
LEADSHEETJS: A JAVASCRIPT LIBRARY FOR
ONLINE LEAD SHEET EDITING

Daniel Martín Timotée Neullas François Pachet

Sony CSL
dmartinmartinez@gmail.com

Sony CSL
tneullas@gmail.com

Sony CSL
pachetcsl@gmail.com

ABSTRACT

Lead sheets are music scores consisting of a melody and
a chord grid, routinely used in many genres of popular
music. With the increase of online and portable music
applications, the need for easily embeddable, adaptable
and extensible lead sheet editing tools is pressing. We
introduce LeadsheetJS, a Javascript library for visualiz-
ing, editing and rendering lead sheets on multiple devic-
es. LeadsheetJS provides lead sheet editing as well as
support for extensions such as score augmentation and
peer feedback. LeadsheetJS is a client-based component
that can be embedded from arbitrary third-party websites.
We describe the main design aspects of LeadsheetJS and
some applications in online computer-aided composition
tools.

1. INTRODUCTION

A lead sheet is a specific type of music score consisting
of a monophonic melody with associated chord labels
(Figure 1). Lead sheets are routinely used in many styles
of popular music such as songwriting, jazz, pop or bossa
nova.

With the rise of online music communities using perfor-
mance or pedagogical applications, there is an increasing
need for tools for manipulating music scores. In this con-
text, music notation takes an important role, and in par-
ticular lead sheets, which are the main form of score for
popular music. There is also a need for web-based tools
for visualizing, playing, and editing lead sheets collabora-
tively. Such tools should also work on various devices,
following the trend in using web applications on mobiles
and tablets. Finally, these tools should intercommunicate
easily with other tools, e.g. by being embeddable in third-
party websites.

The most popular score editors, Finale and Sibelius, are
designed as desktop applications. As such they cannot be
used online, even though cloud features can be added,
e.g. to share scores by exporting them to the web [9]. The
open-source desktop-based editor MuseScore 1 provides
features for sharing scores but does not provide directly
online editing. There are many online tools to edit and
view scores, but they do not rely on web standards, and
often require the installation of a plugin on the web-

1 http://musescore.org/

browser. Some tools, such as NoteFlight2, Scorio3 or
Flat.io4, do follow standards and produce machine-
readable scores, but they are not designed specifically for
lead sheets. For instance, they do not support chord nota-
tions, an important feature of a lead sheet.

Besides offering basic score editing services, online lead
sheet tools should provide features for augmented editing,
e.g. to be tailored to pedagogical or social contexts. The
ability of adding heterogeneous graphic objects such as
colored layers, text or images, is crucial to enable collab-
oration between users as a way for giving feedback on
certain parts of the score. INScore [4] supports various
graphical objects, but is not easily embeddable in an
online application and it is more focused on real-time
rendering of interactive music scores [6] for new forms of
composition and performance.

This paper presents LeadsheetJS a Javascript library for
storing, visualizing, playing, editing and making graph-
ical annotations on lead sheets. In the following section
we describe the main features of the library. Then we
give some hints about its implementation. We finally
describe tools built on top of this library.

2. LEADSHEETJS

LeadsheetJS is a Javascript library for lead sheets. It
enables the edition and visualization of lead sheets under
conventional formats, as well as rendering, playing and
storing lead sheets in a database. Figure 2 shows how
LeadsheetJS interfaces with the player, the menu for
editing and the rendered leadsheet.

LeadsheetJS provides tools for users to collaborate and
give feedback to each other by highlighting certain parts
of the lead sheet and commenting or suggesting modifica-
tions. LeadsheetJS has been implemented in Javascript,
the main programming language for web browsers. This
makes LeadsheetJS web-friendly and easily embeddable
in third-party sites, as well as adaptable to several devic-
es.

In the next sections we describe the main features of
LeadsheetJS and we give a detailed explanation about the
main design and implementation aspects.

2 http://www.noteflight.com
3 http://www.scorio.com/
4 https://flat.io/

Figure 1. The lead sheet of “Alone together” by Dietz
& Schwartz, as found in a typical Fake Book.

Figure 2. “Alone together” by Dietz & Schwartz, ren-
dered in a browser with LeadsheetJS.

2.1 Peer feedback on lead sheets

 “The one true comment on a piece of music is another
piece of music”, Stravinsky [17].

Music composition, as well as music learning, is a do-
main in which feedback on pieces being composed plays
a major role. Feedback is traditionally provided by a
teacher. Nowadays, on-line learning websites provide
tools for peer-feedback in which learners can produce and
review feedback made by peers.

The possibility of giving feedback on the audio represen-
tation of a piece of music has been addressed in previous

works, e.g. [19, 20]. However, by commenting on pure
audio, i.e. on a rendered waveform, users are limited to
commenting on given time spans, whereas by comment-
ing on a lead sheet, users can refer directly to the musical
elements making up lead sheets, such as notes, chord
labels, chord transitions, bars or structural elements (see
Figure 3).

Figure 3. Examples of annotations on specific parts of a
lead sheet.

In LeadsheetJS, feedback can be given at three levels:

a) Musical feedback: the basic level of feedback is
musical. That is, a suggestion of a modification of a
certain part of the lead sheet, such as changing certain
notes, or certain chord labels,

b) Text feedback: musical suggestions can be explained
with an explanation in the form of text comment,

c) Audio feedback: sometimes a musical idea is better
expressed by being played in an instrument. Users can
record a musical snippet, upload it and associate it to a
specific metrical location in the lead sheet.

2.2 Embeddability

Arbitrary websites can render lead sheets by importing
the LeadsheetJS library in the HTML source code. New
lead sheets can be created or imported and rendered and
edited from the site. As an example we show a website in
the MusicCircle platform [19], displaying the lead sheet
“Blue Room” by Rodgers & Hart (see Figure 4).

First, the LeadsheetJS library is imported in the HTML
page. Then, the lead sheet of “Blue Room” is imported
from a database (LSDB, described later) in our JSON
lead sheet format through the LSDB API, which allows
external sites to retrieve lead sheets. Finally, the JSON
text is converted to a LeadsheetJS object and displayed in
the page (see Figure 5).

Figure 4. A lead sheet view embedded in a third party
site.

Figure 5. Architecture for embedding LeadsheetJS.

2.3 Multi-device

Web applications are not accessed only from a desktop
computer but also from tablets and mobile phones: re-
sponsive web design has become essential for designing
web applications. To that aim, LeadsheetJS resizes auto-
matically scores depending on the width of the screen.
This way it can be visualized in devices with different
screen sizes such as tablets or mobile phones (see Figure
6).

Figure 6. LeadsheetJS on a 1024x768 tablet.

2.4 Audio wave visualization

LeadsheetJS does not handle only symbolic information.
Recordings of the performance of a lead sheet can also be
associated to the lead sheet. LeadsheetJS provides visual-
ization of the recording’s waveform synchronized with
the lead sheet, so that on top of each measure, the wave-
form of the recording part corresponding to that measure
is displayed (see Figure 7). This feature is useful for
musicians who record themselves performing a given
lead sheet. They can then listen to their performance and
see at the same time the lead sheet and the audio repre-
sentation.

Figure 7. LeadsheetJS visualizing Solar, by Miles Da-
vis, and audio recording displaying

2.5 Design

LeadsheetJS is a complex library that provides many
functionalities (editing, visualizing, playing, storing).
From an architectural point of view, it needs to be main-
tainable, scalable and extensible. Furthermore, modulari-
ty is required as users may need to use only certain fea-
tures of LeadsheetJS. For example, a music blogger may
want to visualize and play lead sheets in her blog without
allowing edition or audio visualization.

The design of LeadsheetJS is module-based. It is inspired
by Zakas’ architecture [21] in which every module is an
independent unit that does not need any other module to
work. Zakas’ architecture is based on the MVC (Model-
View-Controller) architecture. Every module has its own
model, view and controller classes. Each module is com-
posed of a set of classes. There is one file per class. In
total LeadsheetJS contains about 150 classes.
LeadsheetJS is a client-based Javascript library, i.e. it
runs in the browser. However, certain functionalities
require communication with a server or a database, such
as storing or retrieving lead sheets. Databases and servers
are not part of LeadsheetJS, yet it provides modules to
communicate with them.

The architecture scheme is shown in Figure 8. The cen-
tral module is Leadsheet Model. All modules depend on it
since they need it in order to work. Modules Viewer,
Player and Interactor provide visualization, playing and
edition functionalities respectively. The Annotation mod-
ule provides graphic annotation for peer feedback pur-
poses. The Format exporter/importer modules is a con-
verter to various formats so that the represented lead
sheet can be sent to (or received from) other applications.
The Ajax module facilitates the communication to a serv-
er. Therefore, it is used by the modules that depend on a
server: the Data Base module, which is in charge of stor-
ing the lead sheet to a database in a given format, and the
modules that are analysis tools which we describe in
section 3.

Thanks to its modular nature, LeadsheetJS can be easily
extended by adding modules that communicate with the
existing ones.

Figure 8. Module architecture of LeadsheetJS.

In Figure 9 we show an example of LeadsheetJS embed-
ded within a complete system with a client/server data-
base system where LeadsheetJS is the client part, and
PHP is the language on the server side that manages user
sessions and persistence (saving lead sheets into a Mon-
goDB database). The Ajax module is in charge to send
requests to the server. For example, in order to store a
lead sheet in a database the Database module will send
the data to the server as an HTTP request through the
Ajax Module.

The core module, Leadsheet Model, represents a lead
sheet. A lead sheet consists of a melody that is in most
cases monophonic, and a chord label grid representing
the harmony. From a structural point of view, a lead sheet
is a hierarchical structure composed by sections, which
are composed of bars, which in turn are formed by a list
of notes (a melody), and a list of chord labels. Each of
these levels defines specific attributes: at the top level,
the lead sheet has a composer, a title, a style as well as
musical attributes such as global key and time signature.
Section related information attributes are section name,
number of bars, number of repetitions and number of
endings. Bars may also have specific time or key signa-
ture changes, as well as structure labels like coda or se-

gno. Finally, the lowest levels of the hierarchy are notes
and chord labels.

Figure 9. Example of a client-server database structure
using LeadsheetJS.

The example in Figure 1 shows a lead sheet as found in a
typical Fake book, with its attributes such as title, “Alone
Together”, composer “Howard Dietz and Arthur
Schwarz”, style “Medium Ballad”. This lead sheet has
two sections: the first one contains 14 bars and two end-
ings; the second one has 12 bars.
The Leadsheet Model module enables applications to
store and retrieve information about a lead sheet such as
its structure, a specific bar, a chord label, or a group of
notes, as well as metadata associated to it such as its title,
composer, style, time signature or key signature. Typical
queries include get the notes of the first bar, get the num-
ber of sections, etc. The Leadsheet Model also enables
creation of new lead sheets or copies.

2.5.1 Viewer
The Viewer renders lead sheets on the web browser
through an HTML5 canvas API, which allows generating
graphics dynamically. The Viewer uses Vexflow5, a low
level score rendering Javascript library. Vexflow address-
es low level rendering of notes and staves, whereas Lead-
sheetJS specifies what to draw in each bar as well as
other higher level tasks such as determining how many
bars to display per line.

2.5.2 Interactor
The Interactor component provides the editing part by
using the library JQuery6 which, among many other
things, takes care of event handling. Keyboard and mouse
events are caught by the Interactor to perform desired
transformations on an edited lead sheet. We introduce
three levels of edition: notes, chord labels and bars. Note
edition works like in any traditional score editor. Chord
label edition provides specific interaction schemes such
as completion to suggest the most relevant chord types in
a given context (see Figure 10). LeadsheetJS contains a
comprehensive database of over 300 chord types, collect-
ed during the process of a lead sheet database compila-
tion described in section 3.1.

5 http://www.vexflow.com
6 http://jquery.com/

Figure 10. Chord label completion to speed up edition.

2.5.3 Player
LeadsheetJS provides a MIDI Player which uses the li-
brary MidiJS7 to play a lead sheet, i.e. both the melody
and the chord labels. The chord labels are transformed
into MIDI chords.

The chord labels are represented by a pitch and a chord
type. E.g.: in C# maj7, C# is the pitch and maj7 the chord
type. The chord type database provides information about
the note degrees for each chord type. For instance for
maj7 the degrees are I, III, V and VII.

In order to play chords, LeadsheetJS transforms chord
labels into sets of MIDI notes by calculating the notes
degrees of the chord type relative to the root pitch. E.g.:
for C# maj7, notes are C#-E#-G#-B#. The player plays
them arbitrarily in the 4th octave, so MIDI notes are 61-
65-68-72. Other more refined MIDI players can easily be
defined by the user.

2.5.4 Javascript Module Management
As a client-based application, LeadsheetJS runs on the
browser, so each Javascript file needs to be imported in
the HTML source code through the script tag. This may
be an issue as we need to include explicitly each file and
there are around 150 classes, while not all classes are
always needed. For example, an instance of LeadsheetJS
could only show a lead sheet and play it: in that case
there is no need for editing, so the Interactor module does
not need to be loaded. To optimize loading time, and
ensure only needed modules are loaded, LeadsheetJS uses
RequireJS8, a tool to manage dependencies in Javascript.
In order to provide communication between modules in
an uncoupled way we make an intensive use of the Medi-
ator design pattern [12]. The Mediator pattern encapsu-
lates the way different modules interact. It enables a
module to subscribe to an action of another module
which publishes it.

For example, when the Leadsheet Model module changes
the pitch of a note, it publishes that action; that is, it sends
a message to a mediator telling that the note’s pitch has

7 http://mudcu.be/midi-js/
8 http://requirejs.org/

changed. The mediator checks which modules are inter-
ested in the action of note pitch changed; that is, which
modules are subscribed, and informs them. This way, the
Viewer module, which is subscribed to note pitch
changed, knows it must redraw the score.
The advantage of using this pattern is that Leadsheet
Model and Viewer do not communicate directly, which
brings to uncoupled code, thus, more scalable and main-
tainable.

2.5.5 Javascript implementation
Javascript is a prototype-based language rather than a
class-based one like C++ or Java. In order to define
classes, there are mainly two approaches: to use Object
literals or to use prototypes. By using object literals to
define classes one can use private variables by using the
Module Pattern [12]. The Module Pattern takes ad-
vantage of closures to simulate private variables, which
are not natively supported in Javascript. On the other
hand, using prototypes to define classes one cannot emu-
late private variables, but this approach has the advantage
that it is less memory consuming, since all the methods of
all instances of a class share the same memory. We have
mainly used the Prototype approach as we are using mul-
tiple instances of many classes such as NoteModel or
ChordModel.

2.6 JSON lead sheet format

LeadsheetJS provides a format to store lead sheet data in
a database. The most common format for representing
music scores is MusicXML [7]. LeadsheetJS does not use
MusicXML for the following reasons: first, in Mu-
sicXML, chord labels’ information is associated to a note,
so the start beat of the chord is the same as that of the
associated note. This makes it difficult to represent
chords whose start beat does not match with the start beat
of a note. This might not be a problem for other kinds of
scores, but in lead sheets chord labels are crucial. That is
why in our lead sheet format each chord label has its start
beat information. Second, MusicXML provides exact
formatting: it saves both musical and visualization infor-
mation; e.g. for each note it saves the stem direction and
the exact position in which it will be shown. LeadsheetJS
only needs the musical information to render the lead
sheet. The visualization aspects (stem directions, position
of each element…etc.) is decided by Vexflow.

There are other human-readable music notation formats
like ABC [3] and Lilypond [11]. Both are designed to let
users create easily scores by writing text which is com-
piled by a software that produces a rendered score as an
output. Therefore, they are not designed to be used in
WYSIWYG9 editors. The Guido Music Notation format
[5], designed to be rendered by the Guido Engine Library
[2] is similar to them, but is not only a representation
format; it also supports ‘functions’ as instructions for
transforming the score (e.g. transposing a melody). In our
case, readability is not a priority as we do have a
WYSIWYG editor. Instead, we have designed a JSON

9 What You See Is What You Get

(JavaScript Object Notation) based format [1], as JSON
is a popular lightweight format which is widely used in
web APIs. For example, the GUIDO API web-service is
based in JSON [18]. Further, a lead sheet has a hierar-
chical structure which can be very well represented by the
JSON format (see Figure 11). The decision of using
JSON has distanced us from using other formats like
MEI[16], a notation encoding standard based on XML
similar to MusicXML.

However, LeadsheetJS is compatible with MusicXML as
it provides a parser to transform MusicXML to our JSON
lead sheet format, and it will eventually support other
formats too (Lilypond, Guido and ABC).

Figure 11. The lead sheet “Alone together” represented
in JSON.

3. OTHER APPLICATIONS

This section describes applications using LeadsheetJS in
various ways.

3.1 Lead sheet Database (LSDB)

The Lead sheet Database (LSDB) [15] is a comprehen-
sive, on-line database of lead sheets for jazz and Brazilian
music. Currently LSDB contains over 10,000 songs from
76 different song books, and over 300 different chord
types.

Songs are entered by professional musicians using Lead-
sheetJS. Average time for entering songs is about 3
minutes, thanks to the availability of many short-cuts for
fast editing. An LSDB API stores/retrieves lead sheets
from the database, as described in section 2.2. This data-
base is used for musicological analysis and music genera-
tion applications such as the tools described in section 3.2

The LSDB database uses MongoDB10, a non-relational
database (NoSql). NoSql databases are based on collec-
tions that contain JSON documents, which are structures
of nested arrays and objects (objects are set of key-
values). The biggest drawback of using a NoSql is that
some important features of SQL databases such as joins
or referential integrity cannot be performed at the data-

10 http://mongodb.com/

base level, and have to be managed from the code of the
server that produces the queries. This can be an issue in
applications with complex databases, but in our case it is
not, because the database structure is quite simple: there
is a main collection of lead sheets, and then other related
collections like sources and composers, so integrity is not
as crucial as in other more complex systems. Joins are
managed from the server language's code. Moreover, the
JSON structure on NoSql databases is ideal to represent
tree-based structures like lead sheets, whereas represent-
ing a tree in a SQL is quite more complex.

Figure 12. Part of LSDB content as shown in the web.

3.2 Automatic Feedback on lead sheets

Feedback can sometimes be provided automatically.
LeadsheetJS provides various tools that produce automat-
ic feedback to users who are trying to compose a song.
This feedback can be either in the form of an analysis of
the lead sheet, or in the form of generations and trans-
formations of a lead sheet.

For instance, a Chord Sequence Analyzer tries to find
which style or styles a sequence of chords expresses. A
style is defined here by a corpus of songs, corresponding
to a given composer; e.g. the style of Miles Davis [8].
The Chord Sequence Analyzer identifies the longest
subsequences that can be analyzed in the style of a given
set of key composers. This analysis is performed by com-
puting the similarity of the chord sequence with several
different composers' models. These models are statistical
models generated from the LSDB.

Such a tool may be used to get information about how
original or similar a lead sheet is, with regards to the
LSDB database. Figure 13 shows such an analysis for the
chord sequences “Solar” with a map showing a time-line
of the song and each composer (Pepper Adams, Charlie
Parker, Duke Ellington and Michel Legrand)

Figure 13. A chord sequence analyzer grafted on top of
LeadsheetJS.

Another example is the Harmonic Analysis tool that finds
the local tonalities of a lead sheet given its chord label
sequence [13]. Figure 14 shows two examples of analy-
sis: Gm7 – C7 has been analyzed as F Major chords,
whereas Fm7 – Bb7 are analyzed as Eb Major. These
chords are part of “Solar”, by Miles Davis.

Other automatic feedback tools have been defined, such
as a Chord Substitution tool which, from a given chord or
chord sequence, suggests alternatives based on chord
substitution rules that are learnt from a specific corpus.

The Harmonizer tool, given a monophonic melody, pro-
poses a multi-voice harmonization in a given style. E.g.:
one can harmonize the melody of Coltrane’s jazz stand-
ard Giant Steps in the style of Wagner or Bill Evans [14].

Figure 14. Harmonic analysis displayed on parts of
“Solar“, by Miles Davis.

Figure 15 shows the architecture of these tools and illus-
trates the process for the Chord Sequence analyzer tool:
The user clicks on a button 'Analyze chord sequences'.
LeadsheetJS catches the user action and requests the
chord sequence analysis of Solar, sent in JSON format
through the Ajax module. The request is sent to the server
where the Leadsheet Web API, which is a server exten-
sion of LeadsheetJS, computes the chord sequence analy-
sis. The response is sent to the client, where LeadsheetJS
presents it in the User Interface as a time-line map.

Figure 15. LeadsheetJS architecture and the data flow
of chord sequence analyzer.

3.3 Flow Composer

In the context of the Flow Machines11 project about style
imitation, an online composition tool called Flow Com-
poser was designed, to help a composer generate a lead
sheet using different “styles”. Again, styles are defined
by corpus of songs taken from the Lead sheet Database.

The main idea is that a composer can start to create a
song and leave some empty measures in which there will
be only silences. Then, he queries the system to fill those
blanks in a given style. Those blanks can be on the melo-
dy, represented by silences, or on the chord grid, repre-
sented by No Chords (NC). The system will generate a
melody or chord labels to fill them taking into account
the style chosen by the user, and also constraints of con-
tinuity. Composers usually don’t want a whole new ran-
dom song; they rather want the system to help them with
certain parts of their composition. The composer can
accept or reject all or part of the system’s proposition.
Flow Composer tools allow composers to have at any
moment a full control on the lead sheet: there is a history
feature in which every step is saved, so they can go back
to a previous state.

Flow Composer is built on top of LeadsheetJS and uses
the same modular approach. LeadsheetJS is used in Flow
Composer to listen, view and edit lead sheets. We show
in Figure 16 how Flow Composer works. In the first
image (on the top) a user is composing a bossa-nova. In
the song there are two parts. The second part starts at
measure 7 (with note F and chord F7) and is not shown in
the figure. The second part is ok, but the composer does
not know how to finish the first part so that it transitions
well to the second part. So he leaves it empty with silenc-
es and no chords (NC), and queries Flow Composer to
fill the empty part in the bossa-nova style. The second
image (on the bottom) shows the result proposed by Flow
Composer: it has filled the empty part by proposing a
melody and a chord grid. Interaction may then proceed by
accepting parts of the suggestions and/or querying other
solutions.

11 http://www.flow-machines.com

Figure 16. Flow Composer completion in blue.

3.4 Experiment on feedback in composition

PRAISE12 (Practice and Performance Analysis Inspiring
Social Education) is a social network for music education
with tools for giving and receiving feedback in online
communities. In the context of PRAISE we have built a
tool for feedback in composition in which composers can
compose a lead sheet and share it with other composers
who can then provide feedback. This tool is based on the
annotation module of LeadsheetJS.

In the PRAISE project, we designed an experiment to
determine the impact of feedback in lead sheet composi-
tion [10]. We evaluate whether musical peer feedback,
just like in the example explained in section 2.1, may
actually improve or not the musical quality of a composi-
tion. In a first phase, participants are asked to compose a
short song (8 bars). In the second phase they are invited
to suggest modifications of other participants’ composi-
tions. Then participants are asked to reconsider their
original song and try to improve it. The point is that a
group of subjects will have received feedback whereas
another group will have not. We then evaluate to which
extent the quality of the improved composition of those
subjects who received is better than that of those who did
not. The quality evaluation is estimated from a listening
panel. LeadsheetJS was used to implement this experi-
ment, including modules for editing and playing for the
composition phase and the Annotation module for the
feedback phase.

The composer of the lead sheet can later review sugges-
tions and accept them or not.

The feedback process is illustrated as follows. First, user
Bruno composes a song and edits it with LeadsheetJS.
Later, user Silvia looks at it and plays it. She decides to
make some suggestions on certain notes. As shown in
Figure 17 once she has saved the suggestion, she can
perform other actions, shown in the contextual menu:

- Add Comment: add an explanation of her musical
suggestion,

12 http://www.iiia.csic.es/praise/

- Upload sound: upload a sound recording related to
the suggestion,

- Modify: she can decide to modify the suggestion she
just saved,

- Remove: remove the suggestion.

Figure 17. A user makes a suggestion on a specific part
of a lead sheet.

Later on, Bruno can review all suggestions by switching
between the original elements and suggested ones and
listen to them. Figure 18 shows a lead sheet with three
suggestions. Bruno clicks on one of them to see the asso-
ciated explanation.

Figure 18. A user checks the suggestions received.

Finally, if Bruno likes the suggestion he can accept it so
that the suggestion is merged with the whole song by
right-clicking on the suggestion (see Figure 19).

Figure 19. The user accepts a suggestion of modifica-
tion.

4. CONCLUSION

We have presented LeadsheetJS, a Javascript library for
lead sheets. By design, LeadsheetJS is compatible with
multiple devices and easily embeddable. LeadsheetJS
also provides various tools for music composition such as
automatic analysis and peer feedback. We have illustrated
how LeadsheetJS is used in several online music applica-
tions.

LeadsheetJS addresses the needs of online applications
for composing, generating, sharing or teaching music on-
line. New features are currently investigated such as
multiple voices management, lyrics, audio based player,
as well as rendering lead sheets using style-based accom-
paniment generation systems.

5. ACKNOWLEDGEMENTS

This work is supported by the Praise project (EU FP7
number 388770), a project funded by the European
Commission under program FP7-ICT-2011-8.

6. REFERENCES

[1] Crockford D. 2013. “The json data interchange
format”. Technical report, ECMA International,
October.

[2] Daudin, C., Fober, D., Letz, S., and Orlarey, Y. “The
guido engine a toolbox for music scores rendering.”
In Proceedings of the Linux Audio Conference
(2009), pp. 105–111.

[3] Dyke, G., & Rosen, P. (2010). abcjs–Project Hosting
on Google Code.

[4] Fober, D., Letz, S., Orlarey, Y., & Bevilacqua, F.
(2013, July). “Programming Interactive Music
Scores with INScore”. In Proceedings of the Sound
and Music Computing Conference 2013 (pp. 185-
190).

[5] Fober, D., Orlarey, Y., & Letz, S. (2012). “Scores

level composition based on the Guido Music Nota-
tion”. Ann Arbor, MI: MPublishing, University of
Michigan Library.

[6] Fober, D., Orlarey, Y., & Letz, S. (2014, October).
“Augmented Interactive Scores for Music Creation.”
In Korean Electro-Acoustic Music Society's 2014
Annual Conference (pp. 85-91).

[7] Good, M. (2001, December). “MusicXML: An
internet-friendly format for sheet music.” In XML
Conference and Expo (pp. 3-4).

[8] Hedges, T., Roy, P., & Pachet, F. (2014)
“Predicting the Composer and Style of Jazz Chord
Progressions.” Journal of New Music Research,
43(3), 276-290.

[9] Kuzmich, J. “The two titans of music notation.”
(2008, September) School Band & Orchestra
magazine.

[10] Martín D., Frantz. B, Pachet, F. (2015, October)
“Assessing the impact of feedback in the
composition process: an experiment in lead sheet
composition.” In Tracking the Creative Process in
Music, Paris.

[11] Nienhuys, H. W., & Nieuwenhuizen, J. (2003, May).
“LilyPond, a system for automated music
engraving.” In Proceedings of the XIV Colloquium
on Musical Informatics (XIV CIM 2003) (pp. 167-
172).

[12] Osmani, A. (2012). “Learning JavaScript Design
Patterns”. O'Reilly Media, Inc.

[13] Pachet, F. “Surprising harmonies.” (1999, February)
International Journal of Computing Anticipatory
Systems 4.

[14] Pachet, F. Roy, P. (2014) “Non-conformant
harmonization: the real book in the style of take 6.”
In International Conference on Computational
Creativity Ljubljiana.

[15] Pachet, F., Suzda, J., & Martín, D. (2013). “A
Comprehensive Online Database of Machine-
Readable Lead-Sheets for Jazz Standards”. In ISMIR
(pp. 275-280).

[16] Roland, P. (2002, September). The music encoding
initiative (mei). In Proceedings of the First
International Conference on Musical Applications
Using (Vol. 1060, pp. 55-59).

[17] Stravinsky, I. and Craft, R. “Dialogues” (London:
Faber and Faber 1982).

[18] Solomon, M., Fober, D., Orlarey, Y., & Letz, S.
(2014, March). “Providing Music Notation Services
over Internet”. In Proceedings of the Linux Audio
Conference.

[19] Yee-King M., d'Inverno M., Noriega P., (2014,
May) “Social machines for education driven by
feedback agents”, in Proceedings First International
Workshop on the Multiagent Foundations of Social
Computing, AAMAS-2014, Paris, France.

[20] Yee-King M., d'Inverno M. (2014, May)
“Pedagogical agents for social music learning in
Crowd-based Socio-Cognitive Systems”, in
Proceedings First International Workshop on the
Multiagent Foundations of Social Computing,
AAMAS-2014, Paris, France.

[21] Zakas, N. Scalable “Javascript Application
Architecture”. Slides: http://cern. ch/go/Cl6S.

