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Abstract
This work presents an architecture that generates curiosity-driven goal-directed exploration behaviours for an image
sensor of a microfarming robot. A combination of deep neural networks for offline unsupervised learning of low-
dimensional features from images and of online learning of shallow neural networks representing the inverse and for-
ward kinematics of the system have been used. The artificial curiosity system assigns interest values to a set of pre-
defined goals and drives the exploration towards those that are expected to maximise the learning progress. We pro-
pose the integration of an episodic memory in intrinsic motivation systems to face catastrophic forgetting issues, typically
experienced when performing online updates of artificial neural networks. Our results show that adopting an episodic
memory system not only prevents the computational models from quickly forgetting knowledge that has been previously
acquired but also provides new avenues for modulating the balance between plasticity and stability of the models.
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1. Introduction

Intrinsic motivation refers to the act of engaging in a
pleasurable activity, where the satisfaction or reward is
not coming from an external source, but from the activ-
ity itself. In psychology and robotics, this is connected
to the cognitive phenomenon of curiosity, a form of
intrinsic motivation that drives behaviours towards
novel and surprising activity (Oudeyer et al., 2007,
2016).

Exploration and play seem to be partially driven by
intrinsic motivation in infancy (Oudeyer et al., 2007).
Visual exploration is likely to be one of the earliest
behaviours influenced by this drive (Schlesinger, 2013),
although studies in prenatal development suggest that
other modalities, such as touch (Zoia et al., 2013), may
be more predominant.

In developmental sciences, intrinsic motivation and
curiosity are topics of great interest. It is through
exploration and play–likely affected by these drives–
that infants incrementally learn about their bodily cap-
abilities and about how to interact with their

surroundings (Baldassarre & Mirolli, 2013). In develop-
mental robotics, these processes have been demon-
strated to be promising tools for enabling learning,
adaptivity and curiosity-driven behaviours in artificial
agents (see, for instance, Colas et al., 2019; Forestier
et al., 2017; Frank et al., 2014; and Cangelosi &
Schlesinger, 2015, 2018; Schillaci et al., 2016, for more
comprehensive reviews). Studies showed how similar
mechanisms can lead an artificial system to identify
states in the environment where its own actions have
the greatest impact on the world as the agent perceives
it (see the empowerment formalism; Salge et al., 2013).
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In general, intrinsic motivation algorithms drive the
actions of an artificial agent towards activities that are
expected to maximise the information gain, and thus
the learning progress, when this is integrated within a
learning framework. These expectations are generated
by predictive models, which represent the core compo-
nents of such systems, allowing the agent to anticipate
the sensory consequences of self-generated actions.
Prediction errors can be computed as the discrepancy
between the expected sensory inputs and the actual sen-
sory observations. The system thus monitors the
dynamics of such prediction errors over time and
selects those behaviours that are expected to produce
big variations in the prediction errors – or, in other
words, those activities that may be generating a high
information gain.

Traditionally, algorithms implementing intrinsic
motivation have been applied in the context of learning
motor control (Baldassarre & Mirolli, 2013; Baranes &
Oudeyer, 2013; Oudeyer et al., 2007). This approach,
combined with goal-directed exploration strategies
(Rolf et al., 2012; Schmerling et al., 2015), has shown to
be highly efficient when learning controllers for high-
dimensional actuators. However, in such studies, the
sensory space is often over-simplified or low-dimen-
sional. For instance, it is represented as the Cartesian
coordinates of the end-effector of the robot – since the
main focus is rather on learning controllers of complex,
high-dimensional and redundant robot manipulators.

Very few studies addressed more realistic sensory
spaces (e.g. full resolution visual inputs) in the literature
on intrinsic motivation algorithms for robots. Santucci
et al. (2016) proposed an architecture for intrinsically
motivated exploration in a humanoid robot, where the
sensory space is represented by the visual input grabbed
from the robot camera in a simulated environment. The
authors studied how to represent goals corresponding
to changes in the environment. The world consisted of
a simulated environment with few rounded objects
placed in front of the robot. Visual inputs and goals
were encoded as binary images.

Studies that specifically address the visual modality
in exploratory behaviours can be found in the wide lit-
erature on active vision. Active vision is a robotic appli-
cation in which the pose and the configuration of a
visual sensor is determined for solving vision-based
tasks, usually those that require obtaining multiple
views of an object to be manipulated (see Chen et al.,
2011, for a review). Although interesting studies can be
found in this literature, they mostly focus on the spe-
cific tasks to be tackled by the active visual perception
and lack of generalisation to more complex and inte-
grated sensorimotor representations. Moreover, they
miss the explanatory potential that intrinsic motivation
research has towards the functioning of higher cogni-
tive processes (e.g. curiosity and learning).

There is, however, an important challenge in intrin-
sic motivation systems. Intrinsically motivated agents
collect data and acquire skills in an incremental fashion
through the online self-generation of training samples
(Parisi et al., 2019). Learning is tightly coupled with the
behaviour of the agent. When ‘wrong’ behaviours are
generated in the initial phases of the learning sessions,
the computational model may converge to sub-optimal
solutions and local minima, thus preventing the system
to generate further explorative behaviours. Adaptive
systems should be escaping such situations.

Strategies to avoid this issue imply a good balance
between instrumental (goal-directed) actions and epis-
temic (novelty-seeking) actions, so that bad-
bootstrapping of models can be avoided (Tschantz
et al., 2019). Different solutions have been proposed,
including ε-greedy strategies (Oudeyer et al., 2007)
(generating random actions or replaying previous expe-
rience to the system) or active inference approaches
(Tschantz et al., 2019).

Related to this issue is also the problem of finding
an appropriate balance between plasticity and stability
of the models, when training them in an online fashion
(Mermillod et al., 2013). Typically, when a model is
being trained with new information, previously learned
knowledge quickly becomes overwritten by the new
one. This is a well-known issue in machine learning,
especially in the context of artificial neural networks,
named catastrophic forgetting (McClelland et al., 1995).
In fact, the training on new samples may disrupt con-
nection weights in the neural network that were encod-
ing previous mappings (Masse et al., 2018). Different
strategies have been proposed to overcome this prob-
lem. One of such approaches is known as memory con-
solidation or system-level consolidation (McClelland
et al., 1995): an episodic memory system maintains a
subset of previously experienced sensorimotor data and
replays them, along with the new samples, to the net-
works during the training. Episodic memory system
has been integrated recently also in the deep learning
systems, such as in Deep Q-Networks implementing
deep reinforcement learning (RL; Lin et al., 2018).

The work presented here approaches the aforemen-
tioned challenges by combining online

1

deep learning,
intrinsic motivation and a memory consolidation sys-
tem. In particular, we present an architecture that gen-
erates curiosity-driven goal-directed exploration
behaviours in a robot, using computational models that
can deal with high-dimensional sensory inputs. The
computational models are trained in an online fashion
throughout the exploratory behaviours generated by
the intrinsic motivation system. Thanks to the adoption
of an episodic memory, the system is less prone to cata-
strophic forgetting. A combination of deep and shallow
neural networks has been used. In particular, deep con-
volutional neural networks are adopted for offline
unsupervised learning of low-dimensional features from

2 Adaptive Behavior



Schillaci et al. 551

images. Online learning is, instead, performed on shal-
low neural networks encoding the internal models (i.e.
inverse and forward kinematics) of the robot.

A similar study can be found in the literature. In
particular, Pathak et al. (2017) combine intrinsic and
extrinsic rewards in a learning system that is capable of
generating curiosity-driven exploration behaviours in
high-dimensional sensory spaces. Authors proposed an
unsupervised mechanism for learning low-dimensional
features from visual inputs using a deep neural network
combining convolutional and long short-term memory
layers. The system is, however, applied on non-realistic
visual inputs from video game environments. It is also
not clear which parts of the networks are updated in an
online fashion, and no report on the impact of such
online updates on the networks’ stability is provided
(Pathak et al. 2017).

Here, we adopt an episodic memory system to face
catastrophic forgetting issues experienced when per-
forming online updates of the internal models of the
robot. We present how different configurations of such
an episodic memory (or the absence of it) impact overall
learning progress. Moreover, our intrinsic motivation
system relies on a set of goals, driving the exploration
towards those that are expected to maximise the learn-
ing progress. In the experiments presented here, such
goals are pre-defined and fixed, and the system switches
between them according to the intrinsic motivation
strategy (see section 3.2 for more details).

We test the framework on a simulator of a micro-
farming robot. Microfarms present interesting chal-
lenges for robotics applications. These farms are
characterised by small surfaces (0.01–5 ha) and typi-
cally grow a much larger variety of crops than conven-
tional farms. A considerable amount of work is still
carried out manually, as their limited size and their
diversity prevent the usage of typical agricultural
machines, such as tractors. Open and lightweight
robots for microfarms may reduce manual labour and
increase their productivity. However, the robots must
be able to cope with many types of plants and dense
plant populations.

A first step in the development of such advanced
applications is to automatically construct a three-
dimensional (3D) representation of plants in outdoor
settings. The 3D scanning procedure collects many
images of the object of interest using either multiple
fixed cameras or a single one that moves around the
object along a pre-defined trajectory. The image set is
converted into a point cloud (e.g. as in structure-from-
motion algorithms; Schoenberger et al., 2016;
Schoenberger & Frahm, 2016) and then post-processed
for estimating 3D models or for detecting plant organs.

Plants are, however, complex objects to reconstruct
and many parts are hidden, for example, by leaves. If
the camera movements are not sufficiently accurate to
uncover such hidden spots, the reconstruction process

may generate incomplete 3D models. The trajectory of
the camera movements must therefore adapt to the
plant of interest. Intelligent and adaptive behaviours –
like those generated by the proposed framework –
could maximise the information captured by the robot
camera.

The rest of this article is structured as follows. First,
we introduce the robotic platform (section 2.1) and the
simulator (section 2.2) that have been used in this study.
In section 3, we describe the learning architecture,
including the computational models, the goal selection
strategy, the image encoding and the main learning
algorithm. Sections 4 and 5 describe the experiments
and the results, respectively. In particular, we show the
performance of the system under different configura-
tions, giving a particular emphasis on the episodic
memory system. We draw our conclusions in section 6,
where we present the plan for future work.

2. Experimental setup

2.1. Robotic platform

This work presents an architecture that generates
curiosity-driven goal-directed exploration behaviours
for an image sensor of a microfarming robot. The stud-
ies reported here have been carried out on a simulated
version (described in section 2.2) of the LettuceThink
microfarming robot (Figure 1) developed by Sony
Computer Science Laboratories. The platform consists
of an aluminium frame with an X-Carve computer
numerical control (CNC) machine mounted on it. The
CNC machine is used to provide 3-axes movements to
a depth camera (Sony DepthSense) mounted at the tip
of the vertical z-axis (hereafter, the end-effector cam-
era). In the experiments presented in this article, the
end-effector camera is facing top-down and only two
motors are used (x and y). This configuration is not
intended to be used for 3D reconstruction of plants,

Figure 1. The LettuceThink microfarming robot.
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which requires more degrees of freedom for the camera
movements.

A Raspberry Pi embedded computer connects to the
X-Carve controller over a serial connection and to the
end-effector depth camera over USB. The X-Carve
controller consists of an Arduino board running the
Grbl firmware, an open-source software that interprets
G-code instructions and controls the stepper motors of
the CNC machine.

2

The stepper motors are not
equipped with rotary encoders but their status are
obtained through a Grbl WPos (working position)
request that returns the offset of each motor from the
initial position by counting the steps performed from
the beginning of the operation. The Raspberry Pi uses
the ROS (robot operating system) middleware to let
external computers control the robot hardware and to
synchronise the motor and image data.

2.2. Robot simulator

A simulator of the LettuceThink robot has been devel-
oped to ease the testing of different configurations of
the learning system. The simulator generates sensori-
motor data from requested trajectories of the end-
effector camera. Knowing the initial position of the
CNC machine and the target position, the simulator
linearly interpolates the trajectory and returns the inter-
mediate positions of the camera together with the
images captured from each specific position. The sen-
sorimotor data returned by the simulator have been
pre-recorded by performing a full scan of the (x, y)
plane of the CNC machine using a resolution of 5 mm.
This resulted in 24,964 images, each mapped to an (x,
y) position of the CNC machine.

The simulator is freely available as a python script
that generates sensorimotor data

3

from the recorded
dataset.

4

All the software developed for this work is
freely available in an online repository.

5

3. Learning architecture

The architecture implementing the curiosity-driven
goal-directed exploration behaviours combines one
deep and two shallow neural networks, as well as an
episodic memory system. A deep convolutional neural
network is trained offline using unsupervised methods
to encode images using low-dimensional features. The
shallow neural networks learn online how to represent
the inverse and forward kinematics of the robotics sys-
tem. In addition, an artificial curiosity system assigns
interest values to a set of pre-defined goals and drives
the exploration towards goals that are expected to max-
imise the learning progress. An episodic memory system
is included to handle catastrophic forgetting issues.

The learning architecture controls the movements of
the end-effector camera of the LettuceThink platform
using an exploration behaviour driven by artificial

curiosity. Differently to adopting pre-defined trajec-
tories, the behaviours generated by this system aim at
autonomously maximising the information obtained
with the image sensors. In particular, the aim of the
learning architecture is to direct the movements of the
camera towards positions that produce informative
views of objects of interest, and in parallel to update
the internal models with the sensorimotor data gener-
ated by the latest movements.

The architecture is illustrated in Figure 2 and is par-
tially inspired by the intrinsic motivation algorithm pre-
sented by Oudeyer et al. (2007) and on our previous
works on goal-directed exploration (Schmerling et al.,
2015). This article proposes more advanced computa-
tional models compared to those presented by Oudeyer
et al. (2007), as well as more adaptive exploration stra-
tegies than those adopted in Schmerling et al. (2015).

3.1. Forward and inverse models

The architecture is based on two internal models (i.e.
forward and inverse models) which encode the
dynamics of the sensorimotor system of the robot.
Such models are not pre-programmed, but rather
trained in an online fashion.

The forward and inverse models are implemented as
shallow artificial neural networks that link motor com-
mands to visual inputs and vice versa. The sensory
space here is identified as the space of images that can
be grabbed from the end-effector camera of the robot.
The motor space is identified as the space of the CNC
(x, y) motor positions. We define a goal as a specific
state in the sensory space. When the system is given a
goal (i.e. a target image), the inverse model is queried
to generate the best possible motor commands to reach
this goal–that is, to move the camera to the position
where the goal image has been recorded. A copy of this
motor command is sent to the forward model. The for-
ward model internally simulates the visual input as if
the movement were executed.

6

Both models are learned and updated in runtime in
an incremental fashion. At the beginning of the learn-
ing session, the inverse model – whose weights are ran-
domly initialised – is likely to generate random motor
commands. This movement produces sensorimotor
data that are used to update the model on the fly.
Learning is thus coupled with behaviour, meaning that
the training data are produced by the behaviours gener-
ated by the models that are being updated – in parallel
– during the activity.

The system calculates a prediction error PE by com-
paring the image predicted by the forward model and
the sensory observation captured from the visual input
after the execution of the movement. The dynamics of
the prediction errors recorded during each attempt to
reach a specific goal are monitored. In particular, we
use the trend (i.e. the derivative) of the prediction error

4 Adaptive Behavior
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as an indicator of the expected learning progress: the
larger the change in the prediction error, the bigger the
expected learning progress. In other words, big changes
in the mismatch between what the system expects to
perceive and what it observes are interpreted as cues
for novelty.

3.2. Goal selection and learning progress

At the beginning of the learning process, the system is
given a pre-defined set of goals (i.e. a set of images
recorded from different camera positions). At every
iteration, an interest model chooses a goal according to
a goal selection strategy. This strategy relies on the esti-
mated learning progress that is measured for each goal.
That is, the system maintains for each goal an indicator
about whether it is advantageous – in terms of informa-
tion gain – to continue exploring around this goal or
not. If exploring a goal is not expected to produce big
changes in the prediction error (i.e. the expected learn-
ing progress is low), then the interest model drives the
exploration towards another interesting goal.

The expected learning progress LP of a goal g, that
is, LPg, is computed as follows

LPg =tanh(jPEg(t)� PEg(t � 1)j) ð1Þ

where PEg(t) is the prediction error calculated at time t.
At every iteration, the system chooses with a probabil-
ity of 15% a greedy goal selection strategy, instead of
the aforementioned one (see Oudeyer et al., 2007, for
the rationale behind this approach, and Tschantz et al.,
2019, for alternative approaches). This strategy selects
a random goal from the existing set of goals.

Moreover, with a probability of 30%, a random
movement is generated instead of the predicted camera
movement. This is performed to prevent the system
from converging towards local minima.

7

3.3. Image encoding

Using images as sensory states raises the issue about
how to measure dissimilarity between predictions and
observations. Images are high-dimensional data.
Typically, in machine learning, dissimilarity between

Figure 2. The architecture that generates goal-directed movements driven by artificial curiosity. In the illustration, the system
selects a goal (an image) and encodes it into a lower-dimensional features vector using the convolutional autoencoder. The
compressed goal is fed into the inverse model, which infers the required motor command to reach it. An efferent copy of the motor
command is fed into the forward model, which estimates the sensory input that would be observed after the execution of the
command. Once the action is performed and the new sensory observation is available, this is compared to the prediction, resulting
in a prediction error. Prediction error is thus used to update the learning progress of the current goal. The system thus decides
whether to keep exploring this goal or to switch to another, according to their expected learning progress. The sensorimotor data
gathered throughout the exploration behaviour are used to update the inverse and forward models, and the episodic memory, in an
online fashion. See section 3.5 for further details.
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images is not computed by pixelwise comparisons, but
rather by comparing features extracted from them
(Chen & Chu, 2005). In this work, we used an unsuper-
vised learning technique to extract low-dimensional
features from images, so that the resulting features can
be simply compared using Euclidean distances. We
adopted deep convolutional autoencoders (CAEs) for
this task. A CAE (Masci et al., 2011) is a deep neural
network that is trained to reproduce the same data
passed as input. The dimensionality of the layers in the
network decreases from the input layer to a central one
(the latent layer) and then increases back to the original
dimensionality at the output layer. This enables the
learning of low-dimensional features in the latent layer,
representing the input data. Autoencoders are typically
used for compressing high-dimensional data, such as
raw images, into low-dimensional codes, and eventually
for reconstructing the input from these features.

Autoencoders generally have fully connected layers.
CAEs extend the original structure of autoencoders
using convolutional layers. In convolutional layers, the
connectivity between neurons resembles the organisa-
tion of the human visual cortex, where neurons respond
only to limited parts of the visual field, known as the
receptive field. Besides being more biologically plausi-
ble, convolutional layers considerably reduce the num-
ber of parameters that need to be learned by the
artificial neural network and have been demonstrated
to perform much better in computer vision
applications.

The usage of the CAE allows a simpler calculation
of prediction errors. Calculating prediction errors cor-
responds to computing the Euclidean distance between
the compressed representations of the predicted image
and the observed one.

3.4. Episodic memory

As mentioned in the introduction of this article, train-
ing artificial neural networks in an online fashion may
produce catastrophic forgetting issues. In the current
architecture, the shallow neural networks used in the
forward and inverse model are trained on new tasks on
the fly. Such training on new samples may disrupt con-
nection weights that were encoding previous mappings
(Masse et al., 2018). Different strategies have been pro-
posed to overcome this problem, and the literature on
catastrophic forgetting is rich of approaches. Parisi
et al. (2018) propose an interesting architecture with a
dual memory system: an episodic memory that learns
representations of sensory experience in an unsuper-
vised fashion through input-driven plasticity, and a
semantic memory develops more compact representa-
tions of statistical regularities embedded in episodic
experience. Both memories are implemented as growing
recurrent networks. A dual memory system has been
proposed recently also in the context of deep generative

models by Kamra et al. (2018). Interestingly, this
approach adopts generative replays of past experience.

To the best of our knowledge, episodic memory sys-
tems have not been integrated within intrinsic motiva-
tion systems and for exploration behaviours on high-
dimensional sensory spaces. Perhaps the closest studies
can be found in the RL literature, for instance by Isele
and Cosgun (2018), which proposes different strategies
for selecting which experiences will be stored in an epi-
sodic memory buffer. We adopt a similar episodic mem-
ory system, which maintains a subset of previously
experienced sensorimotor data and replays them, along
with the new samples, to the networks during the train-
ing. This approach is known as memory consolidation
or system-level consolidation (McClelland et al., 1995).

The episodic memory is fed with samples observed
during the behaviour of the artificial agent. In particu-
lar, the episodic memory is empty at the beginning of
the learning session. New samples, as observed from
the camera and from the motor system (both sensori-
motor information are stored into a memory element),
are added into the memory, as soon as this reaches its
full size (as described in section 4, we vary this para-
meter in our experiments). When the memory is full,
the system keeps adding new samples into it, whenever
available, discarding old elements of the memory. A
greedy strategy is adopted, where random elements of
the memory are removed from the list and replaced
with new ones. Moreover, a second parameter drives
such an episodic memory update: pem, that is, the prob-
ability of changing an element in the episodic memory.
The episodic memory update process consists of iterat-
ing over all the elements of the memory and, with a
probability of pem, of discarding each element and
replacing it with the new sample. This produces dupli-
cates of the new samples in the memory, which may
increase the plasticity of the system towards latest
observations.

In sections 4 and 5, we show the impact of different
configurations of the episodic memory to the whole
learning process and to the behaviour of the simulated
robot.

3.5. The learning algorithm

Using the components described above, we can now
describe the basic learning algorithm as follows:

1. The system selects N goals, gi, following the strat-
egy described in section 3.2. Each goal is the com-
pressed representation of an image produced by the
pre-trained CAE. The prediction errors PE(gi, 0)
are initialised to 0, and LP(gi, 0) to 0, for each goal.

2. The interest model selects the goal g(t) in fgig
which has the maximum expected learning progress
LP(gi, t). The first goal g(0) of the learning process
is randomly selected from fgig.
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3. The inverse model computes the new position of
the camera P(t) with the objective that the
(encoded) image of the camera after the movement
corresponds to the selected goal.

4. The position P(t) is sent to the forward model. The
forward model predicts the compressed image Ip(t)
that will be seen at the new position.

5. The camera is moved. A random noise is added to
the camera movement predicted by the inverse
model, in order to produce small fluctuations and
thus to generate more views of the target locations.

6. The camera image Ic(t) is grabbed and compressed
by the CAE.

7. The prediction error PE(t) is computed as the
Euclidean distance between Ip(t) and Ic(t) (the com-
pressed representations of the predicted and cur-
rent images).

8. The estimated learning progress is updated using
equation (1) and PE(t).

9. The inverse model is updated with the recorded
sensorimotor data and the elements stored in the
memory.

10. The forward model is updated with the recorded
sensorimotor data and the elements stored in the
memory.

11. Update the episodic memory, as described in sec-
tion 3.4.

12. Return to step 1, until the maximum number of
iterations is reached (5000 in the current
experiment).

When the camera moves to a new position com-
puted by the inverse model, the difference between the
expected image and the obtained image may be very
large. The prediction error PE will be large in that case.
If the previous action of reaching the same goal pro-
duced a prediction error of different magnitude, this
results in a high estimated learning progress LP: the
system’s guess about the consequences of the current
action is not met, and it also changes very much when
re-iterating it, suggesting that such an action is very
informative. The interest model is then likely to select
the same goal for the next iteration (step 2). In case the
current activity does not produce big changes in the
prediction error, compared to the previous ones, the
interest model selects another goal, as the current one
does not bring any novel information to the learning
process.

It has to be noted that we do not update the inverse
and forward models at each iteration but only after a
given batch size has been completed. The fitting is then
done using the history of sensory and motor data for
that batch. We use batches for performance reasons
and for preventing less accurate gradient estimations
due to the big fluctuations that would be produced,
otherwise, by stochastic learning (i.e. batch size of one
sample).

4. Experiments

As mentioned in the previous sections, we adopt a CAE
for unsupervised learning of image features. The CAE
is pre-trained in an offline fashion that is ahead of the
learning experiment. Thereafter, during the online test,
image goals are compressed into features, using the
encoder part of the pre-trained CAE.

The CAE has been implemented using Keras deep
learning library and TensorFlow backend. The struc-
ture of the CAE is the following. An input layer takes a
643 64 grayscale image and passes it to a sequence of
conv2D and MaxPooling2D layers: conv2d1 has
643 643 256 neurons, conv2d2 has 323 323 128 neu-
rons and conv2d3 has 163 163 128 neurons. The out-
put of conv2d3 is flattened and connected to a Dense
layer of size 32 (the size of the latent space, that is, the
feature vector representing the compressed image). The
decoder part of the CAE starts with connecting the
latent later to a Dense layer of size 64, reshaping it into
a 163 16 layer and connecting it to a conv2d layer,
characterised by 83 83 32 neurons. The following
sequence of layers is then expanding the latent signal:
upsampling2d, conv2d(163 163 128), upsampling2d,
conv2d(323 323 512), upsampling2d, conv2d(643
643 1). The latter represents the output decoded layer,
whose size matches the one of the input. The
MaxPooling kernel has size 2, padding ‘same’. All the
conv2D layers have kernel size equals to 3 and ReLU
activation functions except the CAE output layer that
has a sigmoid activation function. An ADAM optimi-
ser has been used for training the network on an MSE
loss function.

The inverse and forward models have been imple-
mented as shallow artificial neural networks and are
trained in an online fashion during the experiment. The
structure of the forward model is characterised by the
following layer. An input layer is fed with a two-
dimensional vector (the (x, y) motor command applied
to the CNC machine), which is expanded to a dense
layer of 32 neurons, followed by two dense layers of
320 neurons, and a dense layer of 32 neurons (the
latent code dimensionality), representing the output of
the forward model. The structure of the inverse model
is characterised by the following layers. An input layer
is fed with a 32-dimensional vector (the latent code,
representing the goal image), which is passed to a dense
layer of the same size, then expanded to two dense
layers of 320 neurons, and compressed back to a dense
layer of 2 neurons, representing the output of the
inverse model (the (x, y) motor command to apply to
the CNC machine). For both the inverse and forward
models, the dense layers have tanh activation functions.
A standard gradient descent (LR: 0.0014, decay: 0.0,
momentum: 0.8) is used as optimiser on an MSE loss
function. The training of the CAE, the inverse and for-
ward model updates, as well as the predictive processes

Schillaci et al. 7
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are run on a machine equipped with an NVIDIA gra-
phics card.

As discussed in the previous sections, we adopt an
episodic memory system that maintains a subset of pre-
viously experienced sensorimotor data and replays
them, along with the new samples, to the networks dur-
ing the training. As soon as they are available, new
samples (image and motor information) are added into
the memory. When the memory reaches its full size,
random elements are removed from the memory and
replaced with new ones (see section 3.4 for more
details).

The inverse and forward models are updated at con-
stant frequency, that is, every time a new buffer of 16
sensorimotor samples (each consisting of (x, y) motor
commands and 32-dimensional compressed image
codes gathered along the exploration) is available. In
particular, a new fit for both the inverse and forward
models is triggered, passing as training data the buffer
with the new 16 observations together with all the sam-
ples stored in the episodic memory.

In the current experiment, we vary two parameters
over different runs and analyse their influence onto the
learning process. In particular, we vary the size of the
episodic memory and the probability of changing an
element in the episodic memory (pem).

5. Results

As discussed in the previous section, the experiment
consisted of two phases. In an initial offline stage, a
CAE has been trained with the images stored in the
simulated robot data (24,964 images, see section 2.2).
This neural network has been used to compress the
images (sensory inputs and goals) to be used in the
online learning process.

Figure 3 shows an example of a sequence of
encoded-decoded images produced by such a CAE. As
mentioned in the previous section, the image features
(i.e. the compressed version of the image) consists of a
32-dimensional vector. Input images and reconstructed

images are characterised by a resolution of 643 64 pix-
els. The reconstructed images shown in Figure 3 have
been generated by a CAE trained for 50 epochs.

Once having trained the CAE, the full learning pro-
cess can be performed as described in section 3.5. We
carried out a series of experiments, in which we varied
two parameters of the system: the size of the episodic
memory memsize and the probability of updating the
memory elements pem. In particular, we tested three dif-
ferent values for memsize : f0, 10, 20g (with 0 meaning
that no episodic memory available) and two values for
pem : f0:1, 0:01g, for a total of six experiments. The val-
ues of memsize specify the number of batches (each
batch has 16 sensorimotor samples) that are contained
in the memory. Each experiment has been run five
times, for a total of 30 runs. Each run consisted of 5000
iterations of the algorithm described in section 3.5.
During each run, the mean squared error (MSE) of the
forward and inverse models, calculated on the same test
dataset (consisting of 50 images randomly chosen from
the simulator dataset), have been monitored. The
MSEs have been calculated every 50 iterations of the
algorithm (behaviour and model updates). A set of nine
goal images have been chosen from the simulator
dataset.

Figure 4 shows an example of a run of the explora-
tion behaviour under a specific configuration
(memsize = 20, pem = 0:1) and over different time steps
(50, 1000, 2000, 3000, 4000 and 5000 iterations). The
axes specify the x and y motor positions of the CNC
machine. Red dots represent the motor projections of
the nine image goals (ground truth data from the simu-
lator dataset). Green dots represent the explored posi-
tions of the robot. As it can be seen, the behaviour of
the robot tends towards exploring around the regions
of the goals. The effect of the ε-greedy strategy is also
evident from the almost uniformly distributed green
points within the action space. In other works, the
exploration tends to visit also regions far from the
goals as a result of the greedy exploration strategy (ran-
dom commands) which is applied with a certain fre-
quency. The goal positions in the 32-D space are
compressed representations of the original goal images.
What is visualised as ‘goals’ (red dots) in Figure 4 are
the ground truth motor position mapped to the original
goal images. We believe that achieving the targets
requires so many iterations because the learning system
has to cope with the errors introduced with the CAE
compression and with learning the mapping between
the latent goal codes and the right motor positions.
Moreover, the mapping is being learned over time with
the sensorimotor data generated with the updating
models. During the initial bootstrapping, the models
may not have observed any sensorimotor mapping use-
ful for reaching specific goals. Therefore, the networks
are not capable of generating correct motor commands
to reach them, nor can they learn how to do that if no

Figure 3. Images encoded and decoded using the convolutional
autoencoder. The top row shows the original images. The
bottom row shows the result of encoding each input image into
a latent code and then decoding it back to the original image
resolution.
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relevant activity towards those goals has been
observed. Eventually, noise and greedy exploration
may introduce the required experience to achieve them,
but this takes time. Further work will analyse this
aspect of the learning process.

Figure 5 shows the predictions of the inverse models
over time. The inverse model is fed with the encoded
goal image as input and returns as output the (x, y)
coordinates of the motor. It can be clearly seen that the
learning process brings the prediction towards the tar-
get motor goals (ground truth data). The episodic
memory makes sure that previous knowledge (when
alternating between goals) is not forgotten. The impact
of catastrophic forgetting, due to the absence of the
episodic memory, is more clear in Figure 6, which
shows the prediction of the inverse model over time. As
it can be seen, predictions over different goals are much
more noisy than in the previous case.

Figure 7 shows the dynamics of the expected learn-
ing progress over the nine goals of the same sample run
described above (memsize = 20, pem = 0:1). Each goal is
characterised by the expected learning progress

described in equation (1). A decay factor is also added,
so that expected learning progress slowly decays over
time. The functional role of the decay factor for the
expected learning progress is to prevent that goals not
being explored maintain the same interest value.
Moreover, the expected progress becomes zero for a
goal that has not been adopted for a longer time
period. Figure 8 shows a zoomed-in version of the first
goal plot of Figure 7, together with a zoomed-in ver-
sion of Figure 5. Goal 0 is selected during these itera-
tions. As it can be seen, the corresponding learning
progress is changing over time – that is, prediction
error calculated on this goal is varying. The effect can
be seen on the predictions of the motor position, visua-
lised in the bottom plot of 5, which improve over time.

The time scales (horizontal axis) of this plot and
those of Figures 5 and 6 are not matching as predictions
are performed only when the specific goal is selected by
the intrinsic motivation system.

Figure 9 compares the learning progress of the for-
ward model in three different configurations of the epi-
sodic memory. As it can be seen, the intrinsic

Figure 4. An example of a goal-directed exploration session driven by artificial curiosity (run no. 5, configuration (memsize = 20,
pem = 0:1)). A set of nine goals are defined from the pre-recorded image dataset. The red dots show the (x, y) motor configurations
– which are stored as ground truth data in the dataset – that correspond to the image goals. Each of the plots shows the
experienced (x, y) motor commands after 50 (top left plot), 1000, 2000 (top right), 3000 (bottom left), 4000 and 5000 (bottom
right) samples. Green dots represent the (x, y) motor positions captured from the CNC machine while exploring. The red dashed
line shows the convex hull computed around the explored points. The exploration tends to visit also regions far from the goals as a
result of the greedy exploration strategy (random commands) which is applied with a certain frequency.

Schillaci et al. 9
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motivation system does not work well without episodic
memory (red curve). Adding an episodic memory has a
positive impact on the learning progress, as the MSE of
the forward model predictions decreases over time (big-
ger memory generates better results). Similar trends can
be observed for the inverse model (Figure 10).

Reducing the probability of changing memory ele-
ments to pem = 0:01 produces smoother descending
trends in the MSE of the configurations with episodic
memory, for both the forward (Figure 11) and the
inverse (Figure 12) models. We explain this effect as a
result of a smaller level of plasticity in the episodic
memory. As explained in the previous section, the cur-
rent episodic memory update strategy produces dupli-
cates of the new observations in the memory. Higher
values of pem produces more duplicates of the same
samples and may reduce the variance within the episo-
dic memory.

This can also be seen when comparing the MSEs of
the forward and inverse models by pivoting on the pem
values, as shown in the following figures. In Figure 13,
for instance, it can be seen that the system with higher

probability of memory updates (red curve) has a steeper
descending curve, although on the long run is outper-
formed by the other strategy (both the configuration
are characterised by a memory size of 10 batches). This
suggests that updating the episodic memory more
quickly produces higher plasticity, whereas doing it
more slowly produces more stability. This effect is,
however, not clearly visible in the MSE curves of the
inverse model (Figure 14). Increasing the memory size
to 20 batches leverages this different effect in the for-
ward model, as it can be seen from Figure 15, but
makes it slightly more evident in the inverse model
MSE trends (Figure 16).

Further studies will focus on a deeper analysis of the
variance of the elements in the episodic memory, as
well as on more sophisticated strategies for memory
update and their effect on the plasticity and stability of
the models.

Dynamic environmental conditions have not been
addressed in this study. In a recent work (Miranda &
Schillaci, 2019), we show that a similar episodic mem-
ory system can be used in transfer learning, as well.

Figure 5. The predictions of the nine goals over time performed by the inverse model in the run no. 5 of the configuration
(memsize = 20, pem = 0:1). The inverse model is fed with the encoded goal image as input and returns as output the (x: blue, y: red)
coordinates of the motor. Solid lines show, for each goal image, the ground truth motor positions. Dashed lines show the
predictions of the inverse model.
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Although applied on a different experimental setup and
computational models, we demonstrate that the episo-
dic memory enables adapting to changing environmen-
tal conditions maintaining good model performance on
previous conditions. Future work will analyse the per-
formance of the system presented here in the context of
dynamic environments.

6. Conclusion

We presented a learning architecture that generates
curiosity-driven goal-directed behaviours based on
intrinsic motivation and on an episodic memory sys-
tem. In particular, we implemented online learning
mechanisms on artificial neural networks using an epi-
sodic memory system for facing catastrophic forgetting
issues. We adopted and trained a CAE for compressing
image goals and observations into low-dimensional fea-
tures, which can be more easily processed by our mod-
els. We showed the performance of our system under
different configurations, where plasticity and stability
of the learning process can be modulated. Of

fundamental importance were the predictive processes
implemented through the forward models. In fact, pro-
cesses of anticipation of sensorimotor activity have
enabled the advanced behaviours showed in our experi-
ments. We strongly believe that similar mechanisms
may represent a bridge between motor and cognitive
development in humans and a promising tool for cog-
nitive robotics. We tested the models on simulated sen-
sorimotor data from a microfarming robot. This article
has contributed also to the widening of the develop-
mental robotics approach towards applications and
robotic platforms that are non-conventional in this
field.

Our experiments have shown that the intrinsic
motivation systems can work also in the presence of a
high-dimensional sensory space. Adopting an episodic
memory system not only prevents the computational
models to quickly forget knowledge that has been pre-
viously acquired, but also provides new avenues for
modulating the balance between plasticity and stability
of the system. In deep RL, the adoption of episodic
memories has also shown to mitigate slowing factors –

Figure 6. The predictions of the nine goals over time performed by the inverse model in the run no. 0 of the configuration without
episodic memory. The inverse model is fed with the encoded goal image as input and returns as output the (x: blue, y: red)
coordinates of the motor. Solid lines show, for each goal image, the ground truth motor positions. Dashed lines show the
predictions of the inverse model.
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Figure 7. The dynamics of the expected learning progress for each goal (from 2nd to 10th plot). The first plot shows the ID of the
currently selected goal over time. Rows g0 to g8 show the dynamics of the learning progress for each of the nine goals, calculated
using equation (1). Note, from the equation, that the hyperbolic tangent calculated on a positive value (absolute value of the
difference between two subsequent prediction errors) has a range between 0 and 1.

Figure 8. These plots illustrate zoomed-in parts of the plots in
Figures 7 and 5. In particular, the plot on the top shows the
learning progress for the goal 0 (second plot in Figure 7) during
the first 10 iterations of the exploration. The bottom plot
shows the predictions of the motor positions corresponding to
goal 0 (first plot in Figure 5) during the first 10 iterations of the
exploration.

Figure 9. The mean squared error of the forward model
computed over 5000 iterations, averaged on 5 runs. The plot
compares the MSE of three configurations of the system:
without memory (0 batches), memsize = 10 and memsize = 20.
In this plot, the probability of changing memory elements is set
to pem = 0:1. Solid lines show the mean of the MSE over 5 runs,
for each configuration. Shaded areas show the (mean� stddev,
mean+ stddev) areas.
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namely incremental parameter adjustment and weak
inductive bias – and the original demands for huge
amounts of training data, effectively allowing deep RL
to be faster (Botvinick et al., 2019). We expect episodic
memories to provide a similar contribution to intrinsic
motivation systems, being IM conceptually related to
RL. Nonetheless, future investigations should be car-
ried out in support to this claim.

Moreover, the aim of this work was not to provide
further evidence that intrinsically motivated goal-

directed exploration behaviours outperform random
exploration behaviours in the bootstrapping of motor
control. Therefore, we have not presented any compari-
son between the performances of the proposed mechan-
ism and those of greedy exploration strategies. Several
related studies can be found in the literature, as dis-
cussed in the introduction of this article. These studies
typically address robotic platforms whose actuators are
characterised by higher number of degrees of freedom,
compared to the platform adopted in this study – the
Sony LettuceThink robot. The positive contribution of

Figure 13. The mean squared error of the forward model
computed over 5000 iterations, averaged on 5 runs. The plot
compares the MSE of two configurations of the system:
pem = 0:1 and pem = 0:01. In this plot, the episodic memory
size is set to 10 batches. Solid lines show the mean of the MSE
over 5 runs, for each configuration. Shaded areas show the
(mean� stddev, mean+ stddev) areas.

Figure 10. The mean squared error of the inverse model
computed over 5000 iterations, averaged on 5 runs. The plot
compares the MSE of three configurations of the system:
without memory (0 batches), memsize = 10 and memsize = 20.
In this plot, the probability of changing memory elements is set
to pem = 0:1. Solid lines show the mean of the MSE over 5 runs,
for each configuration. Shaded areas show the (mean� stddev,
mean+ stddev) areas.

Figure 11. The mean squared error of the forward model
computed over 5000 iterations, averaged on 5 runs. The plot
compares the MSE of three configurations of the system:
without memory (0 batches), memsize = 10 and memsize = 20.
In this plot, the probability of changing memory elements is set
to pem = 0:01. Solid lines show the mean of the MSE over 5
runs, for each configuration. Shaded areas show the
(mean� stddev, mean+ stddev) areas.

Figure 12. The mean squared error of the inverse model
computed over 5000 iterations, averaged on 5 runs. The plot
compares the MSE of three configurations of the system:
without memory (0 batches), memsize = 10 and memsize = 20.
In this plot, the probability of changing memory elements is set
to pem = 0:01. Solid lines show the mean of the MSE over 5
runs, for each configuration. Shaded areas show the
(mean� stddev, mean+ stddev) areas.
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intrinsically motivated goal-directed exploration beha-
viours to the bootstrapping of motor control is in fact
more evident in complex robot actuators. The goal of
this work was rather to analyse the impact of episodic
memories in intrinsic motivation and online deep learn-
ing on high-dimensional sensory spaces. Further work
should indeed apply these algorithms in robotic plat-
forms characterised by both high-dimensional motor
and sensory spaces.

Several potential research directions are open from
this study: first, the adoption of alternative predictive
processes. As discussed in the introduction, more recent

approaches have been proposed in the literature, which
would better leverage instrumental, goal-directed
actions with epistemic, novelty-seeking, behaviour (i.e.
active inference; Friston, 2010; Tschantz et al., 2019).
This proposal has not been yet implemented into high-
dimensional sensory spaces and robots such as the ones
addressed in this study.

Second, to achieve the online learning process, image
features should be learned in an online and incremental
fashion. Similarly, goals could be autonomously gener-
ated through unsupervised learning techniques. We are
currently exploring different possibilities, including the
usage of self-organising maps, trained in an online fash-
ion on the latent codes of the CAE. Goals would be
aligned to the moving neurons of the self-organising
map. Interesting insights could emerge from applying
intrinsic motivation systems on dynamic goals that are
autonomously generated by the learning process. More
advanced goal selection strategies could be implemen-
ted, where prediction error dynamics could be analysed
over longer time lapses.

Third, similar investigations should be carried out
on a multimodal level. The literature on intrinsic moti-
vation systems and goal-directed behaviours in robotics
is mostly, if not totally, focusing on unimodal sensory
spaces. Investigating these algorithms in the context of
multimodal sensory spaces could open very interesting
research directions, for instance on how to leverage the
competition between modalities in the estimation of the
learning progress or in the definition and selection of
goals. An interesting research direction is also the inte-
gration of neuromorphic models – that is, spiking neu-
rons – in intrinsic motivation system (see, for instance,
Shi et al., 2020).

Figure 16. The mean squared error of the inverse model
computed over 5000 iterations, averaged on 5 runs. The plot
compares the MSE of two configurations of the system:
pem = 0:1 and pem = 0:01. In this plot, the episodic memory
size is set to 20 batches. Solid lines show the mean of the MSE
over 5 runs, for each configuration. Shaded areas show the
(mean� stddev, mean+ stddev) areas.

Figure 14. The mean squared error of the inverse model
computed over 5000 iterations, averaged on 5 runs. The plot
compares the MSE of two configurations of the system:
pem = 0:1 and pem = 0:01. In this plot, the episodic memory
size is set to 10 batches. Solid lines show the mean of the MSE
over 5 runs, for each configuration. Shaded areas show the
(mean� stddev, mean+ stddev) areas.

Figure 15. The mean squared error of the forward model
computed over 5000 iterations, averaged on 5 runs. The plot
compares the MSE of two configurations of the system:
pem = 0:1 and pem = 0:01. In this plot, the episodic memory
size is set to 20 batches. Solid lines show the mean of the MSE
over 5 runs, for each configuration. Shaded areas show the
(mean� stddev, mean+ stddev) areas.
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Future work on the microfarming application should
consider analysing the features encoded in the 32-D vec-
tor of the CAE, once having deployed the robot on the
field and having collected richer training data from the
microfarming environment.
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Notes

1. Please note that model updates are performed using small
batches (16 samples) and the context of an episodic mem-
ory, as it will be described in the following text. We utilise
here the term ‘online’ to express that learning is not
decoupled from online behaviour.

2. For further information, please refer to https://github.-
com/grbl/grbl/wiki.

3. The script will be available here: https://github.com/gui-
doschillaci/sonylettucethink_dataset.

4. The repository containing the images will be made freely
downloadable in a ZENODO.

5. The latest version can be downloaded here: https://
github.com/guidoschillaci/
goal_babbling_cae_episodic_memory.

6. This process is inspired by the classical idea in neu-
roscience about efference copy and corollary discharge

(Baltieri & Buckley, 2018; Kawato, 1999; Straka et al.,
2018). We are aware of more recent theories that chal-
lenged the usage of efference copies and of inverse models
(Feldman, 2016; Friston, 2011; Lara et al., 2018). Future
works will include reframing the predictive models of this
study, getting rid of inverse models and using propriocep-
tive predictions to generate motor commands, as in the
active inference proposal (Friston, 2010). As to the cur-
rent state, we still believe that the proposed approach
contributes to the state of the art in intrinsic motivation
systems and online learning.

7. This may not be optimal, especially when the motor space
is high-dimensional. See Tschantz et al. (2019) for more
details.
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