
RESEARCH ARTICLE

The FCG Editor: An innovative environment

for engineering computational construction

grammars

Remi van Trijp1, Katrien Beuls2, Paul Van EeckeID
3,4*

1 Sony Computer Science Laboratories Paris, Paris, France, 2 Faculté d’informatique, Université de Namur,
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Abstract

Since its inception in the mid-eighties, the field of construction grammar has been

steadily growing and constructionist approaches to language have by now become a

mainstream paradigm for linguistic research. While the construction grammar community

has traditionally focused on theoretical, experimental and corpus-based research, the

importance of computational methodologies is now rapidly increasing. This movement

has led to the establishment of a number of exploratory computational construction gram-

mar formalisms, which facilitate the implementation of construction grammars, as well as

their use for language processing purposes. Yet, implementing large grammars using

these formalisms still remains a challenging task, partly due to a lack of powerful and

user-friendly tools for computational construction grammar engineering. In order to over-

come this obstacle, this paper introduces the FCG Editor, a dedicated and innovative

integrated development environment for the Fluid Construction Grammar formalism.

Offering a straightforward installation and a user-friendly, interactive interface, the FCG

Editor is an accessible, yet powerful tool for construction grammarians who wish to oper-

ationalise their construction grammar insights and analyses in order to computationally

verify them, corroborate them with corpus data, or integrate them in language technology

applications.

Introduction

Interest in constructionist approaches to language, as pioneered by among others Fillmore [1],

Goldberg [2], Kay & Fillmore [3] and Croft [4], has been steadily growing over the last four

decades. In the meantime, the key foundational ideas underlying construction grammar have

been successfully adopted in many subfields of linguistics, including language acquisition [5,

6], psycholinguistics [7], language learning and teaching [8, 9], historical linguistics [10] and

language evolution and change [11, 12].
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While the methodological focus of the construction grammar community has traditionally

been on theoretical [13], corpus-based [14, 15] and experimental research [16, 17], the impor-

tance of computational methodologies is now rapidly increasing. This movement is witnessed

by the increased presence of talks, tutorials and courses on computational construction gram-

mar at international conferences and schools, such as the 2014 Language Resources and Evalu-

ation Conference (LREC), the 2017 Interdisciplinary College (IK) Spring School, the 2020

LOT Winter School, and the 2018 and 2021 International Conferences on Construction Gram-

mar (ICCG). Computational approaches bear the promise of establishing more solid founda-

tions for the field of construction grammar and of expanding its application potential, as they

make it possible to (i) automatically verify the precision and internal consistency of linguistic

analyses [18–24], (ii) corroborate these analyses with corpus data [20, 25–28], and (iii) exploit

linguistic insights and analyses for enhancing the performance of language technology applica-

tions [29–32].

Catering to these needs, a number of formalisations and computational implementations of

construction grammar have seen the light of day, each with their own goals and methodolo-

gies. The three most influential efforts have been Embodied Construction Grammar (ECG)

[33, 34], Fluid Construction Grammar (FCG) [35, 36] and Sign-Based Construction Grammar

(SBCG) [37, 38]. Each of these provides at least a formalism in which constructions can be

specified, as well as unification-based algorithms that can use these constructions for compre-

hending (ECG, FCG, SBCG) or formulating (FCG, SBCG) natural language utterances. ECG

and FCG come with their own computational implementations, while SBCG grammars could

in principle be processed using existing systems for implementing typed feature structure

grammars, for example LKB [39] or TRALE [40] (cf. the debate between van Trijp [41] and

Müller [42] on the faithfulness of such implementations).

Yet, despite the availability of these formalisations and their computational implementa-

tions, it remains a challenging task to operationalise construction grammars of considerable

size. This is partly due to a lack of user-friendly environments for writing, testing, inspecting

and debugging constructions. Without such tools, it is tremendously difficult to keep track of

the intricate relations between the constructions of a grammar, very much like it is difficult to

write large computer programs using a basic text editor only.

In this paper, we aim to remedy this situation by introducing the FCG Editor, an innovative

integrated development environment (IDE) for the Fluid Construction Grammar formalism.

The FCG Editor offers a straightforward installation and a user-friendly interface, which

enables users to write, visualise, process and debug their construction grammars. The FCG

Editor aims to strike a unique balance between user-friendliness and open-endedness, drawing

inspiration from the field of interactive programming. In this spirit, users can track in detail all

interactions between constructions during language processing, and add, delete or modify

constructions or processing configurations on the fly.

The target user group of the FCG Editor are linguists, in particular construction grammari-

ans, who wish to computationally operationalise their construction grammar insights and

analyses. Computational operationalisations come with four main advantages. First of all, they

validate the internal consistency of an analysis, as they immediately reveal any inconsistencies

or errors. Second, they make it possible to corroborate construction grammar theories with

large amounts of corpus data, unequivocally showing what they can and cannot account for.

Third, they help to standardise how constructions are represented and processed, facilitating

the comparison, exchange and integration of contributions by different researchers. Finally,

they make it possible to exploit construction grammar insights and analyses for enhancing the

performance of language technology applications.
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Background and related work

Constructionist approaches to language

Over the last four decades, constructionist approaches to language have been gaining increas-

ingly more attention in the linguistic community and have by now become a mainstream para-

digm for linguistic research. The phrase constructionist approaches to language, as coined by

Goldberg [43], refers to a family of linguistic theories which share a number of key founda-

tional principles. Based on the work of the main architects of construction grammar (cf. [2–4,

44, 45]), we distinguish the following basic tenets:

1. All linguistic knowledge is captured in the form of constructions. Constructions (cxns

for short) are defined as form-meaning pairings that facilitate the comprehension and pro-

duction of linguistic utterances. Comprehension corresponds to the process of mapping

from an utterance to its meaning representation, while production corresponds to the

inverse process of mapping from a meaning representation to an utterance that expresses it.

2. There exists a lexicon-grammar continuum, with no distinction between “words” and

“grammar rules”. Each construction is situated somewhere on this continuum. Con-

structions can range from entirely idiomatic expressions, over partially productive pat-

terns, to entirely abstract schemata. Examples of these types of constructions are

respectively (i) the BREAK-A-LEG-CXN, which constitutes a holistic pairing between the

utterance “break a leg!” and the meaning of wishing an addressee good luck, (ii) the X-

TAKE-Y-FOR-GRANTED-CXN, which includes variable slots for the agent and the undergoer,

and expresses that the former does not value the latter, and (iii) the RESULTATIVE-CXN in

“the Tasmanian tiger was hunted to extinction”, which expresses that the Tasmanian tiger

was extinct as a result of hunting.

3. Constructions can contain information from all levels of linguistic analysis. Construc-

tion grammar does not make an a priori distinction between the different layers of tradi-

tional linguistic analysis, such as phonetics, phonology, morphology, syntax, semantics and

pragmatics. Constructions can, but do not need to, include information from any of these

layers at the same time, as long as they constitute a mapping between some aspects of mean-

ing and some aspects of form. It is entirely open what the form side and the meaning side of

a construction can contain. For example, the form side typically includes phonetic, phono-

logical, morphological, syntactic or multimodal information, while the meaning side typi-

cally includes semantic or pragmatic information.

4. Construction grammars are dynamic systems, of which the constructions and their

entrenchment are in constant flux. Constructions always represent the linguistic knowl-

edge of an individual language user. Constructions are acquired and change over time.

They can be more or less entrenched as they are used more or less frequently and

successfully.

As is normal for a young scientific discipline, the exciting new ideas underlying construc-

tion grammar were not immediately precisely defined, let alone formalised or computationally

operationalised. The initial grand ideas needed to settle first, before more solid foundations

could be established. However, as the discipline has matured, sound foundations, formalisa-

tions and computational operationalisations are now an essential part of the construction

grammar enterprise. Investigating the nature of these foundations gave rise to an entire new

subfield of construction grammar, called computational construction grammar.
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Computational construction grammar

The field of computational construction grammar explicitly aims to provide precise formalisa-

tions of the building blocks of construction grammar, as well as fully operational processing

models [23]. These formalisations and processing models are important from both a theoreti-

cal and a practical perspective. On the theoretical side, they are a crucial instrument supporting

the assessment of the consistency and coverage of construction grammar analyses. On the

practical side, they facilitate the use of construction grammar insights and analyses in language

technology applications, such as visual question answering systems [30], the frame-semantic

analysis of discourse [31, 32] and tools for exploring large corpora from a construction gram-

mar perspective [46].

Since the early 2000s, a number of formalisations and computational operationalisations of

construction grammar have emerged, each approaching the challenge from a different

perspective:

• Sign-Based Construction Grammar (SBCG) [37] builds further on earlier work in the gen-

erative linguistics tradition, adopting the formal machinery and theoretical foundations of

Head-Driven Phrase Structure Grammar (HPSG) [47, 48]. In particular, SBCG extends

HPSG’s typed feature structure-based backbone with a distinction between signs and con-

structs, so that idiosyncratic phenomena and syntactico-semantic constraints affecting larger

patterns can more elegantly be handled [37, 49]. SBCG incorporates in this way a founda-

tional principle from construction grammar, while remaining at the same time deeply rooted

in the generative and phrase structure grammar traditions. Like HPSG and other phrase

structure grammars, SBCG adheres to a dictionary-and-grammar constellation [50] as

opposed to a lexicon-grammar continuum, enforces locality on grammar rules [51], and

does not aim to model grammars as dynamically emerging and evolving as a result of their

use in communication [43, 52]. As SBCG grammars adopt the same formal machinery and

theoretical foundations as HPSG grammars, they could in principle be processed using the

same computational tools, in particular LKB [39] and TRALE [40].

• Embodied Construction Grammar (ECG) [33, 34] is a computational construction gram-

mar implementation that provides a formalism and unification-based algorithms for opera-

tionalising constructional language processing in the comprehension direction. Starting

from the constructionist assumptions that the basic units of linguistic knowledge are pair-

ings between form and meaning, i.e. constructions, and that language serves to convey

meaning using form, research in the ECG tradition focusses on the cognitive and neural

mechanisms involved in language use [53], in particular on the representation of meaning as

schemata that are embodied in the human sensory-motor system [54].

• Fluid Construction Grammar (FCG) [36, 55] is a computational implementation of the

basic tenets of construction grammar. It can be seen as a special-purpose programming lan-

guage for computationally operationalising construction grammar insights and analyses. It

provides a construction grammar formalism, a unification engine supporting constructional

language processing in both the comprehension and production direction, and an extensive

library of building blocks that can readily be used by the construction grammar engineer.

These building blocks include data structures and algorithms for operationalising construc-

tions, construction inventories, heuristic search processes, meta-level learning operators,

entrenchment processes, and networks of grammatical categories. FCG strives to be a flexi-

ble system for exploring novel construction grammar ideas. Apart from adhering to the

basic tenets of construction grammar, it thereby imposes as few theoretical assumptions as

possible.
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• Dynamic Construction Grammar (DCG) [56] and Template Construction Grammar

(TCG) [57] are neuro-computational approaches to construction grammar. DCG makes use

of artificial neural networks to find regularities in the mappings between utterances and

their argument structure. TCG was developed to investigate how language and vision pro-

cessing interact on a neural level in the human brain. Both DCG and TCG are experimental

approaches which at this point do not provide computational tools for end-users.

The substantive body of research that has by now been yielded by the field of computa-

tional construction grammar has not only helped to establish more solid foundations for the

constructionist view on language, but has in the meantime also resulted in a number of

impactful real-world applications [30–32, 46, 58–61]. Yet, the grammars that are currently

available are either fragments targeted towards detailed analyses of specific linguistic phe-

nomena of interest, including the English auxiliary system [62, 63], English measure phrases

[64], English caused-motion constructions [23, 65], English long-distance dependencies,

[42, 66], English metaphors [67], Dutch modal stacking [68], Hungarian poly-personal

agreement [69] and tense, aspect and modality in the Spanish verbal system [70], or applica-

tion-specific grammars that were designed for optimal performance on a predefined task

[30, 32]. Some attempts have been made to create large, domain-general, fine-grained

computational construction grammars, either by leveraging FrameNet data to expand the

coverage of seed grammars [71, 72], or by combining a set of fully instantiated constructions

that were automatically created based on lexical resources with a collection of hand-crafted

constructions that handle more abstract patterns [73]. While all of these attempts contrib-

uted interesting ideas and operational models, they showed at the same time that the success

of large-scale, broad-coverage construction grammar engineering crucially hinges on the

computational tools that are available to the grammar engineer. This insight was of course

not new, nor is the issue proper to construction grammar engineering. Indeed, research on

grammar engineering in the generative linguistics tradition has elaborately studied many

aspects relating to this issue, and has proposed a variety of solutions in the form of both the-

oretical insights and fully-operational tools.

Construction grammar engineering: Issues and tools

Much of the foundational work on large-scale, broad-coverage grammar engineering was car-

ried out in the 1980s and 1990s by researchers trained in a variety of computational linguistics

formalisms, in particular Tree-Adjoining Grammar (TAG) [74], Lexical-Functional Grammar

(LFG) [75], Combinatory Categorial Grammar (CCG) [76] and Head-Driven Phrase Structure

Grammar (HPSG) [77]. Since this period, many research papers have been published that

explicitly tackle issues related to large-scale grammar engineering or that present tools for sup-

porting the grammar engineering process. These issues involve the automatic verification of

the coverage and precision of a grammar, including approaches to regression testing and writ-

ing maintainable grammars [78–83], the coordination between researchers in collaborative

grammar engineering [84, 85], and grammar debugging [78, 86]. A wide range of tools have

been developed to support grammar engineering using these formalisms, in particular TuLiPA

[87] for TAG, XLE [88, 89] for LFG, DotCCG [90] and GF [91] for CCG, ALE [92], TRALE

[40] and LKB [39] for HPSG, and Hdrug [93] for a variety of formalisms, including flavours of

HPSG, TAG and CCG. These tools have not only made it possible to implement grammars of

considerable size for a large number of languages, but have also facilitated the exchange of

grammars between researchers in the computational linguistics community. For a comprehen-

sive overview of available grammars implemented in these formalisms, we refer the reader

to [94].
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Most solutions that have resulted from research on grammar engineering in the generative

grammar tradition can directly be reused for construction grammar engineering, as many

challenges, including verification, collaborative grammar writing and grammar debugging,

remain the same. Other engineering challenges are specific to construction grammars and

therefore require bespoke solutions. First of all, the construction-based comprehension and

production of linguistic utterances relies on the free combination of constructions as long as

no conflicts occur [23, 45]. Combined with the non-locality of constructions, the fact that con-

structions do not need to include word order constraints [4] and that they do not necessarily

correspond to tree-building operations [95], this means that constructional language process-

ing cannot faithfully be implemented using well-known optimisation techniques, such as chart

parsing and generation [96, 97]. Moreover, it is quite common that many different combina-

tions of construction applications can lead to a valid solution and that possible variations are

at least partly motivated by entrenchment phenomena. The construction application process is

usually implemented as a rather expensive search problem [98], and large-scale construction

grammar engineering can, at least today, not completely be decoupled from optimization tech-

niques. It is therefore of crucial importance for the construction grammar engineer to be able

to inspect in detail the search process involved in constructional language processing, and to

have easy access to optimisation solutions such as the scoring and hashing of constructions,

the use of heuristics and priming methods [99, 100], and the efficient organisation of the con-

structions in the construction inventory [69]. Another challenge specific to construction gram-

mar engineering stems from the nature of the underlying linguistic theory. Constructionist

approaches to language, by definition, adhere to the basic tenets of construction grammar dis-

cussed above, but many other aspects, including the nature of grammatical categories, family

relations between constructions, and the integration of ontological knowledge and common

sense reasoning into constructional language processing, are still very much in an exploratory

stage. This requires systems and tools for construction grammar engineering to be flexible,

open-ended and extensible, so that novel ideas can easily be explored. On the one hand, this

open-endedness ensures that construction grammarians do not feel constrained by the

computational tools they use. On the other hand, it makes sure that computational research in

construction grammar can directly contribute to theory building.

There exist today two main software platforms that aim to provide a faithful operationalisa-

tion of the basic tenets of construction grammar and as a consequence need to address the

challenges specific to constructional language processing discussed above. These are the ECG

workbench for Embodied Construction Grammar [101, 102] and the Babel platform for Fluid

Construction Grammar [86, 103]:

• The ECG workbench is an integrated development environment that allows construction

grammar engineers to create and explore their own grammar fragments, and use them for

comprehending individual utterances. Apart from an editing window where construction

definitions can be displayed and altered, the workbench also hosts the functionality to

visualise the end result of a constructional analysis in the form of a semantic specification,

called SemSpec. The SemSpec “specifies the conceptual schemas evoked by the construc-

tions involved [in an analysis] and how they are related” [33]. While the end result of a

construction application process can be inspected in a graphical way, the process itself is

kept hidden from the user. Only the names and scope of the constructions and schemas

that contributed to the resulting semantic specification are returned, together with a num-

ber that indicates the cost of the analysis. Interactivity in the development environment is

limited to entering utterances, and starting or interrupting the comprehension process.

The ECG workbench does not include the possibility to inspect the construction
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application process itself, keeping optimization and debugging—and therefore large-scale

grammar engineering—a difficult task.

• FCG grammars are designed using the Babel platform. Babel is marketed as an all-in-one soft-

ware library for setting up multi-agent experiments on the emergence and evolution of com-

munication and language [104]. Babel provides building blocks for implementing all aspects

involved in such experiments, ranging from the sensory-motor level [105], through the con-

ceptual level [106], to the linguistic level [36]. In essence, Babel is not a computer program or

editor, but a software library that includes FCG as a component. FCG is a special-purpose pro-

gramming language implemented on top of Common Lisp, which provides abstractions for

representing and processing construction inventories and constructions in its own syntax.

With Babel installed on their machines, FCG users thus directly interact with its source code.

They typically make use of general-purpose text editors that implement an interactive Lisp

environment, such as Emacs in combination with SLIME. In this environment, users can then

write their own grammars and use these in language comprehension and production tasks.

FCG comes with elaborate web-based visualisations of all aspects involved in constructional

language processing. As Babel is a software library rather than an integrated development envi-

ronment, it takes a considerable amount of time and effort to become a proficient FCG user as

a consequence of the overhead of needing to learn a new programming environment.

Overall, the ECG workbench and the Babel platform have played an important role in the

early development of computational construction grammars. However, they have so far not

succeeded in adequately addressing the needs of the construction grammar community. The

ECG workbench lacks the flexibility that is needed to explore construction grammar ideas that

diverge from the initial design choices that were made based on Feldman’s neural theory of

language [107], and suffers from significant performance bottlenecks and a lack of interpret-

ability, which make it difficult to design and process larger grammars. The Babel system does

not offer an interface that is straightforwardly accessible to construction grammarians and its

use requires significant software development skills. Despite the rapidly growing interest in

constructionist approaches to language in general, and in computational construction gram-

mar in particular, the community uptake for computational construction grammar implemen-

tations has therefore remained limited.

The tool that we present in this paper aims to remedy this situation, and make both

large-scale construction grammar engineering and the computational exploration of novel

construction grammar ideas accessible to the construction grammarian. Starting from the

FCG system, we build a user-friendly, yet flexible, open-ended and extensible tool for con-

struction grammar engineering. The tool is inspired by the best practices in grammar engi-

neering known from the generative grammar tradition, the possibilities offered by the

Babel software library, the field of interactive programming, and interactions with target

users from within the construction grammar community.

The FCG Editor

The primary design objective of the FCG Editor is twofold. First of all, the tool should be easily

accessible to construction grammarians and support the free exploration of novel construction

grammar ideas. Second, the tool should support large-scale, broad-coverage construction

grammar engineering, facilitating the fast prototyping of performant computational construc-

tion grammars.

This section is subdivided into three parts. First, we report on a requirements analysis that

was conducted in collaboration with the construction grammar community. Then, we provide

PLOS ONE The FCG Editor: An innovative environment for engineering computational construction grammars

PLOS ONE | https://doi.org/10.1371/journal.pone.0269708 June 9, 2022 7 / 27

https://doi.org/10.1371/journal.pone.0269708


a detailed overview of the design, functionality and main features of the FCG Editor. Finally,

we discuss how the system can support both large-scale construction grammar engineering

and the computational exploration of new construction grammar ideas.

Requirements analysis

In order to maximize the potential of the FCG editor in terms of community uptake, a require-

ments analysis was carried out through discussions with experts in construction grammar and

interactions with participants during a number of tutorials on computational construction

grammar at international events, including the 2020 LOT Winter School and the 2021 Interna-

tional Conference on Construction Grammar (ICCG). From these extensive discussions, eight

criteria that the FCG Editor should satisfy were distilled. While the resulting criteria are rather

unsurprising from a software development perspective, they do reflect the concerns that are

currently present in the construction grammar community.

The scope of this requirements analysis is bounded to requirements for an integrated devel-

opment environment for engineering computational construction grammars. A requirements

analysis for computational construction grammar formalisms or implementations, like the

one provided by Steels [108], explicitly falls outside the scope of this paper.

R1 The FCG Editor should offer the basic text formatting functionalities that are commonly

featured in text editors intended for programming. Apart from open-save-close, undo-redo,

cut-copy-paste and find-replace, these functionalities include adequate syntax highlighting,

block comment formatting, auto-indentation, auto-completion and display of function

arguments. Key bindings should be intuitive and aligned with those used in other modern

editors.

R2 The editor should offer a straightforward and cross-platform installation. External

dependencies should be limited to the absolute minimum and they should be freely avail-

able. The editor should run on the three major operating systems (Linux, macOS and

Microsoft Windows) and be delivered as an executable file that facilitates a single-click

installation.

R3 The editor should aim to make implementing computational construction grammars more

accessible to novice users, by including tutorials and/or examples which help them to get

started with implementing their first constructions.

R4 The editor should include visualisations for constructions and construction application

processes, so that they can be graphically inspected by the users. These visualisations should

be interactive and allow the users to keep track of, inspect and debug all aspects of construc-

tional processing.

R5 The editor should include facilities for catching and displaying insightful error messages.

Debugging information, including system settings, backtraces and memory dumps, should

be easily shareable, for example by including the option to print them in the form of plain

text reports.

R6 The editor should allow users to manage running processes in an intuitive way. It should

be possible to kill a running process, for example when an erroneous construction causes

an infinite loop, when a process is no longer responsive, or when constructions create a

search space that takes too long to explore.

R7 The editor should offer the possibility to write source code that extends the FCG system.

For one thing, it should be possible to extend FCG’s standard library of functions for
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processing grammars, for example with novel techniques for managing the search process

involved in constructional language processing [98, 109]. For another, it should be possible

to implement auxiliary functions, for example for automatically creating constructions

based on dictionaries, corpora or other linguistic resources, or for applying construction

grammars to corpora.

R8 The editor should provide an interactive programming environment through which

users can interact with their grammar and the novel code they write. This implies imple-

menting the concept of an active programming session with a Read-Eval-Print-Loop

(REPL)-like interface.

In sum, the requirements analysis brought to light three important aspects that have steered

the development of the FCG Editor: (i) user-friendliness for users who do not have extensive

programming experience, (ii) extensibility for expert users who wish to develop novel exten-

sions to FCG, and (iii) interactivity for all users, so that they can inspect all aspects of construc-

tional language processing through orderly yet detailed visualisations. Other important aspects

of construction grammar engineering that have guided the development of the FCG Editor,

such as evaluation, regression testing and deployability, did not emerge from the discussions

with the community. This can be ascribed to the fact that these aspects are already well covered

by the current computational construction grammar implementations, in particular the Fluid

Construction Grammar software library [32, 83].

Design and functionality

The FCG Editor is designed as a user-friendly yet open-ended integrated development

environment that facilitates the design and implementation of computational

construction grammars using the Fluid Construction Grammar formalism. It is

delivered as a stand-alone, executable program that offers a graphical user interface

(GUI) through which users can interact with a pre-compiled version of Babel’s FCG soft-

ware library. In order to maximise the open-endedness of the FCG Editor, its GUI

supports the interpretation of both FCG constructs and Common Lisp source code that

extends the FCG codebase.

In this section, we first provide an overview of the FCG Editor GUI. We then highlight the

main features of the FCG Editor and provide a brief practical guide for new users to get started

with the environment. Finally, we share some details about the technical operationalisation of

the software.

Overview of the FCG Editor GUI. When a user opens the FCG Editor, a graphical user

interface (GUI) is displayed. The GUI is structured as presented in Fig 1 and consists of six

component parts:

A. The toolbar provides buttons that allow the user to manipulate files (‘New’, ‘Open’,

‘Close’, ‘Save’, ‘Save as’), open an example grammar (‘Insert demo grammar’), create a

construction skeleton (‘Cxn Wizard’), evaluate files (‘Evaluate File’), launch the interac-

tive web interface (‘Launch web interface’), launch a graphical grammar configurator

(‘Grammar Configurator’), clear all output (‘Clear Output’) and quit the program

(‘Quit’).

B. The buffer overview list provides an overview of all open file buffers, corresponding to a

list of all files that are currently open in the FCG Editor. When a file buffer is selected in

the buffer overview list, it becomes visible in the editor pane (C).
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C. The editor pane, situated centrally in the GUI, facilitates the editing of both FCG gram-

mars and Common Lisp source code. The editor pane hosts a wide range of functionali-

ties that help users implement their grammars, as will be discussed in more detail below.

D. The output pane collects all textual output of the FCG Editor, including construction

skeletons, grammar configurations, the results of comprehension and production pro-

cesses, and possible error message reports.

E. The testing pane allows users to comprehend or produce utterances from the GUI. Users

can enter an utterance or a meaning representation, along with the name of a construc-

tion inventory. Upon clicking the ‘Go!’ button or hitting ENTER, the system processes the

utterance (comprehension) or meaning representation (production) using the specified

construction inventory.

F. The listener pane provides a command-line interface to the FCG system. This pane

allows the user to interact with the FCG codebase using the Common Lisp programming

language. While novice users can safely ignore this pane, it grants expert users the free-

dom and power to access and/or extend all aspects of the FCG system itself.

Apart from the components discussed above, additional functionality is made available

through the menu bar, as well as through dedicated key bindings. The menu bar offers a ‘File’

menu for manipulating files, an ‘Edit’ menu for editing text (including undo, cut-copy-paste
and find-replace), an ‘Options’ menu for setting the font and font size of the different panes, an

‘About’ menu providing information about the program and its version, and a ‘Help’ menu

that provides a number of manuals and a list of all available key bindings. These include on the

Fig 1. Overview of the graphical user interface. The FCG Editor’s main interface, featuring its toolbar (A), buffer overview list (B), editor pane (C), output

pane (D), testing pane (E) and listener pane (F).

https://doi.org/10.1371/journal.pone.0269708.g001
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one hand the basic ones that are natively provided by the chosen operating system, and on the

other hand the standard Emacs key bindings where they do not conflict with native ones.

Main features of the FCG Editor. Advanced text editing. The editor pane provides

advanced text editing functionalities, combining the look-and-feel of modern source code edi-

tors with the possibility to use the Emacs-inspired key bindings to which long-time FCG users

are used. Basic functionalities, including open-save-close, undo, cut-copy-paste and find-replace,
are available through the toolbar and menu bar, as well as through their native key bindings.

On a more advanced level, the editor pane provides syntax highlighting, auto-completion and

auto-indentation functionalities for FCG grammars as well as for Common Lisp source code,

improving the readability and ease-of-development of constructs in both syntaxes. Semicolons

can be used to indicate single-line comments, while a combination of hashes and pipes can be

used to indicate multi-line comments. When hitting the space bar after typing a function or

macro call, the expected arguments are displayed immediately below the editor pane.

Evaluation and execution. Part of the power of an integrated development environment, as

opposed to a plain text editor, lies in its ability not only to support the writing of code, but also

its execution. In the case of the FCG Editor, both FCG constructs, such as constructions and

construction inventories, and Common Lisp source code can be executed from the editor

pane. Execution of FCG constructs consists on the one hand in adding constructions or other

linguistic information to the FCG system, and on the other hand in using this information for

processing natural language. In line with the functional programming paradigm in which the

FCG system is rooted, the FCG Editor refers to execution by the term evaluation. Evaluation

refers thus to the execution of a block of code by the FCG interpreter, not to the quantitative

or qualitative evaluation of a grammar.

From the editor pane, blocks of code written in either FCG or Common Lisp syntax can be

evaluated in a number of ways. The most intuitive way for many users is to place the cursor

somewhere within the block of code they wish to execute (e.g. a new construction definition)

and hit the SHIFT-ENTER key combination. The system then evaluates this block of code (e.g.

adding the construction to the construction inventory), writes its output to the output pane if

applicable, and puts the cursor in the next block of code. This behaviour mimics the function-

ality provided by the same key combination in the widely known Jupyter Notebook environ-

ment [110]. A second option is to place the cursor immediately after the exact expression to be

evaluated and hit the SHIFT-CTRL-ENTER key combination. This expression is then executed and

the output is written to the output pane if applicable. This option mimics a more traditional

interactive programming style. Additionally, the button ‘Evaluate File’ from the toolbar can be

clicked to evaluate the entire contents of a file. Finally, other Emacs-style key bindings for eval-

uation, such as CTRL-X CTRL-E (on macOS) and META-X EVAL-BUFFER, are also available.

Interactive web interface. The Babel FCG system comes with detailed, interactive visualisa-

tions of all aspects involved in constructional language processing. Constructions and con-

struction application processes can be inspected in an orderly yet detailed fashion using an

interactive web interface that was especially designed for creating “visualisations for complex

data and control structures” [111] through the ubiquitous use of expandable/collapsible ele-

ments. The web interface allows users to track the dynamics of the FCG engine during process-

ing, thereby offering an indispensable tool for profiling and debugging complex grammars

[112].

The FCG Editor features a complete version of the Babel Interactive Web Interface that is

pre-configured to trace FCG processes. The web interface is automatically initialised when the

FCG Editor is launched and can be consulted at the address http://localhost:8008 using a web

browser. The ‘Launch web interface’ button from the toolbar in the editor’s main interface can

be used to automatically open a web browser at the right address. A screenshot of the web
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interface tracing the comprehension process of the utterance “the linguist likes the mouse’’
using a didactic demonstration grammar is shown in Fig 2. All elements of the visualisation

are recursively expandable up to the level of the bare feature structures and unification bind-

ings. The web interface can be cleared together with the output pane of the FCG Editor by

clicking the button ‘Clear Output’ in the toolbar.

Demo grammar. Learning to use a new grammar formalism and development environment

can be a challenging endeavour. To help novice users get acquainted with writing computa-

tional construction grammars, a didactic demonstration grammar fragment for English is

available from the editor’s main interface. By clicking the button ‘Insert demo grammar’, the

definition of a construction inventory with seven constructions, including a few lexical con-

structions, a noun-phrase construction and a transitive-clause construction, is added to the

buffer that is currently open in the editor pane. This example grammar can help to learn the

syntax of Fluid Construction Grammar, to learn to evaluate FCG constructs, to explore the

web interface and output pane, and it can serve as basis for writing one’s own first grammar

fragment.

Comprehension and production from the GUI. Once a construction inventory and its con-

structions have been evaluated, for instance by first clicking ‘New’, then ‘Insert demo gram-

mar’, and then ‘Evaluate File’, the grammar is ready to be used for language processing. Given

the bi-directionality of the FCG system, grammars can be used for both comprehending and

producing utterances. Comprehension consists in mapping from an utterance to a representa-

tion of its meaning, while production performs a mapping from a meaning representation to

an utterance that expresses it. For testing purposes, an utterance or meaning representation

can be entered in the testing pane of the FCG Editor (see part E of Fig 1), along with the

Fig 2. Interactive web interface. The Babel Interactive Web Interface has been integrated into the FCG Editor and is accessible at http://localhost:8008.

https://doi.org/10.1371/journal.pone.0269708.g002
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construction inventory to be used. Grammars are by default accessible via the global access

point �fcg-constructions�. Utterances should be entered without any enclosing quota-

tion marks unless these are part of the utterance, e.g. the linguist likes the mouse. Meaning rep-

resentations should be specified in the form of predicates written in prefix notation, i.e. with

an opening parenthesis before the predicate name rather than before the first argument, e.g.

(linguist x) (unique x) (mouse y) (unique y) (deep-affection x y). Upon hitting the ENTER key or

clicking the ‘Go!’ button in the testing pane, the FCG Editor automatically infers the required

direction of processing based on whether the input is a sequence of characters or a sequence of

predicates, and initiates the corresponding process (comprehension or production). The com-

plete output becomes available in the interactive web interface and a summary of the result

also appears in the output pane.

While the testing pane is envisioned as the primary way to test and explore new grammars,

more specialised methods that are rooted in the FCG software library are also available within

the editor. These methods involve function calls to ‘comprehend’, ‘comprehend-all’, ‘formu-

late’ and ‘formulate-all’, and can for example be included in loops for processing corpora

rather than individual utterances. Also Babel’s parallel corpus processing package and testing

and evaluation package can be accessed from within the FCG Editor.

Grammar configurator. Fluid Construction Grammar is an extensive toolbox that is highly

customisable. It comes with a wide variety of pre-implemented processing and visualisation

options that are accessible to the user through the specification of configuration settings in the

definition of the construction inventory. These options affect the behaviour of the processing

and visualisation engines, including many aspects of the definition of constructions, the search

process involved in constructional language processing, meta-level operators that deal with

unforeseen input, the hashing of constructions, and the visualisation of constructions and con-

struction application processes. While suitable defaults are adopted by the FCG Editor to assist

novice users in their learning process, grammar engineers working on larger projects soon

want to be in full control of the behaviour of the constructional language processing system. A

major challenge in this respect for the FCG user is to translate the desired behaviour into a

combination of available configuration options, avoiding the holistic re-implementation of

functionality that is already available through a combination of pre-implemented modules. In

order to assist the user in this process, the FCG Editor features a helper tool in the form of a

graphical grammar configurator.

The grammar configurator provides a graphical way to inspect and alter the configuration

options of a construction inventory. Using expandable/collapsible elements, the user can navi-

gate through all pre-implemented configuration options and visually inspect the configuration

options that are currently set for the grammar under development. By clicking checkboxes,

marking radiobuttons and filling text fields, the user can set different configurations in a

straightforward manner. The interface guides the user in this process by providing all possible

options and advising on dependencies between them. Certain options only appear if other

options are selected, reflecting their compatibility and conditionality. The grammar configura-

tor is an open-ended tool, in the sense that it provides at each point the possibility for the user

to specify configuration options that they implemented themselves and are therefore not part

of the standard FCG distribution.

The grammar configurator can be launched by clicking the ‘Configure grammar’ button in

the toolbar. This opens a dialog window in which the user can specify the grammar to be con-

figured. Upon clicking ‘OK’, the graphical grammar configurator appears in the FCG Editor’s

web interface. After inspecting and altering the configuration options and subsequently click-

ing the ‘Configure’ button, the full configuration of the grammar is printed to the output pane
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of the FCG Editor. From there, it can be copied and pasted into the editor pane and integrated

in the grammar. This process is visualised in Fig 3.

Construction wizard. When writing constructions, it is common practice to first design the

skeleton of a construction, before implementing the features that capture its more intricate lin-

guistic properties. The process of designing a construction skeleton is rather repetitive, time-

consuming and error-prone. With the goal of supporting the grammar engineer in this task,

the FCG Editor features a helper tool called construction wizard. The construction wizard auto-

mates the process of writing a construction skeleton based on a pattern of words provided by

the user. The tool constructs the basic outline of a construction, adds units that match on the

words present in the input pattern, and adds another unit that on the one hand matches on the

pattern’s word order constraints and on the other hand groups all words together. Once added

to the grammar, the skeleton built by the construction wizard is already an operational con-

struction in itself, which can readily be used in the comprehension direction. Then, it is the

task of the grammar engineer to further elaborate this construction by adding features that

capture its meaningful linguistic properties, both on the form and on the meaning side of the

construction.

Fig 4 visualises the different steps involved in using the construction wizard. First, the con-

struction wizard is called by clicking the ‘Cxn Wizard’ button in the toolbar of the FCG Editor.

This causes a dialog window to open, asking the user to enter the pattern for which they would

like to create a construction skeleton. After entering a pattern (in this case “Y due to X”) and

Fig 3. Grammar configurator. A graphical grammar configurator supports the user in fine-tuning the behaviour of the processing and visualisation

engines.

https://doi.org/10.1371/journal.pone.0269708.g003
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clicking the ‘OK’ button, a skeleton for the Y-DUE-TO-X-CXN appears in the FCG Editor’s output

pane. This construction matches on the four elements of the pattern (“Y”, “due”, “to” and “X”),

as well as on the ordering constraints between these elements. Additionally, the construction

creates a new unit that groups together these four elements into a single unit. This skeleton can

then be copied by the user to the editor pane, where they can build further on this skeleton to

implement the exact construction they have mind. In the figure, this involves on the one hand

specifying that the X and Y elements need a referent feature, and on the other hand adding fea-

tures that capture the meaning side of the construction. In this case, the meaning is captured

in the form of a causal frame, in which X fills the role of cause and Y fills the role of effect.

Finally, the user can evaluate the construction to add it to the construction inventory, and test

the resulting construction in both the comprehension and the production direction. This con-

struction can contribute to the processing of utterances such as “train traffic is disrupted due to
a number of accidents” and “the school trip was postponed due to the Covid crisis”.

Managing running processes. In an open-ended development environment like the FCG

Editor, it is of crucial importance to be able to manage the processes that are running. For

example, if a user starts the comprehension or production process of an utterance using an

experimental grammar, it can happen that a combination of erroneous or non-optimal con-

structions causes the process to take much longer than expected. In this case, it is desirable to

be able to kill the running process, adapt the grammar and restart evaluation. This prevents

the situation where the user either needs to wait for the faulty process to finish or that faulty

processes continue to run in the background slowing down the entire system.

Fig 4. Construction wizard. After clicking the ‘Cxn Wizard’ button from the toolbar, a window opens in which the user can type a word, multi-word

expression or sentence for which they wish to create a construction skeleton. Upon clicking ‘OK’, the construction skeleton is printed to the output pane,

from where it can be copied to the grammar that is open in the editor pane. The grammar engineer can then further elaborate this construction and test it.

https://doi.org/10.1371/journal.pone.0269708.g004
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The FCG Editor handles this challenge by running each evaluation event, for example trig-

gered by hitting the SHIFT-ENTER key combination or clicking the ‘Go!’ button in the testing

pane, on a new thread. While this thread is running, a dialog window is shown. This dialog

window informs the user that an evaluation process is in progress and offers the option to kill

this process by clicking a ‘Cancel’ button. If the ‘Cancel’ button is not clicked, the window dis-

appears once the evaluation process is finished. If it is clicked, the thread is destroyed immedi-

ately and the dialog window disappears. This solution ensures that the user always knows

exactly which process is running, and that they can kill this process if desired.

Debugging. When implementing FCG grammars or Common Lisp source code, it is inevita-

ble that errors will occur, for example due to violations of the required syntax. For the user

experience, it is of great importance that errors are caught, and that insightful error messages

and additional debugging information are displayed.

In the FCG Editor, each error during evaluation is caught on the editor level. The error

message resulting from the evaluation process is displayed in a dialog window. The user then

has two choices. The first option is to click an ‘Abort’ button, which kills the thread and makes

the error message disappear. The second option is to click a ‘Report problem’ button, which

kills the thread, makes the error message disappear and prints an extensive plain text error

report to the output pane. The error report contains (i) the error message itself, (ii) the form

that was being evaluated when the error occurred, (iii) a backtrace, (iv) information about the

version of the editor, and (v) more low-level information including for example the packages

that were loaded at the time of the error and the state of the garbage collector. As the extensive

error report is printed to the output pane as plain text, it can easily be shared with the FCG

user community or reported to the FCG development team.

Source-level extensibility. During the design of the editor, it was an explicit goal to cater to

the needs of both regular users and FCG experts. FCG experts do not only need to be able to

define new constructions and construction inventories, but also to be able to extend the FCG

system with new features. For example, they might wish to add new ways to manage the search

process involved in constructional language processing, write auxiliary functions to automati-

cally build constructions based on dictionaries or other linguistic resources, or write functions

that use their grammar for annotating corpora with constructional analyses. The combination

of the advanced text editing functionalities, evaluation possibilities and debugging tools that

are provided by the FCG Editor provide a powerful environment for extending the FCG sys-

tem using Common Lisp source code.

The FCG listener. FCG grammars are typically developed in a prototyping style, where the

exact specification is not known on beforehand. Constructions are implemented incrementally

and tested continuously. During this spiral process, the grammar gradually grows, new chal-

lenges appear, and the grammar engineer designs solutions that improve the generality and

coverage of the grammar. At the same time, the grammar engineer acquires linguistic insights

that result from their interaction with the language processing engine. This style of develop-

ment excellently fits the interactive programming paradigm, in which developers implement

parts of a program while other parts are already operational.

The FCG Editor provides an interactive programming environment, in which the grammar

engineer can interact with a grammar and its supporting source code during development.

This interaction can happen on the one hand through the evaluation of FCG constructs, func-

tions and function calls in the editor pane, and on the other hand using the FCG listener. The

FCG listener provides a traditional Read-Eval-Print-Loop (REPL) that is connected to the run-

ning FCG system. This means that users can enter individual snippets of code that interact

with the grammar. Upon entering these snippets, they are evaluated and the output is

returned. This can for example be useful for quick testing, for timing the comprehension or
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production process of an utterance, or for manipulating grammars programmatically. Fig 5

shows how the FCG listener can be used to time the comprehension process of the utterance

“the linguist likes the mouse” using the demo grammar.

Getting started. The FCG Editor can be downloaded for macOS, Microsoft Windows

and Linux from the FCG user community website (https://www.fcg-net.org/download). The

downloaded binary file can then be moved to the operating system’s application folder and

launched like any other program, for example by double-clicking it. For visualising semantic

networks in the web interface, one additional dependency needs to be installed, namely the

Graphviz tool [113]. Instructions for doing so can be found on the FCG user community

website.

Once the FCG Editor has been launched, the user can interact with it using its graphical

user interface. A good start for novice users is to click the ‘New’ button for creating a new file,

followed by clicking the ‘Insert demo grammar’ button that inserts a didactic demonstration

grammar into the new file. The user can then click the ‘Evaluate File’ button and observe in the

output pane how the construction inventory and each construction gets evaluated. Finally, the

user can start interacting with the grammar using the testing pane, for example by entering

utterances like “the linguist likes the mouse” or meaning representations like (linguist x) (mouse
y) (unique x) (unique y) (deep-affection x y). Upon clicking the ‘Go!’ button, the FCG engine

starts comprehending or producing the utterance or meaning representation that was entered

using the evaluated grammar. The output can be consulted at the address http://localhost:8008

using a web browser, and a summary of the result is printed to the output pane.

The user can then start to play around with the grammar, implement their own construc-

tion grammar insights and analyses, and contribute to the exciting methodological innovations

that are currently taking place in the field of construction grammar.

Technical implementation. Technically, the FCG Editor connects a graphical user inter-

face to an executable form of Babel’s Fluid Construction Grammar software library [104, 114].

Fig 5. FCG listener. The FCG listener can be used to programmatically interact with a grammar, in this case timing the comprehension process of the

utterance “the linguist likes the mouse” using the demo grammar.

https://doi.org/10.1371/journal.pone.0269708.g005
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The editor was built using LispWorks’ [115] delivery functionality and is distributed for

macOS, Microsoft Windows and Linux in the form of an executable binary. The interface was

built using LispWorks’ portable GUI toolkit CAPI (Common Application Programming Inter-

face) [116], which provides a native look-and-feel on each operating system. The editor

includes Lispworks’ Common Lisp interpreter, so that source code can be evaluated at run-

time. All FCG source code is pre-loaded into the runtime image in its compiled form, and the

input to the FCG listener, as well as the contents of all files created by the user, are automati-

cally interpreted within the FCG-EDITOR namespace.

Construction grammar engineering using the FCG Editor

The main motivation for the design and development of the FCG Editor was the combination

of a growing interest in computational tools in the construction grammar community and a

lack of accessible, user-friendly tools for operationalising computational construction gram-

mars. Now that we have introduced the tool itself, we will in this section elaborate on how the

tool aims to achieve its goal of supporting the computational exploration of novel construction

grammar ideas on the one hand, and the large-scale engineering of construction grammars on

the other.

Support for the exploration of novel construction grammar ideas. The suitability of the

FCG Editor for exploring novel construction grammar ideas results from two main design

choices. On the one hand, the tool integrates Fluid Construction Grammar as its underlying

computational construction grammar formalism and constructional language processing sys-

tem. This choice is motivated by the fact that Fluid Construction Grammar is not a linguistic

theory in itself, but rather a special-purpose programming language that provides, but does

not impose, high-level abstractions and building blocks for operationalising constructional

language processing. On the other hand, the FCG Editor is designed as an open and extensible

tool that supports the full range of possibilities offered by the FCG software library, and even

supports extending many aspects of the FCG codebase. Support for the exploration of novel

construction grammar ideas is achieved through the following properties:

Support for partial analyses. The constructional language processing engine is constructed in

such a way that it explores the application of constructions given the input that is provided.

This means that in principle, any construction application process leads to a resulting anal-

ysis to which zero or more constructions have contributed. For utterances or meaning rep-

resentations that are only partly covered by the grammar, the resulting analysis still

provides all information that was contributed by the constructions that could apply. Con-

struction grammar engineers are typically not concerned with the traditional notion of

grammaticality judgement. Grammars are evaluated in terms of the correctness of the map-

pings between form and meaning that result from their comprehension and production

processes. The partial analysis of ungrammatical utterances, or the partial production of

inconsistent meaning representations is considered an asset rather than a shortcoming.

No feature or category declarations. The features and categories that are used by the con-

structions of a grammar do not need to be defined outside the constructions themselves.

There is no need to declare the values that a feature can take, nor does FCG impose any spe-

cific features to be used in a grammar. The use of features and categories is the responsibil-

ity of the grammar engineer alone, who should not feel constrained by the system when

formalising their novel ideas.

Free choice of meaning representation. The FCG Editor does not impose a particular seman-

tic theory or formalism to be used in a grammar, as long as meaning representations can be
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formalised as sets of predicates. Possible meaning representations thus include, but are not

limited to, a variety of logic formalisms, variations on the lambda calculus, frame semantics,

abstract meaning representation and procedural semantics.

Word order constraints are optional. In FCG, constructions can include word order con-

straints but they do not need to. For example, there is no need to include word order con-

straints in argument structure constructions. This is useful to explore grammars for

languages where word order is driven by information structure rather than argument struc-

ture, for example in the case of languages that primarily rely on a case system for expressing

argument structure.

Non-contiguous phrases. Constructions affecting linguistic units that are non-contiguous are

not special in any way. They can for example include word order constraints between spe-

cific units only, in terms of adjacency or precedence, or leave out word order constraints

altogether.

Non-locality of constructions. Constructions are non-local in the sense that they can access

all linguistic information that is known at a certain point in processing. This includes both

information that was part of the input utterance or meaning representation, and informa-

tion that was contributed by other construction applications.

Constructions do not necessarily build trees. Constructions contribute linguistic informa-

tion that can subsequently be used by other constructions. They do not necessarily corre-

spond to tree-building operations [95]. If desired by the grammar engineer, the feature

structures that are used can be considered to represent trees. This can be useful for reasons

of information structuring and visualisation. However, constructions can also build multi-

ple different tree or network structures at the same time, or even not incorporate any notion

of tree-building at all.

Support for procedural attachment. Construction application is normally performed by uni-

fication operations [35, 117]. However, it can sometimes be desired to perform other kinds

of computation on features or their values. For example, one might want to compute the

ontological distance between categories using numerical or graph-distance operations dur-

ing construction application. This is possible in the FCG Editor through the use of an

expansion operator, which allows the user to extend FCG’s unification operations with ded-

icated procedures for chosen features or their values.

Modelling of entrenchment patterns. The FCG Editor facilitates the modelling of entrench-

ment patterns by assigning scores to constructions and making use of these scores to steer

the precedence of construction applications during the search process that constitutes con-

structional language processing [99, 118]. These entrenchment scores can be set by the

grammar engineer, or they can be automatically updated based on their occurrence in cor-

pora of language use. This facilitates the ranking of analyses in terms of their entrenchment

in a usage-based fashion.

In sum, the FCG Editor provides a number of ready-to-use building blocks that operationa-

lise the basic tenets of construction grammar, while supporting the freedom of the grammar

engineer to explore novel construction grammar ideas, insights and analyses. Thanks to its

straightforward installation and user-friendly graphical interface, even construction grammar-

ians without extensive programming experience can benefit from the advantages of including

computational modelling into their research.
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Support for large-scale construction grammar engineering. The suitability of the FCG

Editor for large-scale construction grammar engineering primarily stems from the combina-

tion of a user-friendly interface with a performant Fluid Construction Grammar-based back-

bone. The FCG Editor thereby provides a variety of building blocks that support the grammar

engineer in designing, implementing and processing large grammars:

Efficient processing. Efficient constructional language processing is provided by the Fluid

Construction Grammar-based backbone of the FCG Editor. Using common optimisation

techniques such as hashing of constructions and heuristic search strategies, it can effi-

ciently process grammars of over 100,000 constructions. Using the built-in corpus pro-

cessing package, it supports the parallel processing of text corpora on multi-core

machines.

Evaluation and regression testing. Evaluation and regression testing is provided by the built-

in grammar evaluation package [83], which reports on timing, accuracy, coverage, and

quantitative aspects of the explored search space. Accuracy of analyses is quantified in

terms of smatch-like scores for meaning representations [119] and edit distance metrics for

utterances.

Meta-level processing. FCG integrates a meta-level architecture that separates routine pro-

cessing from the meta-level processing of unforeseen input [120]. This architecture con-

stantly monitors the construction application process, diagnoses problems, and applies

repair strategies where applicable. Most commonly, repair strategies are used to learn new

lexical constructions during processing or to generalise and specialise existing construc-

tions with respect to novel input [109].

Automation of the grammar engineering process. The FCG Editor provides a number of

helper tools that automatise part of the construction grammar engineering process. The

construction wizard automatises the time-consuming and error-prone process of writing

down the basic structure of constructions. Not only does this speed up the grammar devel-

opment process, it also eliminates syntax errors and common bugs resulting from inconsis-

tencies in the naming of units, variables, subunits and ordering constraints. The grammar

configurator helps users configure their grammars by automatically generating configura-

tion code based on a user-friendly form that consists of a combination of checkboxes,

radiobuttons and textfields.

Visualisation and debugging. FCG’s interactive web interface provides an orderly yet detailed

visualisation of all aspects involved in the process of comprehending or producing utter-

ances, including the search process involved and the unification bindings for individual

construction applications. The web interface also includes an anti-unification-based diag-

nostic tool that determines which features or variable bindings block the application of a

given construction [109].

Discussion and conclusion

In this paper, we have introduced the FCG Editor as a user-friendly, feature-rich and open-

ended tool for implementing computational construction grammars. The design and develop-

ment of the tool were primarily motivated by the rapidly growing importance of computa-

tional modelling within the field of construction grammar. In particular, the FCG Editor

caters to the needs of construction grammarians who wish to automatically verify the consis-

tency and preciseness of their analyses, corroborate their analyses with corpus data, or use
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their construction grammar insights and analyses for enhancing the performance of language

technology applications.

The requirements analysis that was carried out in concertation with members of the con-

struction grammar community in the run-up to the development of the FCG Editor brought

to light three important design aspects. First of all, the tool needed to be user-friendly for nov-

ice users with no extensive programming experience. At the same time, the tool needed to be

open-ended and extensible, so that expert users would feel no restrictions when exploring

novel, outside-the-box ideas. Finally, the tool needed to be interactive on all levels, so that

users would get a detailed insight into all aspects of constructional language processing,

including the intricate interactions between the constructions of a grammar.

The first concrete requirement was that the editor should offer the basic text formatting

functionalities that are commonly featured in text editors intended for programming (R1).

This has been operationalised in the FCG Editor by including basic functionalities for manipu-

lating files and editing text, supplemented by syntax highlighting for both FCG and Common

Lisp syntax, auto-completion, auto-indentation, block comment formatting, and the display of

function arguments. The look-and-feel of the editor is native on each operating system, and its

key bindings are designed to reflect those used in other modern programming environments.

The second requirement was that the editor should offer a straightforward and cross-platform

installation, and that external dependencies should be limited to the bare minimum (R2). The

FCG Editor is available for Linux, macOS and Microsoft Windows, and can be installed in a

single click. For an optimal user experience, one external dependency needs to be installed,

namely the Graphviz visualisation tool which is freely available for the three operating systems.

The third requirement was that the editor should make implementing computational con-

struction grammars more accessible to novice users (R3). This is achieved by including a man-

ual, a didactic example grammar, a construction wizard, a grammar configurator, and a testing

pane for comprehending and producing utterances from within the editor’s main interface.

The fourth requirement was that the editor should include visualisations for constructions and

construction application processes, so that all details can be graphically inspected by the user

(R4). The FCG Editor provides this functionality through the integration of a version of Babel’s

interactive web interface that is pre-configured to trace FCG processes. The fifth requirement

was that the editor should include facilities for catching errors and displaying insightful error

messages (R5). The FCG Editor satisfies this requirement by catching all errors that occur dur-

ing evaluation and by providing the possibility to print elaborate reports about these errors in

plain text. The sixth requirement was that users should be able to manage running processes in

an intuitive way (R6). This is achieved by dispatching each evaluation process to a separate

thread, and providing the possibility to kill these threads by clicking a ‘Cancel’ button. The sev-

enth requirement was that the editor should offer the possibility to write source code that

extends the FCG system (R7). This requirement is satisfied by including a Common Lisp inter-

preter in the FCG Editor and providing the possibility to evaluate blocks of code. The final

requirement was to provide an interactive programming environment through which users

can interact with their grammar and the novel code they write (R8). This requirement is met

through the inclusion of a REPL-style listener in the editor’s GUI, which allows advanced

users to programmatically interact with their grammar and code.

Functionally, the FCG Editor supports two main types of usage. First, it assists the construc-

tion grammarian in computationally exploring novel ideas, thereby offering a more solid

methodological foundation for theory building within the field of construction grammar. It

does this by providing accessible computational operationalisations of the basic tenets of con-

struction grammar, while imposing as few theoretical assumptions as possible. The FCG Edi-

tor’s back-end supports non-local constructions, constructions without word order
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constraints, constructions that do not correspond to tree-building operations and construc-

tions that handle non-contiguous patterns. It offers a free choice when it comes to the format

used for representing meaning, does not require the grammar engineer to centrally define pos-

sible features and categories, and provides support for procedural attachment within construc-

tions. The system also supports the modelling of observed language use, by offering the

possibility to formalise entrenchment patterns on the one hand, and to handle unforeseen

input by means of partial analyses and meta-level repair operations on the other. The second

type of usage supported by the FCG Editor concerns the large-scale engineering of computa-

tional construction grammars. This is achieved through the integration of efficient construc-

tional language processing algorithms and optimisation strategies, support for evaluation and

regression testing, helper tools that automatise part of the grammar engineering process, and

an extensive interactive web visualisation system that can be used for debugging and optimisa-

tion purposes.

A central objective of the research programme that has led to the development of the FCG

Editor consists in developing novel techniques and tools that support researchers in the field of

construction grammar in transforming their theories and analyses into fully operational

computational models. Faithful computational operationalisations of construction grammar

bring important methodological advantages that are expected to have a major impact on the

field, especially when it comes to the challenge of scaling constructionist approaches to lan-

guage. First of all, computational operationalisations are crucial for automatically validating the

preciseness and internal consistency of construction grammar theories and analyses, as it is

impossible to do this by hand for large-scale grammars. Second, computational operationalisa-

tions make it possible to corroborate construction grammar theories and analyses with large

amounts of corpus data, thereby scaling the usage-based aspects of construction grammar

research. Third, computational operationalisations allow moving away from studying individ-

ual constructions to studying the systemic relations between families of constructions. The pos-

sibility to model these intricate relations on a large scale is of crucial importance for scaling

construction grammar theories beyond the current state of the art. Finally, computational oper-

ationalisations of construction grammar can help to standardise the way in which constructions

are represented, thereby facilitating the exchange of ideas and results among researchers.
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