My research activity is focused on complexity science and its interdisciplinary applications. Along the past years, I have been active in several fields from granular media, to complexity and information theory, from social dynamics to sustainability. My very recent KREYON project (www.kreyon.net) concerned "Unfolding the dynamics of creativity, novelties and innovation". In this context, I am interested in understanding and modelling how the "new" enters our lives in its multiform instantiations: personal novelties or global innovation. To this end I'm blending, in a unitary interdisciplinary effort, three main activities: web-based experiments, data science and theoretical modeling. Key to this endeavor is to grasp the structure and the dynamics of the "space of possibilities" in order to come up with a solid mathematical modelling of the way systems - biological, technological, social - explore the new at the individual and collective levels. Exploiting the knowledge of the way the space of possibilities is explored can be helpful to conceive the next generation of Artificial Intelligent algorithms able to cope with the occurrence of novelties, bridging in this way the gap between inference and unanticipated events.
The adverse effects of unsustainable behaviors on human society are leading to an increasingly urgent and critical need to change policies and practices worldwide. This requires that citizens become informed and engaged in participatory governance and measures leading to sustainable futures. Citizens’ understanding of the inherent complexity of sustainable systems is a necessary (though generally not sufficient) ingredient for them to understand controversial public policies and maintain the core principles of democratic societies. In this work, we present a novel, open-ended experiment where individuals had the opportunity to solve model urban sustainability problems in a purposeful game. Participants were challenged to interact with familiar LEGO blocks representing elements in a complex generative urban economic indicators model. Players seeks to find a specific urban configuration satisfying particular sustainability requirements. We show that, despite the intrinsic complexity and non-linearity of the problems, participants’ ability to make counter-intuitive actions helps them find suitable solutions. Moreover, we show that through successive iterations of the experiment, participants can overcome the difficulties linked to non-linearity and increase the probability of finding the correct solution to the problem. We contend that this kind of what-if platforms could have a crucial role in future approaches to sustainable developments goals.
The perception of facial attractiveness is a complex phenomenon which depends on how the observer perceives not only individual facial features, but also their mutual influence and interplay. In the machine learning community, this problem is typically tackled as a problem of regression of the subject-averaged rating assigned to natural faces. However, it has been conjectured that this approach does not capture the complexity of the phenomenon. It has recently been shown that different human subjects can navigate the face-space and “sculpt” their preferred modification of a reference facial portrait. Here we present an unsupervised inference study of the set of sculpted facial vectors in such experiments. We first infer minimal, interpretable and accurate probabilistic models (through Maximum Entropy and artificial neural networks) of the preferred facial variations, that encode the inter-subject variance. The application of such generative models to the supervised classification of the gender of the subject that sculpted the face reveals that it may be predicted with astonishingly high accuracy. We observe that the classification accuracy improves by increasing the order of the non-linear effective interaction. This suggests that the cognitive mechanisms related to facial discrimination in the brain do not involve the positions of single facial landmarks only, but mainly the mutual influence of couples, and even triplets and quadruplets of landmarks. Furthermore, the high prediction accuracy of the subjects’ gender suggests that much relevant information regarding the subjects may influence (and be elicited from) their facial preference criteria, in agreement with the multiple motive theory of attractiveness proposed in previous works.
The rapid urbanization makes the understanding of the evolution of urban environments of utmost importance to steer societies towards better futures. Many studies have focused on the emerging properties of cities, leading to the discovery of scaling laws mirroring the dependence of socio-economic indicators on city sizes. However, few efforts have been devoted to the modelling of the dynamical evolution of cities, as reflected through the mutual influence of socio-economic variables. Here, we fill this gap by presenting a maximum entropy generative model for cities written in terms of a few macro-economic variables, whose parameters (the effective Hamiltonian, in a statistical-physical analogy) are inferred from real data through a maximum-likelihood approach. This approach allows for establishing a few results. First, nonlinear dependencies among indicators are needed for an accurate statistical description of the complexity of empirical correlations. Second, the inferred coupling parameters turn out to be quite robust along different years. Third, the quasi time-invariance of the effective Hamiltonian allows guessing the future state of a city based on a previous state. Through the adoption of a longitudinal dataset of macro-economic variables for French towns, we assess a significant forecasting accuracy.
In the last decades, the acceleration of urban growth has led to an unprecedented level of urban interactions and interdependence. This situation calls for a significant effort among the scientific community to come up with engaging and meaningful visualizations and accessible scenario simulation engines. The present paper gives a contribution in this direction by providing general methods to evaluate accessibility in cities based on public transportation data. Through the notion of isochrones, the accessibility quantities proposed measure the performance of transport systems at connecting places and people in urban systems. Then we introduce scores ranking cities according to their overall accessibility. We highlight significant inequalities in the distribution of these measures across the population, which are found to be strikingly similar across various urban environments. Our results are released through the interactive platform: www.citychrone.org, aimed at providing the community at large with a useful tool for awareness and decision-making.
My research activity is focused on complexity science and its...
My research activity is focused on complexity science and its...
My research activity is focused on complexity science and its...