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Abstract

We discuss the problem of the representation of constraints in an object-oriented programming

language. We focus on a particular topic - constraint satisfaction for finite domains - and

propose a class library that integrates constraints within an object-oriented language. The library

is based on the systematic reification of variables, constraints, problems and algorithms. The

library is implemented in Smalltalk, and is used to state and solve efficiently complex constraint

problems involving Smalltalk structures.

1.       Introduction

Constraint satisfaction programming (hereafter referred to as CSP) is a powerful paradigm for

solving complex combinatorial problems, which has gained attention in recent years,

particularly with work on constraint logic programming. The notion of constraint was initially

seen as an algorithmic problem, e.g. by [Mackworth 77] who sees constraint graphs as

networks of relations for finite domains, or in the Alice system [Laurière 78] for integrating

finite domain constraints with optimization. Other techniques for non finite domains have been

extensively studied, such as simplex-based algorithms for linear problems, or simulated

annealing for optimization in non linear problems.

Constraint languages were introduced by logic programming

The first attempts at integrating these algorithms in a programming language have been made by

the community of logic programming.  Constraint logic programming was primarily designed

as an extension of logic programming to deal with arithmetic computation and with specific

computation domains like integer, real or rational numbers and booleans. Its best known

representatives are Prolog III [Colmerauer 1990], CHIP [Van Hentenryck 89], CLP (R) [Jaffar

& Lassez 87].  Logic programming heavily relies on the notion of "logical variable",

representing some unknown, untyped value, to be computed by the system. CLP extended it
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towards the notion of constrained variable, which may be seen as an intentional representation

of an unknown typed value, satisfying some set of conditions. More precisely, the type of a

constrained variable is defined by the set of its possible values, also called its domain.

Depending on the nature of the domain (finite, infinite, boolean, sets, intervals, etc.), different

techniques are used to compute the values of variables, with a semantics directly inherited from

logic programming, i.e. based on unification, resolution and backtracking.

Constraints and objects

On the other hand, object-oriented programming and representation languages have become

commonplace in software engineering and knowledge representation. The integration of

constraint mechanisms in object-oriented languages introduces a radically different way of

seeing constraints, by putting the emphasis on domains, rather than on algorithms. Indeed,

classes in the sense of OOP may be seen as intentional representations of domains. Class

instances then become possible values for constrained variables. Furthermore, the interface of

the classes provides a language in which the constraints can be specified.

Many constraint satisfaction systems have been integrated in object-oriented languages. There

are two main notions of constraints prevalent in the community of object-oriented programming:

constraints in a "propagation" sense, historically the first to be proposed, and more recently,

constraints in a "solving" sense.

Propagation

The first integrations of constraint mechanisms in a object-oriented language was pioneered by

works of Alan Borning, with the ThingLab system [Borning 81]. These works embody the so-

called "propagation" view (also called the perturbation model) of constraints. In this approach,

constraints are declarative statements of relations that must be always true. In practice, they are

a means of specifying a "stable" state of a system, specified as a set of constrained variables.

The main job of the constraint interpreter is to restore the state of the system after a perturbation,

typically when one object changes state, by changing the state of other objects so that the

constraints still hold. This notion of constraint is particularly well suited to the specification of

graphical interfaces. For instance, the relation between several objects within a window may be

stated in terms of constraints. When an object is moved, the system enforces the constraints,

i.e. computes the position of other objects so that constraints are still satisfied. The typical

example is the Farenheit-to-Celsius converter, in which the user may change graphically the

value of a slider representing a temperature in Celsius degrees, and the system will change

accordingly the value of another slider expressing the temperature in Farenheit. The works on

ThingLab paved the way for exploring the integration of constraint propagation with object-
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oriented programming, and was a source of inspiration for other systems, such as Kaleidoscope

[Freeman-Benson 90], [Freeman-Benson & Borning 92].

Satisfaction

The other view on constraints is the problem solving view, also called constraint satisfaction, or

refinement model. In this context, constraints are seen as a declarative means of specifying a

problem to be solved. Here, the idea is not to restore the state of a system after a perturbation,

but rather to find one solution (or all possible solutions) of a given problem. If the notion of

variable still holds, variables are not initialized as in the perturbation model; they are initially

unbound. Typical constraint satisfaction problems include: allocation problems (e.g. human

resource management), scheduling problems (e.g. scheduling vehicles on an a assembly line,

scheduling trains, boats or planes), planning (e.g. planning human resources), optimization of

resources under constraints (train container optimization, minimization of garbage when cutting

wood planes or leather), etc.  A particularly interesting branch of CSP is finite domain CSP;

widely used to design and solve combinatorial problems, when domains of variables are finite

sets of values, such as intervals of integers. A wealth of algorithms have been developed to

compute efficiently the list of all possible solutions. Developing fast algorithms for finite

domain CSP is still today a very active area of research.

Proposals to integrate constraint satisfaction techniques in object-oriented languages have been

made recently, specifically with finite domain CSP (FD-CSP). IlogSolver is a library of

routines that provides the C++ language with facilities for constraint logic programming [Puget

1994]. FD-CSP mechanisms have been integrated in other languages: the KEE system in the

COOL language [Avesani & al 90]; the LAURE system introduces efficient CSP in a

proprietary object-oriented language [Caseau 94].

In this paper, we propose a design and an implementation of an integrated finite domain

constraint satisfaction solver in Smalltalk. Our position is that the choice of the underlying

language is of great importance, since we are interested in reusing existing class libraries and

frameworks. The choice of Smalltalk as the autochtonous language is therefore justified by its

widespread use and the quality of its class libraries. The only available extension of Smalltalk

that provides constraint facilities is the OTI constraint module [Borning & Freeman-Benson

95]. This library implements several constraint propagation algorithms (the ultra-violet family),

and is used mainly for building graphical interfaces. No proposal has been made, to our

knowledge, to extend Smalltalk with finite domain constraint satisfaction mechanisms.

Our integration is based on the systematic exploitation of the vision of classes as potential

domains for constrained variables. The design involves a reification of the important notions of
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finite domain CSP: variables, constraints, problems and solving algorithms. The resulting

system, called BackTalk, allows the definition of complex CSP problems involving fully-

fledged Smalltalk objects, and arbitrary Boolean expressions, and provides efficient algorithms

to solve these problems. Moreover, object-orientation allows us to propose a constraint solver

with all the good properties of object-oriented software. The solver can be used as a mere class

library, without a priori knowledge of finite domain CSP, or used as a framework for

specialists who want to design and implement their own constraint satisfaction algorithms.

The paper is structured as follows. In section 2 we define more precisely finite domain CSP; in

section 3 we introduce our system, called BackTalk, a canonical integration of FD-CSP with

Smalltalk. In section 4, we outline the main design of a complete application using BackTalk. In

section 5, we discuss the main characteristics of the BackTalk system.

2.       Finite domain CSP

Intuitively, formulating a problem in terms of constraints amounts to characterizing a priori a

solution of this problem: the constraints of the problem are the properties that a solution should

verify. More precisely, a constraint satisfaction problem (CSP) is defined by 1) a finite set of

variables, each one taking values in a finite set (its domain), and 2) a finite set of constraints on

these variables, usually expressed as conditions on the variables. A solution of a CSP is an

assignment of values to variables satisfying simultaneously all the constraints.

Finding a solution to a CSP, in general, is a NP-complete problem. In practice, several

algorithms have been developed to solve efficiently most CSPs. Algorithms are usually

classified into two main families: the enumeration algorithms and the filtering algorithms. We

will briefly review these two families in the next section.

2.1.     An illustrative example

To illustrate the notion of constraint in our context, let us take as an example the following

crossword problem. Find a crossword without holes, such that words read the same

horizontally and vertically. The initial input of the problem is a list of English words containing

the most frequently used words (see e.g. the file /usr/dict/words  on Unix stations, which

contains about 25000 words of lengths 2 to 22).

In BackTalk, this problem is stated and solved as follows:

• There are n variables h1 h2 h3 .. hn, each with domain the list of words of size n (around

5000 for values of n between 4 and 7).
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• There are (n.(n-1)/2) constraints, stating that the ith letter of the jth variable is equal to the

jth letter of the ith variable.

Figure 1 shows one solution for this problem when n = 6.

Figure 1. A view on a solution for the cross-word example when n=6.

Note that this problem is a hard one, if one is to consider all the possible combinations of the

values of variables. With a list of 5000 words of size 6 for instance, a naive computation of all

possible solutions yields 50006 combinations (about 10 22).

2.2.     Algorithms

There are basically two families of solving algorithms: the enumeration algorithms, and the

prefiltering algorithms. Figure 2 shows a hierarchy of the most popular of these algorithms.

This hierarchy reflects the way we programmed these algorithms, and is discussed in section

3.3.
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Figure 2. The hierarchy of solvers in BackTalk. AC stands for Arc-consistency, FC for

Forward-checking, BJ for Backjumping, BM for Backmarking, CBJ for Conflict-directed

Backjumping.

2.2.1.      Filtering algorithms

There is today a wealth of filtering algorithms, the family extends virtually every month.

However, most of these algorithms revolve around the same notion of arc-consistency,

introduced originally by [Mackworth 77].

Solving a CSP amounts to exploring the large space of all possible combinations of values for

each variable. A way to prevent search algorithms from combinatorial explosion is to reduce the

domain of variables before beginning the actual enumeration of the solutions. The essential

notion here is the notion of arc-consistency, which can be seen as a "local" form of satisfaction:

a constraint involving two variables a and b is said to be arc-consistent when, for each value x

of the domain of a, there exists a value y  for variable b, such that the couple (x , y) satisfies the

constraint. This property is called arc-consistency because it is local to a given constraint (seen

as an arc in the network of variables). In particular, the fact that two constraints are arc-

consistent does not necessarily imply that there exists a solution that satisfies the two constraints

simultaneously!  Other notions of consistency extend this basic definition in several ways: path-

consistency [Mackworth 77] or k-consistency [Freuder 78].

The first arc-consistency algorithm was Waltz's filtering algorithm [Waltz 72]. Mackworth

improved it with AC-3 [Mackworth 77]. Mohr & Henderson designed AC-4 [Mohr &

Henderson 86], an optimal worst-case complexity algorithm. Unfortunately, AC-4 is slower



Reifying Constraint Satisfaction in Smalltalk, P. Roy & F. Pachet, Journal of Object-Oriented Programming,
1996, to appear

7

than AC-3 on a lot of CSPs, because is requires too complex data structures [Wallace 93]. The

algorithm AC-5 [Deville & Van Hentenryck 91] has been shown to be better than AC-4 on

specific CSPs, but not on average cases. AC-6 [Bessière 94] yet improves the theoretical

average complexity of arc-consistency, and AC-7 [Freuder et al. 95] is the latest of the family, a

specific version of AC-6 exploiting metaknowledge on constraints to reduce the number of

checks on specific types of problems. All these algorithms perform differently depending on the

structure of the problem. Having all them at hand is therefore useful in the general case.

2.2.2.      Enumeration algorithms

An enumeration algorithm is a procedure that yields one or all the solutions of a CSP. As for

filtering algorithms, these algorithms have been studied extensively, and are all based on a tree

search of the solution space.

The simplest enumeration algorithm is chronological backtracking.  This method starts with a

predefined order of the variables. It instantiates variables one by one, and checks each partial

instantiation against all the constraints. In case of failure, it goes back to the last instantiated

variable, and tries the next value in its domain. When a domain has been totally explored, the

algorithms "backtracks" one step back in the variables history.  This search algorithm is very

inefficient because it does not take into account the structure of the problem and therefore can

fail several times on the same inconsistencies.

Two main families of enumeration algorithms have been developed to improve the inherent

deficiencies of chronological backtracking: look-back and look-ahead.

In case of failure the chronological backtracking goes back to the previous variable. A better

strategy would be to backtrack to the variable(s) that actually caused the failure. Such

algorithms are called look-back procedures. The most famous look-back algorithm is back-

jumping [Prosser 93a] which backtracks to the last variable linked by a constraint to the current

one. This strategy avoids exploring several times the same part of the search space when an

inconsistent instantiation occurred earlier.

Another way to improve the efficiency of the search is to prevent future instantiations from

failure. Algorithms implementing such mechanisms are called look-ahead procedures. In these

methods, before instantiating a variable, its domain is reduced. The most efficient one,

according to [Nadel 88], is forward-checking [Haralick & Elliot 1980]. In forward-checking,

only values which are inconsistent with adjacent constraints are removed. Another look-ahead
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algorithm is real-full-lookahead [Nadel 88] which performs a complete arc-consistency

procedure after each instantiation.

Finally, attempts at combining both strategies have led to very efficient hybrid algorithms, such

as  FC-CBJ [Prosser 93b].

To improve on all these algorithms, it can be worthwhile to choose a special instantiation order

for the variables. The instantiation order can be fixed before beginning the resolution (static

heuristic), or it can be modified after each operation on the problem (dynamic heuristic) (see

[Dechter & Pearl 88]). To choose the next variable, a frequently used dynamic heuristic is to

pick up the one having the smallest domain (first-fail strategy). A frequent static strategy is to

choose the most constrained variable.

3.       BackTalk

BackTalk can be seen as a class library for stating and solving constraint satisfaction problems

in Smalltalk.  More precisely, we designed the BackTalk system to achieve the three following

goals:

• To provide a library of the best available CSP algorithms, that can be used off the shelf, for

testing and comparing them. This library should also easily support extensions, in the spirit

of the Actalk system [Briot 89], a framework for designing actor languages in Smalltalk.

• To implement these algorithms without kernel support: the library should run on any

platform supported by Smalltalk, without modification of the virtual machine, in the spirit of

the backtrack mechanism of [Lalonde & Van Gulik 88].

• To minimize the well-known language mismatch, between the underlying language (here

Smalltalk) and the language for describing constraint problems. This language mismatch

problem was apparent already in our work on integrating production rules with an object-

oriented language [Pachet 95]. Similarly, we want a constraint solver that introduces the

less possible new concepts and syntax to Smalltalk.

We will now describe the main features of BackTalk, and give an outline of its design. We will

first introduce the main concepts used for stating a problem, and then those used for solving it.

3.1.     Reifying CSPs: stating a problem in BackTalk

Stating a problem in BackTalk is based on the explicit manipulation of the concepts pertaining to

CSPs. Domains are naturally represented by arbitrary Smalltalk collections. To integrate
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BackTalk smoothly in Smalltalk, we do not impose any restriction on the nature of the domains:

only that they should be an instance of one of the Collection classes. Three additional notions

are introduced to state CSPs: variables, constraints and problems. We will now review each of

these classes more in detail (they are prefixed by BT).

3.1.1.      Variables

Variables are represented by class BTVariable , characterized by its name (a symbol), its

domain  (a set of Smalltalk objects) and its value  (a Smalltalk object). BTVariable  is a

concrete class. A subclass, BTOrderedVariable , implements more efficient methods for

testing inclusion. Variables are created using message name:domain: , taking the name and

domain as parameter. The domain may be any kind of Smalltalk collection (an

OrderedCollection , a Set , an Interval , an Array ), having as its elements arbitrary

Smalltalk objects. The value of variables are set by the solver during the solving phase.

3.1.2.      Constraints

Constraints are represented by class BTConstraint , characterized by the list of the variables

it involves, and a predicate holding on these variables. BTConstraint  is an abstract class. A

set of predefined constraints are available in BackTalk, represented as concrete subclasses of

BTConstraint .

To facilitate the declaration of a constraint, BackTalk’s LinearCombination  class is

interfaced with a small parser, allowing to state constraint in an infix syntax (e.g. (2 * x) + (4 *

y) = 5) . Each concrete class has its own creation method (see example below).

For the general case, class BTBlockConstraint  allows to define a constraint whose

predicate is an arbitrary Smalltalk Boolean block. Although BTBlockConstraint  is the

most general type of constraint, new classes of constraints can be added by the user for reasons

of efficiency (see section 3.4).

The following hierarchy shows a subset of the predefined BackTalk constraints:
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BTConstraint ('name' 'variables' 'arity') "abstract class"
BTBinaryConstraint ('left' 'right' )

BTBinaryBlock ('block')
BTBinaryDifference () "x <> y"
BTBinaryEquality () "x = y"
BTGreaterOrEqualThan () "x ≥ y"
BTGreaterThan () "x > y"

LinearCombination ('coefs' 'constant') "e.g. 2x + 3y - z = 7"
BTBlock ('block')

BTBinaryBlock ()
BTExtensionConstraint ('extension') "constraint in extension"
...

3.1.3.      Problems

CSP problems themselves are represented by instances of class BTCSP. The class defines two

instance variables: variables, holding the set of variables and constraints, the set of constraints.

Note that actually only the list of variables suffices to define a CSP: BackTalk deduces the list

of constraints from the list of variables, since each variable knows the list of constraints in

which it is involved. Problems also have a couple of bells and whistles such as a print pattern, a

specification of how solutions should be displayed, specially during execution, for tracing

purpose (see Figure 3).

Whereas the notion of problem is not relevant to the philosophy of constraint propagation,

having problems as objects is particularly interesting in constraint satisfaction. It allows

defining several problems simultaneously, each one having its own set of constraints and

variables. As a comparison, in IlogSolver, constraints are stated in the object's classes

themselves, and are thus diluted in the object space. Having problems as objects allow us to

encapsulate the definition of a problem, and enforce a clear separation between the problem and

the definitions of the classes involved in the problem.

3.2.     Stating a problem with BackTalk

The specification of a CSP in BackTalk consists in creating an appropriate instance of class

BTCSP, or of one of its subclasses. A typical specification consists in:

1 • Defining the variables of the problem, by instantiating class BTVariable  with a name and

a domain.

2 • Defining the constraints holding between the variables. These constraints are instances of

one of the concrete constraint classes.

3 • Instantiating a BTCSP, with the list of variables, and optionally a print pattern.
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The definition of the crosswords problem proposed in section 2.1 could be represented as a

method as follows in BackTalk:

perfectCrossWord: n
"AllEnglishWords is a list of English words such as /usr/words/dict"

| allVars p allWords |
allWords:= AllEnglishWords select: [:w | w size = n].

"Definition of the variables with their name and domain"
allVars := (1 to: n)

collect: [:c | BTVariable  name: ('h', c printString)
    domain: allWords copy].

"Definition of the constraints"
BTCSP allDifferent: allVars.
1 to: n do: [:h |

(h + 1) to: n do: [:v |
BTBinaryBlock 

on: (allVars at: h)
and: (allVars at: v))
block: [:a :b | (a at: v) = (b at: h)]]].

"Instantiation of the CSP"
^BTCSP onVariables: allVars

We will now see how to solve this problem, using a particular solving strategy.

3.3.     Solving a CSP in BackTalk

The Solving phase of CSPs is based on a further reification of the algorithms themselves. The

whole collection of solver algorithms is represented by class BTSolver , an abstract class.

Each algorithm is represented by an intance of a concrete subclass of BTSolver . Within each

family, all the algorithms respond to the same execution messages, defined as abstract methods

in root classes. Prefiltering algorithms only understand message run . Enumeration algorithms

understand various messages such as f i rstSolut ion , al lSolut ions , and

allSolutionsDo:  an iterator method which takes a block as a parameter, and executes it for

each successive solution.

 What is a solution ?

Therefore, solving a CSP is done by 1) instantiating a particular solver class, 2) assigning the

solver to a CSP as defined above, and 3) sending the solver adequate messages for actually

solving the problem. Since values of variables are assigned as a side-effect of the solving

procedures, and that variables "know" their value, a solution of the problem is simply

materialized by the list of variables. However, since we often want to compute and compare

several solutions, the results of enumeration methods (firstSolution , allSolutions ,

etc.) is not the list of variables, but a dictionary associating variables to values. This allows the

coexistence of several solutions in the environment.
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BackTalk currently implements the following consistency algorithms (see the hierarchy of

solvers in Figure 1): Mackworth’s AC-3 and Deville & Van Hentenryck’s AC-5 for binary

CSPs, a special version of AC-3 for n-ary CSPs. It implements two different back-jumping

algorithms: classical backjumping and conflict-directed backjumping. Standard forward-

checking is also available, as well as an algorithm combining forward-checking with

backjumping. All algorithms can be run according to any static or dynamic variables

instantiation order.  Most of them are generalized to handle n-ary constraints.

For instance, the first solution of our preceding problem using forward-checking can be

computed as follows (the result is a dictionary representing the first solution):

(BTForwardChecking on: aBTCSP) firstSolution

To further illustrate the use of solvers as encapsulator objects, let us suppose we want to

perform a filtering using AC-5 arc-consistency, followed by a Backjumping enumeration. This

would naturally be expressed as:

(BTAC5 on: aBTCSP) run.    " the filtering phase"
(BTBackjumping on: aBTCSP) firstSolution " the enumeration phase"

3.4.     Extending BackTalk with user-defined constraints

Class BTBlockConstraint  allows to specify constraints with any predicate you can express

as a Smalltalk block.  This gives the user the ability to define new constraints. For instance, a

constraint forcing two rectangles to have the same area can be defined as follows:

BTBinaryBlock
on: rect1 "the first rectangle"
and: rect2 "the second one"
block: [:r1 :r2 | r1 area = r2 area] "the predicate"

Notice that any Smalltalk Boolean expression (using any Smalltalk message, here message

area ) can be used in the block.

However, it may be interesting, for particularly hard problems, to define specific constraint

classes in BackTalk, to increase efficiency. In this case, specific subclasses of class

BTConstraint  may be defined, which redefine the methods responsible for reducing

domains during arc-consistency, as well as methods for implementing the predicate. Similarly,

one may want to define specific variable classes, to implement more efficient methods for

solving, such as interval reasoning. This is done by defining a subclass of BTVariable

which overrides inclusion test methods.
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3.5.     The BackTalk Interface

BackTalk provides two main interfaces. The first one is useful to browse CSPs. The second

one is used to visualize the execution of a solving algorithm.

Figure 3. The BackTalk’s CSP-viewer interface, opened on the crosswords example.

The first interface (called a CSP Viewer, see Figure 3) shows the list of variables, each one

with its domain, and the constraints of the problem holding in this variable. Various menus

allow to edit constraints, variables or values (removing, filtering, inspecting...). Several

buttons trigger the solving algorithms. Variables ordering heuristics may also be defined using

specialized fields.

The second interface (called a SolutionView ) dynamically shows the evolution of a solution

as it is built by the solver (a question marks represents a non instantiated variable). The Figure 4

shows an example of an execution snapshot, taken during the solving of the example problem

followed in this paper.
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Figure 4. A solution view window opened on an execution of the example problem. Here the

variables v1, v3, v5 and v6 are instantiated, the other two are unknown.

4.       A musical example

In this section we give an overview of a substantial application written in BackTalk. The

application is an automatic harmonization program that has been developed as an extension of a

library of musical objects.

A traditional harmonization problem in music teaching consists in composing polyphonic

melodies by harmonizing a monophonic melody given as input.  The difficult part of the

exercise is to ensure that the resulting melody satisfies a set of musical rules. These rules are

commonly found in a treatise of Harmony. A typical example is (R1) "two consecutive notes in

a same voice must not be more than one octave apart", (R2) "the leading note should rise to the

tonic" or (R3) "two successive chords should have different degrees".

It is well-known that this problem can be seen as a case of constraint satisfaction (see e.g.

[Ballesta 94], [Tsang 91]; or [Ovans 92]). Each variable corresponds to a note or chord or any

other musical object. Musical rules are represented by constraints holding on these variables.

The fact that each voice is limited to a finite interval of notes - its range - implies that domains

may be represented by finite sets. Hence, the automatic harmonization perfectly fits the

conceptual framework of finite-domain CSP.

In our case, we could have solved this problem from scratch, by defining one by one the

musical concepts useful for stating the constraints: notes, chords, melodies, degrees, and so

forth. Instead, our goal was to reuse as much as possible existing structures, and more

precisely, the specialized MusES library [Pachet 94]. This library provides the definition of the

most common musical structures in Smalltalk. The size of MusES is around 90 classes and
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1500 methods.  Of course, the MusES library was not designed with the harmonization

problem in mind, but rather as a domain-independent source of information. MusES is used

today in a variety of musical applications, ranging from automatic harmonic analysis to

simulation of improvization [Ramalho & Ganascia 95].

In MusES all concepts are represented using object-oriented programming (usually methods in

the associated classes). For instance, notes are Smalltalk objects (instances of class Note ), that

respond to messages such as yielding its degree within a given scale. Similarly, intervals are

represented as objects, and may be computed by sending the message intervalBetween : to its

lowest extremity, with the other extremity as argument. Constant intervals are represented by

special creation messages (e.g. MusicalInterval octave  yields an object representing

the abstract interval of an octave). Chords, melodies, degrees are represented in the same

fashion.

Therefore, the ability of BackTalk to handle variables that represent any Smalltalk object, and

constraints defined by arbitrary Smalltalk predicates is crucial here, to allow reusing MusES.

Using BackTalk, variables are defined with domains being collections of note or chord objects.

Constraints are defined using both predefined constraints and block constraints. For instance,

the constraint corresponding to the rule: “two consecutive notes, in a same voice, must not be

distant of more than an octave”, may be defined simply as follows, where i  represents a

running index on the input melody:

BTBinaryBlock                          "Rule R1"
on: (noteVariables at: i)
and: (noteVariables at: (i + 1))
block: [:n1 :n2| (n1 intervalBetween: n2) <= MusicalInterval octave]

Similarly, rule R3 can be expressed as a BinaryBlockConstraint  holding on two

instances of class Chord :

BTBinaryBlock                          "Rule R3"
on: (chordVariables at: i)
and: (chordVariables at: (i + 1))
block: [:ch1 :ch2| ch1 degree <> ch2 degree].

The whole harmonization problem has been implemented in BackTalk, by simply reusing

MusES as is, and writing the set of constraints corresponding to each musical rule. Details on

the actual implementation of the system can be found in [Pachet & Roy 95a], including results

on the efficiency of the overall system, which proved to be far better than previous non object-

oriented approaches.
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5.       Discussion

Based on our experience with the system, we discuss here what we claim are the four most

important characteristics of BackTalk.

5.1.     Reusing class libraries as they are

The first original feature of BackTalk is to allow the reusability of any library of classes, and

any system class. In example 4.1 we saw how the MusES library was used to design an

efficient harmonization system in BackTalk, without modifying any line of the library. Example

4.2 illustrates the reuse of system classes (here class String ). Class reuse has also

methodological advantages, such as reducing the number of constrained variables when

expressing constraints on complex objects (see [Pachet & Roy 95b] for details).

5.2.     Providing a library of algorithms

The second original feature concerns the representation of algorithms. BackTalk provides

several algorithms to solve CSP, organized in a class hierarchy.  Because algorithms are

represented as objects, they are easily interchangeable, and can be combined, for instance when

different sub-problems in an application require different solving procedures. Typical

extensions of the solver framework in progress include solvers to implement radically different

approaches such as the GSAT strategies [Selman & al 92], particularly efficient for e.g.

Boolean CSPs.

This materialization of algorithms as fully-fledged objects corresponds to the design pattern

called Strategy , a kind of so-called behavioral pattern in the terminology of [Gamma & al 94].

The main advantage of this design is to define a library of interchangeable algorithms, and to

allow the library to be extended easily, by creating subclasses of the available classes.

Other patterns can be found in the design of BackTalk. For instance, the execution of

algorithms is represented by top-level methods in class BTSolver  such as firstSolution ,

allSolutions , or allSolutionsDo:  These methods themselves call more specialized

methods such as forward , backward , and propagateValue: , which are defined as

abstract methods, and defined in concrete subclasses. This design corresponds to the template

method pattern.

Similarly, the mechanism to save and restore values of variables for backtracking purposes may

be described by the Memento pattern.
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It is interesting to note here that BackTalk is not a framework in the sense of e.g. [Johnson &

Foote 88], because algorithms are designed to be used off-the-shelf, and no programming is

required from the user to state and solve a constraint problem. But looking closer at the design

of the solver hierarchy, this representation of an abstract thread of control specialized by

subclasses - using a combination of strategy and template method patterns - actually perfectly

matches the definition of a framework (in e.g. [Gamma & al. 94] p. 26). In other words,

BackTalk may be seen as a library from the user point of view, and as a framework from the

point of view of a specialist in CSP algorithms.

5.3.     Efficiency

Efficiency is an important concern when dealing with constraint satisfaction algorithms.

BackTalk was redesigned several times to achieve optimum efficiency while keeping a simple

and reusable design. We give here the performance of the system on classical benchmarks:

crypto-arithmetics, n queens, and the zebra problem. These benchmarks show that the

performance of BackTalk, admittedly not as good as recent versions of IlogSolver (written in

C++), is reasonable, and allow scaling-up to real world problems.

Results on a PC Pentium 90 Mhz, using VisualWorks 1.0

n queens n = 8 :  0.04s

n = 40 : 0.4s

n = 100 : 7s

zebra problem 0.3s

send + more = money 0.2s

donald + gerald = robert 1.5s

magic square, size n n = 3 : 0.3s

n = 4 : 12s

5.4.     Integration of the system in the object language

In BackTalk, the domains of variables can contain any Smalltalk object. Moreover, we saw that

constraints can be defined with any Smalltalk expression (the class BTBlockConstraint ).

These two properties are essential to avoid the language mismatch so frequent in hybrid

environments.

5.5.     Easy definition of a CSP in BackTalk

As we saw in 3.2 the declaration of a problem in BackTalk is straightforward. Only a small

amount of Smalltalk code needs to be written. Specifying a constrained variable only requires
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expressing its domain using Smalltalk constructs. Defining a problem only requires specifying

the list of its variables, and stating the constraints may be done using all the power of the

Smalltalk language.

6.       Conclusion

We introduced the BackTalk system, a seamless integration of finite domain constraint

satisfaction techniques in Smalltalk1. The system brings the power of efficient combinatorial

exploration to the hands of the average Smalltalk programmer. The design of the system, seen

as a library for defining, combining and using different CSP algorithms, makes it easy to define

CSPs integrated with existing class libraries and frameworks, thereby extending them with

powerful problem solving capacities. We indeed believe that the CSP paradigm fits particularly

well with object-orientation, and that the result is more than the sum of its parts !
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7.1.     Annex 1: Illustration of solving algorithms

To illustrate some of the enumeration algorithms described above, we give here an execution of

each one on a simple problem in BackTalk. The problem is the following:

To dress somebody with a pair of pants, a shirt, a hat and a pair of shoes, we dispose of several

colors for each item: black, brown and white shoes, black and blue pants, blue, white and

brown shirts and a brown hat. We want the final choice to satisfy the following constraints: the

hat and the shoes should have the same color; the shoes, the shirt and the pants should have

different colors.

We define four variables and four constraints:
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4 variables (domain)

1. shoes (black brown)

2. shirt (brown blue white)

3. pants (black brown blue white)

4. hat (brown)

4 constraints

1. shoes = hat

2. shoes <> pants

3. shoes <> shirt

4. shirt <> pants

Chronological

backtracking

Backjumping Forward-checking

#black
#black #black
#black #brown
#black #brown #brown
#black #brown #blue
#black #brown #blue #brown
#black #brown #blue #green
#black #brown #white
#black #brown #white #brown
#black #brown #white #green
#black #blue
#black #blue #brown
#black #blue #brown #brown
#black #blue #brown #green
#black #blue #blue
#black #blue #white
#black #blue #white #brown
#black #blue #white #green
#black #white
#black #white #brown
#black #white #brown #brown
#black #white #brown #green
#black #white #blue
#black #white #blue #brown
#black #white #blue #green
#black #white #white
#brown
#brown #black
#brown #black #brown
#brown #black #blue
#brown #black #blue #brown

#black
#black #black
#black #brown
#black #brown #brown
#black #brown #blue
#black #brown #blue #brown
#black #brown #blue #green

#brown
#brown #black
#brown #black #brown
#brown #black #blue
#brown #black #blue #brown

#brown
#brown #black
#brown #black #blue #brown

This execution trace gives an overview of the relative efficiency of the algorithms on a given

problem. Chronological backtracking performs a huge number of instantiations and backtracks

to find a solution. Back-jumping goes more directly to the solution thanks to the “intelligent”

backtracking heuristic. Finally, forward-checking goes naturally straight to the solution without

backtracking at all. If forward-checking is clearly a winner here, the relative performances of

algorithms depends heavily on the problem, hence the necessity to provide all of them in a

unified environment, and let the user chose the most adapted one.


