
Assisted Lead Sheet Composition using
FlowComposer

Alexandre Papadopoulos1,2, Pierre Roy1, and François Pachet1,2

1 Sony CSL, 6 rue Amyot, 75005, Paris, France
2 Sorbonne Universités, UPMC Univ Paris 06, UMR 7606, LIP6, F-75005, France

alexandre.papadopoulos@lip6.fr

pachetcsl@gmail.com

roy@csl.sony.fr

Abstract. We present FlowComposer, a web application that helps
users compose musical lead sheets, i.e. melodies with chord labels. Flow-
Composer integrates a constrained-based lead sheet generation tool in
which the user retains full control over the generation process. Users
specify the style of the lead sheet by selecting a corpus of existing lead
sheets. The system then produces a complete lead sheet in that style,
either from scratch, or from a partial lead sheet entered by the user. The
generation algorithm is based on a graphical model that combines two
Markov chains enriched by Regular constraints, representing the melody
and its related chord sequence. The model is sampled using our recent
result in efficient sampling of the Regular constraint. The paper reports
on the design and deployment of FlowComposer as a web-service, part
of an ecosystem of online tools for the creation of lead sheets. FlowCom-
poser is currently used in professional musical productions, from which
we collect and show a number of representative examples.
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pling, web-service, user interaction

1 Introduction

Modelling polyphonic music is a particularly challenging task in artificial intelli-
gence. This is probably because music, even in its simplest form, manifests itself
under many interdependent dimensions, such as melody (successions of notes
in time), harmony (simultaneous notes or chord labels) and meter (constraints
on durations of notes making up a bar for instance). Constraint programming
has been extensively studied to model polyphonic music [1]. However CSP ap-
proaches require expert musicians to encode explicitly the rules (e.g. of harmony)
as constraints, and this task is not always possible nor desirable, as these con-
straints usually correspond to a fixed and slightly outdated musical style.

Recent advances in machine-learning and graphical models have managed to
model all these dimensions in single statistical models, such as deep networks [3].
These models have been shown to be able to capture various statistical properties



of musical style. However, they are difficult to control, and have not developed
into systems mature enough to be used outside specific demos.

In this paper, we address a specific case of polyphonic music: lead sheets.
Lead sheets consist in monophonic melodies, augmented with chord labels (see
Figure 5). Lead sheets are routinely used in popular music, including pop, rock,
jazz or Brazilian music. Lead sheets also have a strong commercial value as they
are the primary asset of music publishing companies. We describe an applica-
tion called FlowComposer, a lead sheet composition tool. The basic concept is to
provide an online lead sheet editor enriched with style imitation generation capa-
bilities. With FlowComposer, users can generate fully-fledged lead sheets based
on partially specified information, that conform to the style of a given composer
(or set of lead sheets). Generated lead sheets satisfy several types of constraints:
1) user constraints, 2) metrical constraints, and 3) style constraints. Technically,
this paper has three contributions. First, we show how to sample metrically con-
strained Markov sequences, using our recently introduced model [12]. Then, we
show how to exploit this framework to enforce stochastic temporal constraints.
Finally, we define a two-voice model for chord and note generation: each voice
is a metrically constrained Markov sequence, and we synchronise the two voices
using stochastic temporal constraints, to enforce harmony. FlowComposer is a
working application that is being used in professional music projects (see Sec-
tion 4.3). The paper describes the technical challenges addressed in designing
and deploying FlowComposer and some interesting uses of the system.

2 Background on Constrained Markov Models

Markov models have long been used to generate music in the style of a com-
poser [4,8]. A Markov model can be estimated from a musical corpus, by count-
ing transitions between successive elements. A random walk in a Markov model
produces new sequences according to those transition probabilities, but does
not, in general satisfy any other desirable property, such as unary constraints
(specific values imposed at specific indexes of the sequences) or meter.

We have shown that the formulation of Markov processes as constraints opens
the door to fine-grained control over generated sequences [11]. Additional prop-
erties such as unary constraints, meter and many others can then be enforced in
polynomial time [9,15].

2.1 Enforcing Meter on Markov Sequences

Meter is a global constraint that enforces a metrical structure on a sequence of
temporal events [15]. Let X1, . . . , Xn be a sequence of temporal events, such as
notes, words, tasks, etc. Let d(Xi) be the integer duration of the element assigned
to Xi. We define o(Xi), the onset or starting time of Xi in the sequence. It is
equal to 0 if i = 1, or Σi−1

j=1d(Xj) for higher indexes. For example, consider a
sequence X1, X2, X3, X4 of integers [1, 2, 2, 1], where the duration of an element
is its own value. The onset of X1 is 0, the onset of X2 is 1, the onset of X3 is
d(X1) + d(X2) = 3, and so on.



Meter Constraint: A Meter constraint takes as parameters a total duration D,
and a predicate π(o, e), where o is an integer onset, and e an element from the
domain of the Xi variables. Meter holds on X1, . . . , Xn if Σn

i=1d(Xi) = D, i.e.
the sequence has a total duration of D, and π(o(Xi), Xi) holds for every element
Xi of the sequence, i.e. it is acceptable to start element Xi at time o(Xi), for all
elements of the sequence.

For example, suppose we want to create sequences of integers in {1, 2, 4}
(again, their duration is their own value), summing to 8, and sectioned into
groups summing to 4. A solution is [1, 2, 1, 2, 2]: the total duration is 8, and
it can be sectioned into [1, 2, 1] and [2, 2], each lasting 4. Another solution is
[4, 4]. Conversely, [2, 4, 2] is not a solution because it cannot be sectioned into
subsequences summing to 4. We can encode this problem with Meter, by setting
D = 8, and defining π(o, e) as follows:

π(o, e) ≡
(⌊o
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⌋
=
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o+ e
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⌋)
∨
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Intuitively, the predicate accepts value e at onset o only if e starts and ends
in the same section (first case of the disjunction), or if e ends exactly at the start
of the next section (second case). In general, sequences summing to 8 can involve
a varying number of elements. In order to encode such sequences with a fixed
number of variables, we choose a length sufficient for the longest sequence of
total duration D, and we introduce a dummy element of zero duration, hereafter
called padding element, used to fill the remainder of a sequence when the target
duration is reached with fewer elements. In our example, we need at most 8
variables, to represent the sequence [1, 1, 1, 1, 1, 1, 1, 1]. The previous solutions
are encoded as [1, 2, 1, 2, 2, 0, 0, 0] and [4, 4, 0, 0, 0, 0, 0, 0], respectively. In order
to restrict the padding element to the end of the sequence, we need the predicate
to also satisfy the condition (o = D)⇒ (e = 0).

We illustrate Meter with “Frère Jacques”, a French nursery rhyme, also
known in English as “Brother John”. We show the first 4 bars of this melody
on Figure 1. This melody satisfies the following metrical constraints: its total
duration, determined by the number of bars and the time signature, is equal to
16 beats (4 bars of 4 beats each), and notes do not cross bar lines.

Fig. 1. The first 4 bars of the Frère Jacques melody

In [15], we showed how to propagate Meter as a global constraint in a CSP.
However, an important observation underlying this work is that Meter can also
be formulated as a Regular constraint. As a result, we can apply the technique
described in the next section to correctly sample metrically constrained Markov
sequences, a novel result in this paper.



2.2 Markov models and Regular constraints

Recently, we generalised Markov constraints to Regular constraints [13], spec-
ifying that a Markov sequence X1, . . . , Xn should additionally form a word from
a regular language L(A), recognised by an imposed finite-state automaton A.
We use a factor-graph based model to encode this constrained Markov model,
and use belief propagation to sample, with unbiased probabilities, Markov se-
quences satisfying Regular, in polynomial time [12]. Belief propagation gener-
alises constraint propagation, where instead of propagating information on value
consistency, we propagate probabilities associated with values.

A Markov model is a stochastic process, where the probability for state Xi,
a random variable, depends only on the last state Xi−1. Each random variable
Xi takes values amongst an alphabet, denoted X . A Markov model produces
sequence X1, . . . , Xn with probability P (X1) × P (X2|X1) × · · ·× P (Xn|Xn−1).
Given additional unary constraints Pi(Xi) and a Regular constraint specified
by an automaton A, the problem of sampling a Markov sequence subject to
Regular is defined as the problem of sampling from the following distribution:

ptarget(X1, . . . , Xn) ∝

{∏n
i=2 P (Xi|Xi−1)×

∏n
i=1 Pi(Xi) if X1 · · ·Xn ∈ L(A)

0 otherwise

The symbol ∝ (“proportional to”) indicates that the equality holds after
normalisation. The first case indicates that the regular constraint holds (i.e. the
sequence belongs to the specified language), and in the expression, the unary
factors Pi(Xi) are distributions that generalise unary constraints on the vari-
ables Xi. A unary factor merely biases the probability of the overall sequence,
but does not necessarily correspond to the marginal distribution on Xi of the
resulting distribution. In order to sample ptarget , we reformulate it into a distri-
bution preg of Y1, . . . , Yn, where the new Yi variables take values (e, q), where
e ∈ X is a state of the Markov chain, and q is a state of the automaton A
that defines the Regular constraint. Sampling ptarget is equivalent to sampling
preg , and projecting each resulting sequence (e1, q1), . . . , (en, qn) to e1, . . . , en.
We show in [12] that preg can be represented as a tree-structured factor-graph,
and therefore that we can use belief propagation to sample preg in polynomial
time. The time complexity of this procedure is in the size of the alphabet of Yi
times the length of the sequence, i.e. O(|X | · |Q| · n).

2.3 Sampling Metrically Constrained Markov Sequences

In order to sample metrically constrained Markov sequences, we need to build
the Meter automaton M = 〈Q,Σ, δ, q0, F 〉 as follows:

– Q is the set of states: for each possible temporal position i, from 0 to the
target duration D, we build a state qi;

– q0 is the initial state, corresponding to temporal position 0;



– F is the subset of Q of accepting states: it contains only the state qD corre-
sponding to the target duration D;

– Σ is the alphabet of the automaton, and contains the values e in the domains
of variables Xi (i.e. musical events);

– δ is the transition function, mapping a state from Q and a symbol from Σ
to a destination state: for a state qo, corresponding to temporal position o,
and an element e, we reach state qd (i.e. δ(qo, e) = qd), corresponding to
temporal position d, iff d = o+ d(e) and π(o, e) holds.

Figure 2 shows the Meter automaton recognising all two-bar sequences
we can build using the notes from Figure 1, and subject to the same metrical
constraint. Since Meter expects integer durations, durations are rescaled to
match integer values, i.e. quarter notes have a duration of 1, half notes have a
duration of 2, bars have a duration of 4 and the full melody has a duration of 8.
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Fig. 2. The automaton accepting 2-bar melodies with the five notes from the melody
on Figure 1, with meter. Discretised durations are shown between curly braces.

The procedure for sampling a metrically constrained Markov sequence is
quadratic in the total duration D: the time complexity for sampling a Markov
sequence subject to Regular is O(|X | · |Q| · n), as mentioned in Section 2.2.
We need at most D variables to represent a sequence of total duration D (if
the smallest duration is 1), and since each state of the Meter automaton corre-
sponds to a temporal position bounded by D, we have |Q| = D+1, and therefore
the overall time complexity is O(|X | ·D2).

3 A Two-Voice Statistical Model of Lead Sheets

FlowComposer is based on a two-voice model of lead sheets, which captures
stylistic information concerning the melody, the harmony, and the interaction
between harmony and melody (see Figure 3). The chord model and the melody
models are both based on a representation of music meter as a regular constraint
as described in the preceding section.

Lead sheets are generated with the following procedure:

1. Generate a chord sequence by sampling the Markov+Meter model on chords,
taking into account imposed sections of melodies as harmonic constraints.



Factor graph

Harmonic synchronisation

on melody
User constraints

on chords
User constraints

for Chords

Factor graph

for Melody

from chords to melody

Fig. 3. The two-voice model for lead sheet generation

Additionally, when sampling, instead of drawing chords with their exact
marginal distribution, we use a variable order heuristic that favours the
chords that tend to replicate longer chord sequences from the corpus [2]. In
practice, for each context size, we compute the entropy of the distribution on
the chords that the context allows, then we choose a context length randomly,
with a probability proportional to this entropy. This increases the impression
of style imitation for the chord sequence, while avoiding risk of downright
plagiarism, since orders with a low entropy are effectively discarded.

2. Generate a melody by sampling the Markov+Meter model on melody, impos-
ing the chord sequence generated in the first step as a harmonic constraint.
Here we do not use variable order, since each chord typically covers many
notes, and the harmonic constraint introduces an amount of higher order
correlation between all notes under a certain chord.

3.1 Markov+Meter Model for Chord Sequence

We generate a Markov sequence X1, . . . , Xn, where Xi is assigned a chord, rep-
resented by a chord label and an integer duration. We train an order 1 Markov
model on the corpus represented as sequences of chords. We use Meter to im-
pose a total duration equal to the duration of the lead sheet to compose, and to
forbid chords to cross bar lines.

3.2 Markov+Meter Model for Melody

We generate a Markov sequence X1, . . . , Xn, where Xi contains a note, repre-
sented by its MIDI pitch and integer duration. We obtain integer durations by
multiplying all fractional durations with a fixed rescaling factor, equal to the
least common multiple of the denominator of all possible fractional durations.
This ensures that durations are integer, while maintaining proportions. We train
an order 1 Markov model on the corpus represented as sequences of notes. We
use Meter to impose a total duration equal to that of the lead sheet to compose,
multiplied by the rescaling factor, and to forbid notes to cross bar lines.



3.3 Enforcing Harmonic Synchronisation

To generate convincing lead sheets, our model also captures interactions between
the note and chord models, in a way that is stylistically consistent with the
chosen corpus. Such interactions can be represented in our two-voice model, by
exploiting the structure of the factor graphs. We first build a harmonic model
representing these relations, and then use it to bias sampling.

The Harmonic Model We define a harmonic model, which gives the proba-
bility ph(n|Ch) of placing note n under chord Ch, trained on the corpus. As a
consequence, every chord defines a distribution on notes, and this distribution
is fully parameterised by the chord label Ch. In order to decrease the amount of
data needed to train this model, we adopt a more abstract representation and
chords are reduced to their structure alone (for example Fm7 is represented by
m7), and we ignore the octave and the duration of a note (for example, A5{2},
the A of the fifth octave, of duration 2, is represented only by A). Technically,
for a given observation, we transpose the observed chord to a chord rooted in C
with the same structure, and we transpose the observed note accordingly by the
same amount of semitones. For example, an observation of a note A5{2} under a
chord F m7 is abstracted as E under m7, since there are five semitones between
C and F (the chord roots), and equally between E and A (the notes).

Enforcing Stochastic Temporal Constraints We showed in Section 2.3 how
to sample Meter. We now show that we can define constraints holding on el-
ements specified by their temporal position, rather than by their index in the
sequence, a novel result in this paper. We exploit the particular semantics of
the Meter automaton, i.e. states correspond to temporal positions. Temporal
constraints are defined by generalising the Meter predicate π(o, e) to a stochas-
tic predicate pπ(e|o). The stochastic predicate defines the probability of placing
event e at temporal position o. We then define π(o, e) ≡ (pπ(e|o) > 0).

We enforce pπ by adding a unary factor in the preg model, for every Yi. We
recall that the variables Yi of preg take values of the form (e, q), with e a value in
the alphabet of the Markov chain, and q a state of the automaton. By specifying
a unary factor on all variables Yi, we can bias the probability of an element e
appearing with a state q, i.e. at a particular temporal position. The unary factor
pi applied to each Yi is defined as follows: pi(e, qd) ∝ pπ(e|o)·p(o), where qd is the
state of the Meter automaton corresponding to temporal position d = o+ d(e).
The probability p(o) gives the probability that o is the start time of an element.
We assume it is uniform, but we can also learn this probability from the corpus.

Harmonic Constraints for Melody Given a chord sequence, we bias the
generation of a melody to comply harmonically with the chords. We define the
stochastic predicate pπ(n|o) ∝ ph(n|Ch), where n is a note, and Ch is the chord
occurring at temporal position o.



Harmonic Constraints for Chords Inferring chord labels from unlabelled
melodies has been addressed previously, e.g. using Bayesian inference [14]. In our
case, we need to bias the generation of a chord sequence to comply harmonically
with the melody. We use a log-likelihood based approach assuming that notes
are independent observations and follow the distribution given by ph. Let us
assume that we want to compute the probability pπ(Ch|o) of placing chord Ch
at temporal position o. Let n1, . . . , np be the notes of the melody that occur
between temporal positions o and o+d(Ch). The average log-likelihood of chord
Ch given notes n1, . . . , np is:

l̂(Ch;n1, . . . , np) =
1

p

p∑
i=1

log ph(ni|Ch)

In order to introduce variety in the generated lead sheets, we do not choose
the chord with the maximum l̂, but rather use this value to define its probability,
so that more likely chords are closer to the observed distribution of notes. In
practice, we set pπ(Ch|o) ∝ exp{l̂(Ch;n1, . . . , np)}.

Releasing Harmonic Pressure The approach we described is often too strict
in practice, and, sometimes, we want to relax harmonic pressure. To this end,
we propose two strategies. First, we introduce a parameter called harmonic con-
formance that specifies how biased or uniform the harmonic model ph(n|Ch)
should be. The harmonic conformance is a factor α ranging between 0 and 1,
and we define a new, relaxed, harmonic model as follow:

p′h(n|Ch) ∝ α · ph(n|Ch) + (1− α) · puniform

A value of 1 implies strict conformance, a value of 0 results in a uniform
distribution, i.e. no harmonic bias at all. This value can be set by the user in
the GUI in the form of a slider.

Second, we choose to impose harmony on beats only, as a way of approxi-
mating the detection of passing notes, i.e. notes on which harmony is typically
less important. In practice, the stochastic predicates pπ(Ch|o) and pπ(n|o), for
chords and notes, are uniform if o is not the start of a beat.

4 Applications

In this section, we describe FlowComposer, a web service for the composition of
lead sheets based on the algorithms described in Section 3. The web service was
implemented using Java. The models for chords, notes and harmony, and the be-
lief propagation procedure to sample those models, have been implemented as an
in-house solver. FlowComposer is both an autonomous generator and an inter-
active music composition application integrated in an ecosystem of online tools
for the creation and manipulation of lead sheets. Lead sheets are represented as
JSON objects stored in a MongoDB database with more than 12,000 songs in



various styles [10]. A graphical lead sheet viewer and editor is implemented as a
JavaScript library [7] running in the client web browser. Other services are pro-
vided, such as MIDI and audio rendering tools, harmonic and pattern analysis.
User sessions and persistence is managed on the server side by a PHP module.

The database covers several genres of popular music: jazz, pop, rock, and
Brazilian music, by hundreds of famous composers. A style is defined as a corpus,
i.e. a selection of songs from the database, for instance, all the songs by a given
composer, in a given genre, or any manual selection. There are 157 types of
chords used at least in one song of the database. Among them, 37 chord types
have more than 1000 occurrences, e.g., major chords, diminished seventh; 43
occur between 100 and 1000 times, e.g., m69 chords; 61 are used between 20 and
100 times, e.g., m7sus4; and 126 occur fewer than 20 times, e.g., M7]9.

We show three typical scenarios of the general resolution procedure explained
in the preceding section. Section 4.1, describes how FlowComposer can be used as
an autonomous lead sheet generator. Section 4.2, describes how FlowComposer
can harmonise imposed melodies. Section 4.3, describes how FlowComposer may
be used as an online interactive lead sheet composition application.

4.1 Autonomous Generation

The lead sheet generation algorithm may be used to generate lead sheets from
scratch, in the style of a given corpus. In this scenario, we parse each song in the
training corpus, defining the style of the generated lead sheet. Then, we build
and train the Markov+Meter models for the chord and melody generations and
the harmonic model. The generation of the lead sheet follows the procedure
specified in the preceding section. Note that in the first step, the chord sequence
is generated with no harmonic constraints since there is not melody yet. Figure 4
shows an 8-bar lead sheet generated by this procedure in the style of Bill Evans.

Fig. 4. An 8-bar lead sheet generated in the style of Bill Evans

The length of the lead sheet to generate and the training corpus are two
input parameters of the generation algorithm. The generation is also influenced
by other parameters, such as the number of chord changes, the number of notes,
or the harmonic conformance. The ‘Number of chord changes’ and ‘Number
of notes’ are set to match the average number of notes and chord changes in
the corpus. The padding strategy, see Section 2.3, allow the system to generate
sequences with approximately the specified numbers of notes and chord changes.
The harmonic conformance α is set by default to its maximum value.



Performance is reported on Table 1. The Parsing time is linear in the number
of notes and chords in the corpus. In practice, this is a linear function of the
total number of bars in the corpus. The Training time indicates the time needed
to build and train the Markov+Meter models and the harmonic models and to
initialise the belief propagation algorithms. The time reported in column Next
sol. is less than the whole training time as the chord model is not retrained. The

Corpus Size Parsing Length Training Next sol. Model size

ASW
429 songs
630 chords
356 notes

3”480

4 bars 4” 1”7 731,468
8 bars 9” 5”3 2,922,436
12 bars 18” 12”5 6,465,202
16 bars 30” 22” 11,509,685

Beatles
45 songs
134 chords
199 notes

803ms

4 bars 600ms 600ms 245,948
8 bars 1”75 1”4 984,099
12 bars 3”9 3” 2,179,359
16 bars 6”6 5” 3,939,752
32 bars 27” 24” 15,668,776

Table 1. Performance of the algorithm for the generation of lead sheet for various
lengths and two corpora; ASW stands for American Songwriters, a corpus with 429
songs by composers such as Richard Rodgers, Lorenz Hart, or Irving Berlin

generation times increase quadratically with the length of the generated lead
sheet. This experimental observation is consistent with the expected complexity
of the algorithm (see Section 2.3) and is reflected in the size of the models.

The reported performance shows that generation becomes slow for lead sheets
longer than 16 bars, especially with a large corpus, such as American Songwrit-
ers. Parsing the corpus uses non-optimised code, and its performance will be
reduced by a substantial amount in the next version. The time needed to train
the model and to find solutions may also be reduced by discarding very small
probabilities in the model.

In general, music composed using statistical-based approaches is locally con-
sistent but lacks a sense of direction, or global structure [6]. Consequently, purely
autonomous generation is usually used to produce short musical sequences to be
used as fragments in a longer piece. We observed that composers using the sys-
tem rarely generate sequences exceeding 8 bars (see 4.3). The time taken to
generate long lead sheets is therefore not a strong limitation of the system. The
automatic generation of interesting long sequences requires models of large-scale
musical structure including repetition of patterns, variations, and sections.

4.2 Harmonisation

FlowComposer may be used to harmonise, i.e. infer chord labels for a given
melody in an imposed style. We illustrate such style-based harmonization by
using FlowComposer to reharmonize “Yesterday”, by the Beatles, in four styles:
the Beatles themselves, Cole Porter, Michel Legrand, and Bill Evans.



Fig. 5. The lead sheet of the first 15 bars of “Yesterday” with the original chord labels

Table 2 shows the number of songs in the corpus corresponding to each of
these styles. Note that in the case of the Beatles, we did not include “Yesterday”
in the corpus. The first 15 bars of the original harmonisation is shown on Figure 5.

Fig. 6. The lead sheet of the first 15 bars of Yesterday with an alternative harmonisa-
tion generated by FlowComposer in the style of the Beatles

The re-harmonisation in the style of the Beatles (Figure 6) uses many chords
appearing in the original lead sheet, e.g., Dm, Gm, B[. Some chords are simple
harmonic substitutions, such as the Gm in place of B[ on bar 4. The A7 on bar
7, which is not a substitution of the original harmony B[-F, is quite surprising
given the F in the melody. However such an augmented fifth is not unusual in
the Beatles, and occurs for example in songs “I Want to Tell You” and “I’m
Only Sleeping”, in this latter case with the same resolution to a Dm chord. The
progression in bars 13 to 14 is equal to the original. Overall, this re-harmonisation
is probably less interesting than the original one, but is new, valid, and can be
considered as in the style of the Beatles.

The harmonisation in Cole Porter’s style (Figure 7) uses an Eø7 (half di-
minished seventh) and an F]o7 (diminished seventh) chords. Cole Porter is the
composer who uses these chord types the most in the database. The progression
DmM7-Dm-G7 appears identically in Cole Porter song “Do I Love You”.

The use of a suspended 7th chord, E7sus in bar 10 in the example in Figure 8
is typical of Michel Legrand: he is, in our database, the composer using them
the most. The progression B half-diminished 7, Bø7, followed by E7sus actually
occurs in “The Easy Way”, or, transposed, in “Papa Can You Hear Me?”. The
E[7 chord in bar 12 is a tritone substitution of the original A7 chord.



Fig. 7. The lead sheet of the first 15 bars of Yesterday with a harmonisation generated
in the style of the Cole Porter

Fig. 8. The lead sheet of the first 15 bars of Yesterday with a harmonisation generated
in the style of the Michel Legrand

Fig. 9. The lead sheet of the first 15 bars of Yesterday with a harmonisation generated
in the style of the Bill Evans

In the re-harmonisation in the style of Bill Evans (Figure 9), the opening
transition from E[69 to A+7 (augmented 7th chord) appears in “Yet Neer Bro-
ken”. Bill Evans is also the composer using 69 and 7[9sus chords the most.

We encourage the reader to listen to these examples3 to get a feel of the
stylistic differences of the various harmonisations of the system.

Execution times are reported on Table 2. Most of the time is spent training
the models, and is done only once, thanks to the persistence of user sessions.
The third column reports the total time to get the first solution. Once the
model is trained, it may be sampled virtually instantaneously to produce many
representative solutions.

3 All examples are available online at: http://www.flow-machines.com/

generation-of-lead-sheets-with-flowcomposer

http://www.flow-machines.com/generation-of-lead-sheets-with-flowcomposer
http://www.flow-machines.com/generation-of-lead-sheets-with-flowcomposer


Style Corpus size Parsing time Training time Time next sol. Total time
The Beatles 45 songs 85ms 830ms 15ms 1”030
Cole Porter 70 songs 203ms 1”568 15ms 1”786

Michel Legrand 62 songs 181ms 2”339 15ms 2”535
Bill Evans 87 songs 132ms 2”700 15ms 2”847

Table 2. Corpus size for several styles and execution times to harmonise the first 15
bars of “Yesterday”. The total time is the time needed to parse the corpus and to train
the model. Solutions are obtained virtually instantaneously by sampling the model

4.3 Interactive Composition

FlowComposer is not only an automatic generator but also a fully-fledged in-
teractive composition tool for professional composers who use it as an active,
create software collaborator. FlowComposer is integrated with an online lead
sheet editor so that the system never gets in the way of the user’s intentions and
composition habits.

Fig. 10. Selection of two bars in the course of the composition of the song of Fig-
ure 11; the two selected bars will be replaced by new musical material generated by
FlowComposer

The general idea is that the user is responsible for creating the structure of
the lead sheet and FlowComposer is used to generate music for user selected
parts. The general structure of a lead sheet consists of a sequence of sections,
which are played in a sequence with optional repetitions. A typical structure is
AABA followed by a Coda, such as in “Yesterday”. The editor allows the user
to select contiguous fragments of the lead sheet and FlowComposer generates
new music for this fragment; the fragments may contain chord labels, notes, or
both (see Figure 10).

Fig. 11. A song composed by French pop song writer Benôıt Carré with FlowComposer



The selection is not considered as an isolated musical fragment, but rather
as belonging to the context of the current lead sheet. The non-selected parts are
fixed and imposed as constraints to the system. Technically, the model covers
the user selection extended to the music immediately before and after, to ensure
that transitions between the selection and the surrounding musical context are
in the chosen style.

The front end of the application provides the user with control on the gen-
eration parameters, which can be changed at any time: the training corpus, the
number of notes or chord changes, and the harmonic conformance α.

The system updates the model with the music entered in the lead sheet being
composed. An additional control, called ‘inspiration’, is used to control the rel-
ative weight in the model of the training corpus and of the current composition.
This control is typically used to put the emphasis on the current composition
when the lead sheet contains already several bars of music to increase the proba-
bility that the music generated by the system will repeat some fragments present
in the non-selected parts of the score.

Fig. 12. The control panel with fields to select composition style and sliders to set
harmonisation conformance, inspiration, and average note duration and chord changes

French songwriter Benôıt Carré is using FlowComposer for a forthcoming
pop music album (see excerpts in Figure 11). FlowComposer was also used by
professional composers Nathan Taylor and Benjamin Till to compose three songs
for the “Beyond the Fence” musical. For example, the chorus and some chord
progression of “Scratch That Itch” come from FlowComposer. The final score
has then been reworked by the composers. “Beyond the Fence” was the first
musical ever created by software (not only songs, but also lyrics and the story
line itself), and was performed at the Arts Theatre in London in February 2016
(see [5] for discussions about this pioneering experiment). Figure 13 shows the
beginning of one of the songs in its final version.

5 Conclusion

We presented FlowComposer, an online application for assisted music composi-
tion. The application enables users to compose musical lead sheets from partial
information, and uses a generation algorithm to fill in the missing parts in the
style of a chosen composer. The generation algorithm exploits a representation
of meter as a Regular constraint which enables efficient sampling. Lead sheets
are represented as a couple of meter-constrained Markov chains, synchronised
through a likelihood function learnt from the selected corpus of lead sheets.



Fig. 13. Final sheet of a song composed by Nathan Taylor and Benjamin Till using
FlowComposer, as part of the “Beyond the Fence” musical

Fig. 14. A lead sheet composed by the authors of this article with FlowComposer,
in the style of Miles Davis, and evaluated (informally) by fellow jazz musicians as
particularly good

We have shown several typical uses of FlowComposer to generate lead sheets
from scratch, from partial information, or to reharmonize existing melodies1.
More work is being done to improve the user experience, notably by storing
statistical models to avoid on-the-fly training, which calls for an incremental
updating of these models.

FlowComposer can be seen as a successful example of an online applica-
tion mixing statistical models with hard constraints. FlowComposer integrates
a number of recent results in constraint programming and sampling, and has
been used successfuly in several professional music projects. We believe such a
tool offers unprecedented value to users wanting meaningful assistance in com-
position, thanks to the powerful underlying style modeling approach. We also
believe that online applications mixing statistical models and hard constraints
will be a very active thread of development for CP in the near future.
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