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Abstract. The composition of polyphonic chorale music in the style of
J.S Bach has represented a major challenge in automatic music composi-
tion over the last decades. The art of Bach chorales composition involves
combining four-part harmony with characteristic rhythmic patterns and
typical melodic movements to produce musical phrases which begin,
evolve and end (cadences) in a harmonious way. To our knowledge, no
model so far was able to solve all these problems simultaneously using an
agnostic machine-learning approach. This paper introduces DeepBach, a
statistical model aimed at modeling polyphonic music and specifically
four parts, hymn-like pieces. We claim that, after being trained on the
chorale harmonizations by Johann Sebastian Bach, our model is capable
of generating highly convincing chorales in the style of Bach. We evalu-
ate how indistinguishable our generated chorales are from existing Bach
chorales with a listening test. The results corroborate our claim. A key
strength of DeepBach is that it is agnostic and flexible. Users can con-
strain the generation by imposing some notes, rhythms or cadences in the
generated score. This allows users to reharmonize user-defined melodies.
DeepBach’s generation is fast, making it usable for interactive music
composition applications. Several generation examples are provided and
discussed from a musical point of view.

1 Introduction

The corpus of the chorale harmonizations by Johann Sebastian Bach is remark-
able by its homogeneity and its size (389 chorales in [5]). All these short pieces
(approximately one minute long) are written for a four-part chorus (soprano,
alto, tenor and bass) using similar compositional principles: the composer takes
a well-known (at that time) melody from a Lutheran hymn and harmonizes it
i.e. he composes the three lower parts (alto, tenor and bass) to be heard while
the soprano (the highest part) sings the hymn, see Fig.1 for an example.

Moreover, since the aim of reharmonizing a melody is to give more power or
new insights to its text, the lyrics have to be understood clearly. We say that
voices are in homophony, i.e. they articulate syllables at the same time. This
implies characteristic rhythms, variety of harmonic ideas as well as characteristic

ar
X

iv
:1

61
2.

01
01

0v
1 

 [
cs

.A
I]

  3
 D

ec
 2

01
6



2

(a) Original text and
melody by Georg Neu-
mark (1641)

(b) Four-voice harmonization by Bach: voices are deter-
mined by the staff they are written on and the directions
of the stems

Fig. 1: Two versions of ”Wer nur den lieben Gott läßt walten” original melody
(a) and its reharmonization (b) by Johann Sebastian Bach (BWV 434) 3.

melodic movements which make the style of these chorale compositions easily
distinguishable, even for non experts.

The difficulty, from a compositional point of view comes from the intricate
interplay between harmony (notes sounding at the same time) and voice move-
ments (how a single voice evolves through time). Furthermore, each voice has its
own “style” and its own coherence. Finding a chorale-like reharmonization which
combines Bach-like harmonic progressions with musically interesting melodic
movements is a problem which often takes years of practice for musicians.

From the point of view of automatic music generation , the first solution
to this apparently highly combinatorial problem was proposed by [13] in 1988.
This problem is seen as a constraint satisfaction problem, where the system
must fulfill numerous hand-crafted constraints characterizing the style of Bach.
It is a rule-based expert system which contains no less than 300 rules and tries
to reharmonize a given melody with a generate-and-test method and intelligent
backtracking. Among the short examples presented at the end of the paper, some
are flawless. Drawbacks of this method are, as stated by the author, the con-
siderable effort to generate the rule base and the fact that the harmonizations
produced “do not sound like Bach, except for occasional Bachian patterns and
cadence formulas”. In our opinion, the requirement of an expert knowledge im-
plies a lot of arbitrary choices. Furthermore, we have no idea about the variety
and originality of the proposed solutions.

A neural-network-based solution was later developed by [17]. This method
relies on several neural networks, each one trained for solving a specific task:
a harmonic skeleton is first computed then refined and ornamented. A similar
approach is adopted in [3], but uses Hidden Markov Models (HMMs) instead

3 https://www.youtube.com/watch?v=73WF0M99vlg

https://www.youtube.com/watch?v=73WF0M99vlg
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of neural networks. Chords are represented as lists of intervals and form the
states of the Markov models. These approaches produce interesting results even
if they both use expert knowledge and bias the generation by imposing their
compositional process. In [29,28], authors elaborate on those methods by intro-
ducing multiple viewpoints and variations on the sampling method (generated
sequences which violate “rules of harmony” are put aside for instance). However,
this approach do not produce a convincing chorale-like texture, rhythmically as
well as harmonically and the resort to hand-crafted criteria to assess the quality
of the generated sequences might rule out many musically-interesting solutions.

Recently, agnostic approaches (requiring no knowledge about harmony, or
the music by Bach) using neural networks have been investigated with promis-
ing results. In [8], chords are modeled with Restricted Boltzmann Machines
(RBMs). Their temporal dependencies are learned using Recurrent Neural Net-
works (RNNs). Variations of these architectures have been developed, based on
Long Short-Term Memory (LSTM) units [23] or GRUs (Gated Recurrent Units)
[10]. These models, which work on piano roll representations of the music, are
in our opinion too general to capture the specificity of Bach chorales. But one
of their main drawback is their lack of flexibility. Generation is performed from
left to right. A user cannot interact with the system: it is impossible to do rehar-
monization for instance which is the essentially how the corpus of Bach chorales
was composed. Moreover, their invention capacity and non-plagiarism abilities
are not demonstrated.

The most recent advances in chorale harmonization is arguably the Bach-
Bot model [22], a LSTM-based approach specifically designed to deal with Bach
chorales. This approach relies on little musical knowledge (all chorales are trans-
posed in a common key) and is able to produce high-quality chorale harmoniza-
tions. However, compared to our approach, this model is less general (produced
chorales are all in the C key for instance) and less flexible (only the soprano
can be fixed). Similarly to and independently of our work, the authors evalu-
ate their model with an online Turing test to assess the efficiency of their model
with promising results. They also take into account the fermata symbols (Fig. 2)
which are indicators of the structure of the chorales.

In this paper we introduce DeepBach, a LSTM-based model capable of pro-
ducing musically-appealing four-part chorales in the style of Bach. Contrary to
other models based on RNNs, we do not sample from left to right and model
each voice separately. This allows us to enforce user-defined constraints such as
rhythm, notes, parts, chords and cadences. DeepBach is able to produce coherent
musical phrases and provides, for instance, varied reharmonizations of melodies
without plagiarism. Its core features are its reliance upon no knowledge, its
speed, the possible interaction with users and the richness of harmonic ideas
it proposes. Its efficiency opens up new ways of creating interesting Bach-like
chorales for non experts similarly to what is proposed in [26] for leadsheets.

In Sect. 2 we present the DeepBach architecture for four-part chorale gener-
ation.
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We discuss in Sect. 3 the results of two experimental studies we conducted to
assess the quality of our model. Finally, we provide several annotated examples
in Sect. 4. All examples can be heard on the accompanying web page4 and the
code of our implementation is available on GitHub5.

2 DeepBach

In this paper we introduce a new generative model which takes into account the
distinction between voices. Sect. 2.1 indicates how we preprocessed the corpus
of Bach chorale harmonizations and Sect. 2.2 presents the model’s architecture.

2.1 Data Representation

We represent a chorale as a tuple of six lists

(V1,V2,V3,V4,S,F), (1)

where the Vi’s represent the four voices (soprano, alto, tenor and bass) to which
we add two other lists: S the list of subdivisions and F the list of fermatas. All
lists are indexed by a time index t and have equal size.

Since Bach chorales contains only simple time signatures, we discretize time
with sixteenth notes, which means that each beat is subdivided into four equal
parts. Since there is no smaller subdivision in Bach chorales, there is no loss of
information in this process.

Each voice Vi contains the midi pitch of the played notes. It is a unique integer
for each note, with no distinction between enharmonic equivalent notes. In order
to represent rhythm in a compact way, we introduce an additional symbol to the
pitches coding whether or not the preceding note is held. The subdivision list
S contains the subdivision indexes of the beat. It is an integer between 1 and
4: there is no distinction between beats in a bar so that our model is able to
deal with chorales with three and four beats per measure. The fermata list F
indicates if there is a fermata symbol, see Fig. 2, over the current note, it is a
Boolean value. If a fermata is placed over a note on the music sheet, we consider
that it is active for all time indexes within the duration of the note.

Fig. 2: A fermata symbol

Our choices are very general and do not involve expert knowledge about
harmony or scales but are only mere observations of the corpus. The list S acts

4 http://www.flow-machines.com/deepbach-steerable-model-bach-chorales-

generation/
5 https://github.com/SonyCSL-Paris/DeepBach

http://www.flow-machines.com/deepbach-steerable-model-bach-chorales-generation/
http://www.flow-machines.com/deepbach-steerable-model-bach-chorales-generation/
https://github.com/SonyCSL-Paris/DeepBach
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[74,__,76,77,74,__,__,__,72,__,__,__,76,__,__,__]

[69,__,__,__,67,__,65,__,64,__,__,__,64,__,__,__]

[60,__,__,__,59,__,__,__,55,__,__,__,57,__,__,__]

[53,__,50,__,55,__,__,__,48,__,__,__,49,__,__,__]

[ 1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4]

[ 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0]

Fig. 3: Extract from a Bach chorale and its representation as six lists. The hold
symbol is displayed as “ ”.

as a metronome. The list F is added since fermatas in Bach chorales indicate
the end of each musical phrase. The use of fermata to this end is a specificity
of Bach chorales that we want to take advantage of. Part 4 shows that this
representation makes our model able to create convincing musical phrases in
triple and quadruple simple time signatures.

2.2 Model Architecture

For clarity, we suppose in this section that our dataset is composed of only one
chorale written as in Eq. 1. We introduce a family of probabilistic models p
parametrized by a parameter θ on our representation defined in Sect. 2.1. We
do not model probabilistically the sequences S nor F but consider them fixed.
The negative log-likelihood of our data is thus defined by

− log p(V1,V2,V3,V4|S,F , θ). (2)

We need to find a parameter θ which minimizes this loss. In order to have a
computationally tractable training criterion, we introduce the pseudolikelihood
of our data [7,4]. This approach was successful in many real-life problems [14]
and consists in an approximation of the negative log-likelihood function by the
sum over all variables:

−
∑
i

(∑
t

log p(Vti |V\i,t,S,F , θ)

)
, (3)

where Vti indicates the pitch of voice i at time index t and V\i,t the union of all
Vi’s except from the variable Vti . This suggests to introduce four probabilistic
models pi depending on parameter θi, one for each voice, and to minimize their
negative log-likelihood independently using the pseudolikelihood criterion. We
obtain four problems of the form:∑

t

log pi(Vti |V\i,t,S,F , θi), for i ∈ [4]6. (4)

6 We adopt the standard notation [N ] to denote the set of integers {1, . . . , N} for any
integer N .
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The advantage with this formulation is that each model has to make predictions
within a small range of integer values whose ranges correspond to the usual voice
ranges.

The aim of these models is to predict the pitch of one note knowing the value
of its neighboring notes, the subdivision of the beat it is on and the presence of
fermatas. We implement them using neural networks based on LSTMs [18,24].
For accurate predictions, we choose to use four neural networks: two stacks of
LSTMs, one summing up past information and another summing up information
coming from the future together with a non-recurrent neural network for notes
occurring at the same time. Their outputs are merged and passed as the input of
a fourth neural network whose output is pi(Vti |V\i,t,S,F , θ). Figure 4a shows a
graphical representation for one of these models. Details are provided in Sect. 2.4.

embedding

Stacked LSTMs

embedding

Stacked LSTMs

Softmax

Merge

Neural NetworkNeural Network

Neural NetworkNeural Network

(a) DeepBach

Merge

Softmax

(b) MaxEnt

Merge

Softmax

Neural NetworkNeural Network

(c) MLP

Fig. 4: Graphical representations of neural networks for the soprano prediction
p1 for different models.
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2.3 Generation

Generation is performed using Gibbs sampling [15]. In our case, this consists in
the following algorithm:

Algorithm 1 Gibbs sampling

Require: Chorale length L, lists S and F of length L, probability distributions
(p1, p2, p3, p4), maximum number of iterations M

1: Create four lists (V1,V2,V3,V4) of length L
. The lists are often initialized with random values drawn from the ranges of the

corresponding voices
2: for m from 1 to M do
3: Choose voice i uniformly between 1 and 4
4: Choose time t uniformly between 1 and L
5: Re-sample Vt

i from pi(Vt
i |V\i,t,S,F , θi)

6: end for
return (V1,V2,V3,V4)

The advantage of this method is that we can enforce user-defined constraints
by tweaking Alg. 1:

– instead of choosing voice i from 1 to 4 we can choose to fix the soprano
and only resample voices from 2, 3 and 4 in step (3) in order to provide
reharmonizations of the fixed melody

– we can choose the fermata list F in order to impose end of musical phrases
at some places

– for any t and any i, we can fix specific ranges Rti , subsets of the range of
voice i, to restrict ourselves to some specific chorales by re-sampling Vti from

pi(Vti |V\i,t,S,F , θi,Vti ∈ Rti)

at step (5). This allows us for instance to fix rhythm (since the hold symbol
is pitch), impose some chords in a soft manner or restrict the vocal ranges.

Note that it is possible to make generation faster by making parallel Gibbs
updates on GPU. Steps (3) to (5) from Alg. 1 can be run simultaneously to
provide significant speedups. In Table 1 we show how the batch size (fixed num-
ber of parallel updates) influences the number of updates per second. Even if
it known that this approach is biased [12] (since we can update simultaneously
variables which are not conditionally independent), we experimentally observed
that for small batch sizes (16 or 32), DeepBach still generates samples of great
musicality while running ten times faster than the sequential version. This allows
DeepBach to generate chorales in a few seconds.

It is also possible to use the hard-disk-configurations generation algorithm
(Alg.2.9 in [20]) to appropriately choose all the time indexes at which we paral-
lelly resample so that:
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Batch size 1 2 4 8 16 32 64 128 256 512 1024

Number of updates per second 59 112 200 334 508 636 693 824 914 974 1017

Table 1: Mean number of Gibbs updates per second during DeepBach’s genera-
tion as a function of the batch size using a Nvidia GTX 980Ti GPU.

– every time index is at distance at least δ from the other time indexes

– configurations of time indexes satisfying the relation above are equally sam-
pled.

This trick allows to assert that we do not update simultaneously a variable and
its local context.

2.4 Implementation Details

We implemented DeepBach using Keras [9] with the Tensorflow [1] backend. We
used the database of chorale harmonizations by J.S. Bach included in the mu-
sic21 [11] toolkit. After removing chorales with instrumental parts and chorales
containing parts with two simultaneous notes (bass parts sometimes divide for
the last chord), we ended up with 352 pieces. Contrary to other approaches
which transpose all chorales to the same key (usually in C major or A minor),
we choose to augment our dataset by adding all chorale transpositions which
fit within the vocal ranges defined by the initial corpus. This gives us a corpus
of 2503 chorales and split it between a training set (80%) and a validation set
(20%) . The vocal ranges contains less than 30 different pitches for each voice
(21, 21, 21, 28) for the soprano, alto, tenor and bass parts respectively.

As shown in Fig. 4, we model only local interactions between a note Vti and
its context (V\i,t, S , F) i.e. only elements with time index t between t−∆t and
t+∆t are taken as inputs of our model for some scope ∆t.

The reported results, Sect. 3, and examples Sect. 4 were obtained with ∆t =
16. We chose as the “neural network brick” in Fig. 4a a neural network with
one hidden layer of size 200 and ReLU [25] nonlinearity and as the “Stacked
LSTMs brick” two LSTMs on top of each other, each one being of size 200 (see
Fig. 2 (f) in [21]). We experimentally found that adding dropout or sharing
weights between the embedding layers improved neither validation accuracy nor
the musical quality of our generated chorales.

3 Experimental Results

We now evaluate the quality of our model with two experiments: an online
test conducted on human listeners and an analysis of the plagiarism in chorales
generated by DeepBach.
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3.1 Listening Test

The online listening test consists in a perception test and discrimination test.
For the parameters used in our experiments, see Sect 2.4. We compared our
model with two other models: a Maximum Entropy model (MaxEnt) as in [16]
(Fig. 4b) and a Multilayer Perceptron (MLP) model (Fig. 4c).

The Maximum Entropy model is a neural network with no hidden layer. It
is given by:

pi(Vti |V\i,t,S,F , Ai, bi) = Softmax(AX + b) (5)

where X is a vector containing the elements in V\i,t ∪ St ∪ Ft, Ai a (ni,mi)
matrix and bi a vector of size mi with mi being the size of X, ni the number of
pitches in the voice range i and Softmax the softmax function [30] given by

Softmax(z)j =
ezj∑K
k=1 e

zk
for j ∈ [K],

for a vector z = (z1, . . . , zK).
The Multilayer Perceptron model we chose takes as input elements in V\i,t ∪

S ∪ F , is a neural network with one hidden layer of size 500 and uses a ReLU
[25] nonlinearity.

All models are local and have the same scope ∆t, see Sect. 2.4.
Subjects were asked to give information about their musical expertise. They

could choose what category fits them best between:

1. I seldom listen to classical music
2. Music lover or musician
3. Student in music composition or professional musician.

The musical extracts have been obtained by reharmonizing 50 chorales from
the validation test by each of the three models (MaxEnt, MLP, DeepBach). We
rendered the MIDI files using the Leeds Town Hall Organ soundfont7 and cut
two extracts of 12 seconds from each chorale, which gives us 400 musical extracts
for our test: 4 versions for each of the 100 melody chunks. We chose our rendering
so that the generated parts (alto, tenor and bass) can be distinctly heard and
differentiated from the soprano part (which is fixed and identical for all models):
in our mix, dissonances are easily heard, the velocity is the same for all notes as
in a real organ performance and the sound does not decay, which is important
when evaluating the reharmonization of long notes.

Perception Test In a first part, subjects were presented ten series of two
reharmonizations of the same chorale melody and were asked “which one sounds
more like Bach to your ears”. In order to give a general ranking from these binary
confrontations, we used the Bradley-Terry model [27,2] to infer potentials βj

7 https://www.samplephonics.com/products/free/sampler-instruments/the-

leeds-town-hall-organ

 https://www.samplephonics.com/products/free/sampler-instruments/the-leeds-town-hall-organ
 https://www.samplephonics.com/products/free/sampler-instruments/the-leeds-town-hall-organ
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reflecting the probability that the version j is better than another version. This
is expressed as:

P (version i is better than version j) =
eβi

eβi + eβj
. (6)

Results are plotted in Fig. 5.
1609 people took this test, 395 with musical expertise 1, 792 with musical

expertise 2 and 422 with musical expertise 3.

1
2

3

−1.0 −0.5 0.0 0.5 1.0

Model
J.S. Bach

DeepBach

MaxEnt

MLP

Fig. 5: Results of the perception test. The figure shows, for each level of expertise
(from 1 to 3), the potentials of the Bradley-Terry model obtained from the
pairwise comparisons. We centered the plots since only the distance between
points matters. Better seen in color.

Extracts generated from DeepBach are clearly recognized as being more
Bach-like than the other models. The more musical expertise subjects have,
the clearer is the distinction.

Discrimination Test: “Bach or Computer” experiment In a second part,
subjects were presented series of only one musical extract together with the
binary choice “Bach” or “Computer”8. Fig. 6 shows how the votes are distributed
depending on the level of musical expertise of the subjects for each model. For
this experiment, 1272 people took this test, 261 with musical expertise 1, 646
with musical expertise 2 and 365 with musical expertise 3.

The results are quite clear: the percentage of “Bach” votes augment as the
model’s complexity increase. Furthermore, the distinction between computer-
generated extracts and Bach’s extracts is more accurate when the level of musical
expertise is higher. When presented a DeepBach-generated extract, around 50%
of the voters would judge it as composed by Bach. We consider this to be a good
score knowing the complexity of Bach’s compositions and the facility to detect
badly-sounding chords even for non musicians.

We also plotted specific results for each of the 400 extracts. Fig. 7 shows for
each reharmonization extract the percentage of Bach votes it collected: more
than half of the DeepBach’s automatically-composed extracts has a majority of

8 This test is available at http://www.flow-machines.com:3010

http://www.flow-machines.com:3010
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Fig. 6: Results of the “Bach or Computer” experiment. The figure shows the
distribution of the votes between “Computer” (blue bars) and “Bach” (red bars)
for each model and each level of expertise of the voters (from 1 to 3), see Sect. 3.1
for details.

votes considering them as being composed by J.S. Bach while it is only a third
for the MLP model.

3.2 Plagiarism Analysis

We now evaluate the creativity and originality of DeepBach’s productions. We
use as a measure of plagiarism, for a given chorale, the length of the longest
chorale subsequence which can be found identically in our training set. Fig. 8
shows histograms of this quantity for three different cases:

– 50 original (non transposed) J.S. Bach chorales from the test set
– 50 chorales (of the same length as the ones above) generated by DeepBach

without constraints
– 50 reharmonizations by DeepBach where the soprano is constrained on the

chorale melodies from the same 50 J.S. Bach chorales as above

For each case, we plot the length of the longest subsequence when considering
only a given voice (“Soprano”, “Alto”, “Tenor” and “Bass” rows) and for all
voices altogether (“All” row).

The results show that DeepBach is not prone to plagiarize both in the un-
constrained generation and in the reharmonization cases. Indeed, when consid-
ering voices taken separately, we see that the distribution of the lengths of the
longest plagiarized subsequence peaks around 5 or 6 beats. This can be com-
pared with the distributions obtained on our J.S. Bach test set: chorales from
this test set tend to be more “plagiaristic”, with a higher mean length for the
longest copied subsequences. This “self-plagiarism” is in fact characteristic of
the style of the J.S. Bach chorales, with many typical movements, or cadences
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Fig. 7: Results of the “Bach or Computer” experiment. The figure shows the
percentage of votes for Bach for each of the 100 extracts for each model. For
each model, a specific order for the x-axis is chosen so that the percentage of
Bach votes is an increasing function of the x variable, see Sect. 3.1 for details.

repeated exactly (up to transposition since we added all valid transpositions to
our training dataset).

The peculiar histogram for the soprano voice for the J.S. Bach test set can
be explained with two factors:

– the extreme values are due to the fact that J.S. Bach reharmonized some
chorale melodies several times. This results in the presence of long copied
subsequences.

– the central values are due to the particular combinatorics of the soprano
voice. As chorale melodies are extracted from Lutheran hymns, their rhythm
as well as the large use of step motions make them more prone to share
common subsequences.

When looking to all voices simultaneously, we see that DeepBach does not
suffer from plagiarism with copied sequences of small maximum size (around 2
beats). Even during reharmonization, we see that DeepBach is original enough
so that only small subsequences (chord transitions) are cited verbatim in the
generated chorales. This enables DeepBach to propose interesting and different
reharmonization ideas of the same melody (see Fig. 10 and 11).

4 Commented examples

We now provide three complete chorale reharmonizations composed by Deep-
Bach. One is a reharmonization of a chorale melody used by Bach (see Fig. 1)
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J.S. Bach Unconstrained Generation Reharmonization
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details.
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5

10

Wer nur den lieben Gott lässt walten

Gaëtan Hadjeres

harmonization generated using DeepBach

Fig. 9: Reharmonization of “Wer nur den lieben Gott läßt walten” by DeepBach.
See Sect. 4 for comments on the annotations.
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Andante q = 72

6

11

Gaëtan Hadjeres

God Save the Queen
Traditional, harmonization generated using DeepBach

Fig. 10: A reharmonization of “God Save the Queen” by DeepBach. See Sect. 4
for comments on the annotations.
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Andante  q = 80 Andante  q = 80 

5

11

God Save the Queen

Gaëtan Hadjeres

Traditional, harmonization generated using DeepBach

Fig. 11: A second reharmonization of “God Save the Queen” by DeepBach. See
Sect. 4 for comments on the annotations.



17

while the other two are different reharmonizations of the traditional hymn “God
Save the Queen”(see Fig. 10 and 11). These examples demonstrate the ability
of DeepBach to learn and generate characteristic elements of J.S. Bach chorales
while reharmonizing. To make our claim clearer, we highlighted particular as-
pects on the music sheets using three different colors:

– in green, we indicated:
• characteristic melodic movements:
∗ Fig 9 bars 1, 3, 6, 7, 9, 14
∗ Fig 10 bars 13-14
∗ Fig 11 bars 5, 13-14

• good voicings and voice leading:
∗ Fig 9 bars 2, 11
∗ Fig 10 bars 2, 9
∗ Fig 11 bars 2, 4, 13

• characteristic suspensions9 and passing tones:
∗ Fig 9 bars 4, 8, 8-9, 14
∗ Fig 10 bars 4, 13
∗ Fig 11 bar 4

– in blue:
• musically interesting ideas:
∗ Fig 9:
· Starting on a dominant bar 1
· Chromatic neighboring tone on the second degree bars 1, 13
· Two different harmonizations between bars 1 and 8
· Harmonization in A major bars 5-6
· Bass in eighth notes bars 11-13
· Cadence bar 12

∗ Fig 10:
· Starting in E minor bar 1
· Harmonization in G minor bar 5
· Chromatic line bars 11-12
· Proximity between F and F# bars 11-12

∗ Fig 11:
· Dominant of the sixth degree
· Minorization after a half cadence bars 6-7
· Considering G at soprano to be an escape tone

– in red :
• parallel fifths and octaves indicated by lines
• mistakes:
∗ Fig 9:
· D missing bar 4

9 For explanations for technical musical terms see
https://en.wikipedia.org/wiki/Nonchord tone
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· C should resolve to B bar 9

∗ Fig 10:

· E should be removed in order to prevent parallel fifths bar 1
· Seventh chord cannot be played without preparation bar 9
· Repetition in eighth notes bar 11

∗ Fig 11:

· Starting on an inverted chord of the first degree bar 1
· Strange resolution for 9-8 suspension bar 10
· Melodic movement is not Bach-like bar 11 (but it is imposed by

the user and not generated by DeepBach)

Despite some compositional errors like parallel octaves, the musical analysis
reveals that the DeepBach compositions reproduce typical Bach-like patterns,
from characteristic cadences to the expressive use of nonchord tones. Further-
more, our model is able to propose varied and contrasting ideas when reharmo-
nizing the same melody as can be seen by comparing the two versions of “God
Save the Queen”.

5 Discussion and future work

We described DeepBach, a probabilistic model together with a sampling method
which is flexible, efficient and provides musically convincing results even to the
ears of professionals. The strength of our method, to our point of view, is the pos-
sibility to let users impose unary constraints, which is a feature often neglected
in probabilistic models of music. We showed that DeepBach do not suffer from
plagiarism while reproducing J.S. Bach’s style and can be used to generate musi-
cally convincing harmonizations. We now plan to develop a music sheet graphical
editor on top of the music21 toolkit in order to make interactive composition
using DeepBach easier. This method is not only applicable to Bach chorales but
embraces a wide range of polyphonic chorale music, from Palestrina to Take 6.
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