The cycle
consistency metrics is defined as the ratio of points correctly
mapped by T+ then T−:

Scc =

∑
i∈1...M/2 I(‖T−(T+(P ′i ))− P ′i‖< t)

M/2
(4)

4.2. Data sets

We trained the machine learning algorithms on a time
sequence of 3D point clouds of arabidopsis. We then
applied our framework on sequences of 3D point clouds
of plants from various species: arabidopsis (Arabidopsis

thaliana), tomato plant (Solanum lycopersicum) and maize
(Zea mays). The arabidopsis point clouds were acquired us-
ing a robotic set up where an arm equipped with a camera
is moving in circle around the plant, taking 72 images of
the plant. The point cloud is then computed using a space
carving algorithm. We used the open source hardware and
software described in [39]. The 3D data for the two other
plant species is open source data3 kindly provided by the
authors of [10]. Each point cloud has between 100, 000
and 300, 000 points. According to our experiments, since
tomato and maize sample plants possess relatively simple
topological structures, it is rather difficult to identify their
main stem. Therefore, we skipped the branch scale registra-
tion for them and applied directly the segment scale regis-
tration by considering the whole plant as a single branch.

Our experiments were all made using a 8-core Intel(R)
Core(TM) i7-8565U CPU @ 1.80GHz.

4.3. Visual and quantitative validations

We have selected 3 sample plants of each species (ara-
bidopsis, maize and tomato plant). For each sample plant,
we have taken 7 successive point cloud acquisitions with
time frame of one day and applied our registration pipeline
for each pair of consecutive point clouds. An example of
registration results is given in Figure 7 for the tomato plant
and the maize cases, where the point-wise correspondence
is presented using colours and lines. The complete regis-
tration sequence can be found in the supplementary mate-
rial. We have also tested the robustness of our method on
the point clouds with noise or low-resolution. Visual results
could be found in the supplementary material.

We have evaluated the results using the three evaluation
metrics described in the previous section. Table 2 presents
the average registration scores for each sample plant and

3https://www.ipb.uni-bonn.de/data/
4d-plant-registration/

https://www.ipb.uni-bonn.de/data/4d-plant-registration/
https://www.ipb.uni-bonn.de/data/4d-plant-registration/


Sample plant Sc Slm Scc

Tomato plant 1 0.81 0.98 0.91
Tomato plant 2 0.76 0.97 0.84
Tomato plant 3 0.77 0.97 0.85
Average on tomato plant 0.78 0.97 0.86
Maize 1 0.83 0.96 0.91
Maize 2 0.77 0.91 0.79
Maize 3 0.80 0.97 0.82
Average on maize 0.80 0.95 0.84
Arabidopsis 1 0.78 0.78 0.79
Arabidopsis 2 0.80 0.78 0.81
Arabidopsis 3 0.75 0.92 0.83
Average on arabidopsis 0.77 0.88 0.80

Table 2: Average scores for the registration of sample
plants: Sc is the score for continuity, Slm for landmark ac-
curacy and Scc for cycle consistency.

Figure 7: Result of our framework on one tomato plant (left)
and one maize (right): corresponding points share the same
colour. Some landmarks have been sampled and are shown
connected to their corresponding points.

each metrics. We can observe that our framework has bet-
ter performance with tomato plant and maize than with ara-
bidopsis, even though the random forest classifier for the
segment scale matching was trained on arabidopsis. One
reason is that the tomato plant and maize sample plants have
simpler geometric and topological structures, with fewer
branches and leaves, making the registration task simpler.
This also shows that our features selected for the random
forest classifiers can be generalized to many plants.

4.4. Ablation study on arabidopsis

Our pipeline relies on registrations at different scales.
For plants with a complex structure like arabidopsis, all
scales are necessary to reach the optimal result. To illustrate
this, we have designed two experiments showing the respec-
tive contribution of each core component of our pipeline.

Our first experiment was to skip the branch scale and
segment scale registrations, directly using the skeleton
matching algorithm as well as the point transformation al-
gorithm presented in [10] in order to establish a point-wise
mapping. Here, to fully cover the geometric structure of the

Registration
framework

Sc Slm Scc time

Our pipeline 0.78 0.79 0.79 300 s
HMM skeleton
matching + point
transformation

0.35 0.41 0.15 ≥ 2 days

Branch & segment
matching + FM

0.55 0.91 0.41 8 hours

Table 3: Average scores and running time for the registra-
tion of 7 acquisitions of a sample arabidopsis using three
different frameworks. The running time for the skeleton ex-
traction and the segmentation is not included.

arabidopsis plant but also to speed up the running time, we
down-sampled the skeleton to around 60 nodes. However,
due to the high temporal and spatial complexity of the point
transformation algorithm (O(N4)), the registration needed
11 Gb of memory and 2 days to be computed. Moreover,
the accuracy of skeleton matching for the parts of the plant
far from the base revealed to be far worse than for the ones
next to it. This is because of the uncertainty accumulation
when the HMM is used. Consequently, only 30% of skele-
ton nodes were correctly matched.

The second experiment was to replace our point-wise
scale registration, described in Section 3.3, by a state-
of-the-art non-rigid 3D shape correspondence algorithm,
namely FM [27], which establishes the point-wise corre-
spondence by computing local geometric descriptors. We
have used an open-source code4 that implements not only
the basic FM framework but also many improvements
[25, 31, 18, 26, 13, 30, 19, 23, 20]. The geometric descrip-
tors used are the Heat Kernel Signature [36] and the Wave
Kernel Signature [3].

We have conducted these two experiments on 7 acquisi-
tions of one sample arabidopsis plant and evaluated the reg-
istration results using our three metrics. Results are shown
in Table 3. Note that the landmarks used to compute the
landmark accuracy score are same for the two experiments
as with our pipeline.

We can observe that the HMM-based skeleton match-
ing algorithm is less accurate and far more time consuming
for arabidopsis. Our pipeline achieves better continuity and
cycle consistency scores than FM-based pipeline with less
running time.

4.5. Comparison to the related work

We have also compared our approach with several refer-
ence methods on the tomato and maize plants. First, we
have applied the HMM-based method [10], designed for

4https://github.com/RobinMagnet/pyFM

https://github.com/RobinMagnet/pyFM


Method Sc Slm Scc time
Our pipeline 0.81 /

0.80
0.98 /
0.97

0.89 /
0.82

20 s

HMM-based
[10]

0.56 /
0.44

0.93 /
0.90

0.52 /
0.15

100 s

Segmentation +
FM

0.54 /
0.55

0.90 /
0.88

0.41 /
0.43

2 hours

FM (on whole
plant)

0.39 /
0.28

0.55 /
0.38

0.28 /
0.18

4 hours

Table 4: Average scores and running time for the registra-
tion of 7 acquisitions of one tomato plant or maize (scores
for the tomato plant in black and for the maize in red), us-
ing different registration frameworks. Note that the running
time for the pre-processing stage at plant scale (skeleton ex-
traction and segmentation) is not included for all methods.

these data sets, and evaluated their results with our evalu-
ation metrics. We have also compared our work to the FM
approach, first by applying the FM framework directly on
the whole point cloud and second by segmenting the plant
and matching its segments, then applying FM between each
pair of segments. The scores and running time of these ex-
periments are presented in Table 4. For all three metrics we
consider, we observe that our pipeline outperforms the other
approaches on the plant point clouds provided by [10]. The
FM-based methods take a longer time than the other meth-
ods because the computation of the Laplace-Beltrami basis
and of the geometric signatures is time consuming. We have
also tested the Smooth Shells method [12] on the arabidop-
sis data. This method gave less satisfying results than on
human meshes with Sc = 0.69 and Slm = 0.48, and is
very time-consuming as other FM-based methods: it took 1
hour for one pair of shapes in our case. Additionally, it re-
quires high-quality meshes as input, which may be difficult
to obtain from plant point clouds.

5. Applications
Our point-wise registration framework can be applied to

a variety of problems. We now describe two examples.

Temporal interpolation between scans The ability to in-
terpolate between temporal acquisitions is useful for ana-
lyzing plants even when some actual acquisitions are not
available. It allows us to predict both the motion and growth
of the plant at any time instant. We can for example apply
a simple linear interpolation between point clouds. Let P1

and P2 be the point clouds of a sample plant at times t1,
t2. For each pair of matched points (p1, p2) ∈ (P1, P2),
the interpolated point at time t ∈ [t1, t2] is computed as
p̂t =

1
t2−t1 ((t − t1)p2 + (t2 − t)p1). Points in P2 without

corresponding point in P1 (the new emerging segments) can
be attached to the matching points of their nearest neigh-
bour. The set {p̂t} is the interpolated point cloud at t.

Our results using this approach on a maize plant can be
visually compared with the interpolation result of [15] vi-
sually, see the supplementary material. We have not car-
ried a quantitative comparison since it is hard to design
a proper evaluation metrics for the interpolation problem.
Our framework achieves visually similar results to [15] with
similar running time. A series of videos showing the inter-
polated point clouds with our approach can also be found in
the supplementary material.

Quantitative growth tracking Our framework can also
be used to compute phenotypic traits on plants and track
them temporally. For example, by computing the length of
the skeleton we can estimate the length of the main stem.
We have manually measured the growth of the main stem of
an arabidopsis and compared to measurements given by our
approach. It shows that the error made by our approach does
not exceed 5%. We can also track the length of different
branches over time, as shown in the supplementary material.

6. Conclusion

In this paper we have proposed a new 3D space-time reg-
istration framework for plants based on establishing corre-
spondences at different scales. Our framework is applica-
ble to various species of plants and has been tested on ara-
bidopsis, tomato plant and maize. We have also proposed
three metrics to evaluate 3D shape mappings and used them
to compare our approach with the state-of-art. Our experi-
ments have shown that our method achieves better or similar
results with a shorter running time.

One of the main limitations of the proposed registration
framework is that a clean topological skeleton of the plant is
needed. This may be difficult to obtain in outdoor environ-
ments because of acquisition noise, occlusions, etc. More-
over, computing a skeleton can be difficult or even ambigu-
ous for plants with broad leaves. We have not tested our
approach on such scenarios but we expect that more work is
yet to be done to clean the input point clouds and improve
the skeleton extraction algorithms in such cases.
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